|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #include "SkRTree.h" |
|
9 #include "SkTSort.h" |
|
10 |
|
11 static inline uint32_t get_area(const SkIRect& rect); |
|
12 static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2); |
|
13 static inline uint32_t get_margin(const SkIRect& rect); |
|
14 static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2); |
|
15 static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out); |
|
16 |
|
17 /////////////////////////////////////////////////////////////////////////////////////////////////// |
|
18 |
|
19 SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio, |
|
20 bool sortWhenBulkLoading) { |
|
21 if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren && |
|
22 minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) { |
|
23 return new SkRTree(minChildren, maxChildren, aspectRatio, sortWhenBulkLoading); |
|
24 } |
|
25 return NULL; |
|
26 } |
|
27 |
|
28 SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio, |
|
29 bool sortWhenBulkLoading) |
|
30 : fMinChildren(minChildren) |
|
31 , fMaxChildren(maxChildren) |
|
32 , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren) |
|
33 , fCount(0) |
|
34 , fNodes(fNodeSize * 256) |
|
35 , fAspectRatio(aspectRatio) |
|
36 , fSortWhenBulkLoading(sortWhenBulkLoading) { |
|
37 SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren < |
|
38 static_cast<int>(SK_MaxU16)); |
|
39 SkASSERT((maxChildren + 1) / 2 >= minChildren); |
|
40 this->validate(); |
|
41 } |
|
42 |
|
43 SkRTree::~SkRTree() { |
|
44 this->clear(); |
|
45 } |
|
46 |
|
47 void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) { |
|
48 this->validate(); |
|
49 if (bounds.isEmpty()) { |
|
50 SkASSERT(false); |
|
51 return; |
|
52 } |
|
53 Branch newBranch; |
|
54 newBranch.fBounds = bounds; |
|
55 newBranch.fChild.data = data; |
|
56 if (this->isEmpty()) { |
|
57 // since a bulk-load into an existing tree is as of yet unimplemented (and arguably not |
|
58 // of vital importance right now), we only batch up inserts if the tree is empty. |
|
59 if (defer) { |
|
60 fDeferredInserts.push(newBranch); |
|
61 return; |
|
62 } else { |
|
63 fRoot.fChild.subtree = allocateNode(0); |
|
64 fRoot.fChild.subtree->fNumChildren = 0; |
|
65 } |
|
66 } |
|
67 |
|
68 Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch); |
|
69 fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree); |
|
70 |
|
71 if (NULL != newSibling) { |
|
72 Node* oldRoot = fRoot.fChild.subtree; |
|
73 Node* newRoot = this->allocateNode(oldRoot->fLevel + 1); |
|
74 newRoot->fNumChildren = 2; |
|
75 *newRoot->child(0) = fRoot; |
|
76 *newRoot->child(1) = *newSibling; |
|
77 fRoot.fChild.subtree = newRoot; |
|
78 fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree); |
|
79 } |
|
80 |
|
81 ++fCount; |
|
82 this->validate(); |
|
83 } |
|
84 |
|
85 void SkRTree::flushDeferredInserts() { |
|
86 this->validate(); |
|
87 if (this->isEmpty() && fDeferredInserts.count() > 0) { |
|
88 fCount = fDeferredInserts.count(); |
|
89 if (1 == fCount) { |
|
90 fRoot.fChild.subtree = allocateNode(0); |
|
91 fRoot.fChild.subtree->fNumChildren = 0; |
|
92 this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]); |
|
93 fRoot.fBounds = fDeferredInserts[0].fBounds; |
|
94 } else { |
|
95 fRoot = this->bulkLoad(&fDeferredInserts); |
|
96 } |
|
97 } else { |
|
98 // TODO: some algorithm for bulk loading into an already populated tree |
|
99 SkASSERT(0 == fDeferredInserts.count()); |
|
100 } |
|
101 fDeferredInserts.rewind(); |
|
102 this->validate(); |
|
103 } |
|
104 |
|
105 void SkRTree::search(const SkIRect& query, SkTDArray<void*>* results) { |
|
106 this->validate(); |
|
107 if (0 != fDeferredInserts.count()) { |
|
108 this->flushDeferredInserts(); |
|
109 } |
|
110 if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) { |
|
111 this->search(fRoot.fChild.subtree, query, results); |
|
112 } |
|
113 this->validate(); |
|
114 } |
|
115 |
|
116 void SkRTree::clear() { |
|
117 this->validate(); |
|
118 fNodes.reset(); |
|
119 fDeferredInserts.rewind(); |
|
120 fCount = 0; |
|
121 this->validate(); |
|
122 } |
|
123 |
|
124 SkRTree::Node* SkRTree::allocateNode(uint16_t level) { |
|
125 Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize)); |
|
126 out->fNumChildren = 0; |
|
127 out->fLevel = level; |
|
128 return out; |
|
129 } |
|
130 |
|
131 SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) { |
|
132 Branch* toInsert = branch; |
|
133 if (root->fLevel != level) { |
|
134 int childIndex = this->chooseSubtree(root, branch); |
|
135 toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level); |
|
136 root->child(childIndex)->fBounds = this->computeBounds( |
|
137 root->child(childIndex)->fChild.subtree); |
|
138 } |
|
139 if (NULL != toInsert) { |
|
140 if (root->fNumChildren == fMaxChildren) { |
|
141 // handle overflow by splitting. TODO: opportunistic reinsertion |
|
142 |
|
143 // decide on a distribution to divide with |
|
144 Node* newSibling = this->allocateNode(root->fLevel); |
|
145 Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1); |
|
146 for (int i = 0; i < fMaxChildren; ++i) { |
|
147 toDivide[i] = *root->child(i); |
|
148 } |
|
149 toDivide[fMaxChildren] = *toInsert; |
|
150 int splitIndex = this->distributeChildren(toDivide); |
|
151 |
|
152 // divide up the branches |
|
153 root->fNumChildren = splitIndex; |
|
154 newSibling->fNumChildren = fMaxChildren + 1 - splitIndex; |
|
155 for (int i = 0; i < splitIndex; ++i) { |
|
156 *root->child(i) = toDivide[i]; |
|
157 } |
|
158 for (int i = splitIndex; i < fMaxChildren + 1; ++i) { |
|
159 *newSibling->child(i - splitIndex) = toDivide[i]; |
|
160 } |
|
161 SkDELETE_ARRAY(toDivide); |
|
162 |
|
163 // pass the new sibling branch up to the parent |
|
164 branch->fChild.subtree = newSibling; |
|
165 branch->fBounds = this->computeBounds(newSibling); |
|
166 return branch; |
|
167 } else { |
|
168 *root->child(root->fNumChildren) = *toInsert; |
|
169 ++root->fNumChildren; |
|
170 return NULL; |
|
171 } |
|
172 } |
|
173 return NULL; |
|
174 } |
|
175 |
|
176 int SkRTree::chooseSubtree(Node* root, Branch* branch) { |
|
177 SkASSERT(!root->isLeaf()); |
|
178 if (1 < root->fLevel) { |
|
179 // root's child pointers do not point to leaves, so minimize area increase |
|
180 int32_t minAreaIncrease = SK_MaxS32; |
|
181 int32_t minArea = SK_MaxS32; |
|
182 int32_t bestSubtree = -1; |
|
183 for (int i = 0; i < root->fNumChildren; ++i) { |
|
184 const SkIRect& subtreeBounds = root->child(i)->fBounds; |
|
185 int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds); |
|
186 // break ties in favor of subtree with smallest area |
|
187 if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease && |
|
188 static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) { |
|
189 minAreaIncrease = areaIncrease; |
|
190 minArea = get_area(subtreeBounds); |
|
191 bestSubtree = i; |
|
192 } |
|
193 } |
|
194 SkASSERT(-1 != bestSubtree); |
|
195 return bestSubtree; |
|
196 } else if (1 == root->fLevel) { |
|
197 // root's child pointers do point to leaves, so minimize overlap increase |
|
198 int32_t minOverlapIncrease = SK_MaxS32; |
|
199 int32_t minAreaIncrease = SK_MaxS32; |
|
200 int32_t bestSubtree = -1; |
|
201 for (int32_t i = 0; i < root->fNumChildren; ++i) { |
|
202 const SkIRect& subtreeBounds = root->child(i)->fBounds; |
|
203 SkIRect expandedBounds = subtreeBounds; |
|
204 join_no_empty_check(branch->fBounds, &expandedBounds); |
|
205 int32_t overlap = 0; |
|
206 for (int32_t j = 0; j < root->fNumChildren; ++j) { |
|
207 if (j == i) continue; |
|
208 // Note: this would be more correct if we subtracted the original pre-expanded |
|
209 // overlap, but computing overlaps is expensive and omitting it doesn't seem to |
|
210 // hurt query performance. See get_overlap_increase() |
|
211 overlap += get_overlap(expandedBounds, root->child(j)->fBounds); |
|
212 } |
|
213 // break ties with lowest area increase |
|
214 if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease && |
|
215 static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) < |
|
216 minAreaIncrease)) { |
|
217 minOverlapIncrease = overlap; |
|
218 minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds); |
|
219 bestSubtree = i; |
|
220 } |
|
221 } |
|
222 return bestSubtree; |
|
223 } else { |
|
224 SkASSERT(false); |
|
225 return 0; |
|
226 } |
|
227 } |
|
228 |
|
229 SkIRect SkRTree::computeBounds(Node* n) { |
|
230 SkIRect r = n->child(0)->fBounds; |
|
231 for (int i = 1; i < n->fNumChildren; ++i) { |
|
232 join_no_empty_check(n->child(i)->fBounds, &r); |
|
233 } |
|
234 return r; |
|
235 } |
|
236 |
|
237 int SkRTree::distributeChildren(Branch* children) { |
|
238 // We have two sides to sort by on each of two axes: |
|
239 const static SortSide sorts[2][2] = { |
|
240 {&SkIRect::fLeft, &SkIRect::fRight}, |
|
241 {&SkIRect::fTop, &SkIRect::fBottom} |
|
242 }; |
|
243 |
|
244 // We want to choose an axis to split on, then a distribution along that axis; we'll need |
|
245 // three pieces of info: the split axis, the side to sort by on that axis, and the index |
|
246 // to split the sorted array on. |
|
247 int32_t sortSide = -1; |
|
248 int32_t k = -1; |
|
249 int32_t axis = -1; |
|
250 int32_t bestS = SK_MaxS32; |
|
251 |
|
252 // Evaluate each axis, we want the min summed margin-value (s) over all distributions |
|
253 for (int i = 0; i < 2; ++i) { |
|
254 int32_t minOverlap = SK_MaxS32; |
|
255 int32_t minArea = SK_MaxS32; |
|
256 int32_t axisBestK = 0; |
|
257 int32_t axisBestSide = 0; |
|
258 int32_t s = 0; |
|
259 |
|
260 // Evaluate each sort |
|
261 for (int j = 0; j < 2; ++j) { |
|
262 SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[i][j])); |
|
263 |
|
264 // Evaluate each split index |
|
265 for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) { |
|
266 SkIRect r1 = children[0].fBounds; |
|
267 SkIRect r2 = children[fMinChildren + k - 1].fBounds; |
|
268 for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) { |
|
269 join_no_empty_check(children[l].fBounds, &r1); |
|
270 } |
|
271 for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) { |
|
272 join_no_empty_check(children[l].fBounds, &r2); |
|
273 } |
|
274 |
|
275 int32_t area = get_area(r1) + get_area(r2); |
|
276 int32_t overlap = get_overlap(r1, r2); |
|
277 s += get_margin(r1) + get_margin(r2); |
|
278 |
|
279 if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) { |
|
280 minOverlap = overlap; |
|
281 minArea = area; |
|
282 axisBestSide = j; |
|
283 axisBestK = k; |
|
284 } |
|
285 } |
|
286 } |
|
287 |
|
288 if (s < bestS) { |
|
289 bestS = s; |
|
290 axis = i; |
|
291 sortSide = axisBestSide; |
|
292 k = axisBestK; |
|
293 } |
|
294 } |
|
295 |
|
296 // replicate the sort of the winning distribution, (we can skip this if the last |
|
297 // sort ended up being best) |
|
298 if (!(axis == 1 && sortSide == 1)) { |
|
299 SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[axis][sortSide])); |
|
300 } |
|
301 |
|
302 return fMinChildren - 1 + k; |
|
303 } |
|
304 |
|
305 void SkRTree::search(Node* root, const SkIRect query, SkTDArray<void*>* results) const { |
|
306 for (int i = 0; i < root->fNumChildren; ++i) { |
|
307 if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) { |
|
308 if (root->isLeaf()) { |
|
309 results->push(root->child(i)->fChild.data); |
|
310 } else { |
|
311 this->search(root->child(i)->fChild.subtree, query, results); |
|
312 } |
|
313 } |
|
314 } |
|
315 } |
|
316 |
|
317 SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) { |
|
318 if (branches->count() == 1) { |
|
319 // Only one branch: it will be the root |
|
320 Branch out = (*branches)[0]; |
|
321 branches->rewind(); |
|
322 return out; |
|
323 } else { |
|
324 // We sort the whole list by y coordinates, if we are told to do so. |
|
325 // |
|
326 // We expect Webkit / Blink to give us a reasonable x,y order. |
|
327 // Avoiding this call resulted in a 17% win for recording with |
|
328 // negligible difference in playback speed. |
|
329 if (fSortWhenBulkLoading) { |
|
330 SkTQSort(branches->begin(), branches->end() - 1, RectLessY()); |
|
331 } |
|
332 |
|
333 int numBranches = branches->count() / fMaxChildren; |
|
334 int remainder = branches->count() % fMaxChildren; |
|
335 int newBranches = 0; |
|
336 |
|
337 if (0 != remainder) { |
|
338 ++numBranches; |
|
339 // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to |
|
340 // some other branches to make up for it |
|
341 if (remainder >= fMinChildren) { |
|
342 remainder = 0; |
|
343 } else { |
|
344 remainder = fMinChildren - remainder; |
|
345 } |
|
346 } |
|
347 |
|
348 int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) * |
|
349 SkScalarInvert(fAspectRatio))); |
|
350 int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) / |
|
351 SkIntToScalar(numStrips)); |
|
352 int currentBranch = 0; |
|
353 |
|
354 for (int i = 0; i < numStrips; ++i) { |
|
355 // Once again, if we are told to do so, we sort by x. |
|
356 if (fSortWhenBulkLoading) { |
|
357 int begin = currentBranch; |
|
358 int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder, |
|
359 (fMaxChildren - fMinChildren) * numTiles); |
|
360 if (end > branches->count()) { |
|
361 end = branches->count(); |
|
362 } |
|
363 |
|
364 // Now we sort horizontal strips of rectangles by their x coords |
|
365 SkTQSort(branches->begin() + begin, branches->begin() + end - 1, RectLessX()); |
|
366 } |
|
367 |
|
368 for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) { |
|
369 int incrementBy = fMaxChildren; |
|
370 if (remainder != 0) { |
|
371 // if need be, omit some nodes to make up for remainder |
|
372 if (remainder <= fMaxChildren - fMinChildren) { |
|
373 incrementBy -= remainder; |
|
374 remainder = 0; |
|
375 } else { |
|
376 incrementBy = fMinChildren; |
|
377 remainder -= fMaxChildren - fMinChildren; |
|
378 } |
|
379 } |
|
380 Node* n = allocateNode(level); |
|
381 n->fNumChildren = 1; |
|
382 *n->child(0) = (*branches)[currentBranch]; |
|
383 Branch b; |
|
384 b.fBounds = (*branches)[currentBranch].fBounds; |
|
385 b.fChild.subtree = n; |
|
386 ++currentBranch; |
|
387 for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) { |
|
388 b.fBounds.join((*branches)[currentBranch].fBounds); |
|
389 *n->child(k) = (*branches)[currentBranch]; |
|
390 ++n->fNumChildren; |
|
391 ++currentBranch; |
|
392 } |
|
393 (*branches)[newBranches] = b; |
|
394 ++newBranches; |
|
395 } |
|
396 } |
|
397 branches->setCount(newBranches); |
|
398 return this->bulkLoad(branches, level + 1); |
|
399 } |
|
400 } |
|
401 |
|
402 void SkRTree::validate() { |
|
403 #ifdef SK_DEBUG |
|
404 if (this->isEmpty()) { |
|
405 return; |
|
406 } |
|
407 SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true)); |
|
408 #endif |
|
409 } |
|
410 |
|
411 int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) { |
|
412 // make sure the pointer is pointing to a valid place |
|
413 SkASSERT(fNodes.contains(static_cast<void*>(root))); |
|
414 |
|
415 if (isRoot) { |
|
416 // If the root of this subtree is the overall root, we have looser standards: |
|
417 if (root->isLeaf()) { |
|
418 SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren); |
|
419 } else { |
|
420 SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren); |
|
421 } |
|
422 } else { |
|
423 SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren); |
|
424 } |
|
425 |
|
426 for (int i = 0; i < root->fNumChildren; ++i) { |
|
427 SkASSERT(bounds.contains(root->child(i)->fBounds)); |
|
428 } |
|
429 |
|
430 if (root->isLeaf()) { |
|
431 SkASSERT(0 == root->fLevel); |
|
432 return root->fNumChildren; |
|
433 } else { |
|
434 int childCount = 0; |
|
435 for (int i = 0; i < root->fNumChildren; ++i) { |
|
436 SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1); |
|
437 childCount += this->validateSubtree(root->child(i)->fChild.subtree, |
|
438 root->child(i)->fBounds); |
|
439 } |
|
440 return childCount; |
|
441 } |
|
442 } |
|
443 |
|
444 void SkRTree::rewindInserts() { |
|
445 SkASSERT(this->isEmpty()); // Currently only supports deferred inserts |
|
446 while (!fDeferredInserts.isEmpty() && |
|
447 fClient->shouldRewind(fDeferredInserts.top().fChild.data)) { |
|
448 fDeferredInserts.pop(); |
|
449 } |
|
450 } |
|
451 |
|
452 /////////////////////////////////////////////////////////////////////////////////////////////////// |
|
453 |
|
454 static inline uint32_t get_area(const SkIRect& rect) { |
|
455 return rect.width() * rect.height(); |
|
456 } |
|
457 |
|
458 static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) { |
|
459 // I suspect there's a more efficient way of computing this... |
|
460 return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) * |
|
461 SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop)); |
|
462 } |
|
463 |
|
464 // Get the margin (aka perimeter) |
|
465 static inline uint32_t get_margin(const SkIRect& rect) { |
|
466 return 2 * (rect.width() + rect.height()); |
|
467 } |
|
468 |
|
469 static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) { |
|
470 join_no_empty_check(rect1, &rect2); |
|
471 return get_area(rect2) - get_area(rect1); |
|
472 } |
|
473 |
|
474 // Expand 'out' to include 'joinWith' |
|
475 static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) { |
|
476 // since we check for empty bounds on insert, we know we'll never have empty rects |
|
477 // and we can save the empty check that SkIRect::join requires |
|
478 if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; } |
|
479 if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; } |
|
480 if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; } |
|
481 if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; } |
|
482 } |