|
1 |
|
2 /* |
|
3 * Copyright 2006 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include "SkString.h" |
|
11 #include "SkFixed.h" |
|
12 #include "SkThread.h" |
|
13 #include "SkUtils.h" |
|
14 #include <stdarg.h> |
|
15 #include <stdio.h> |
|
16 |
|
17 // number of bytes (on the stack) to receive the printf result |
|
18 static const size_t kBufferSize = 1024; |
|
19 |
|
20 #ifdef SK_BUILD_FOR_WIN |
|
21 #define VSNPRINTF(buffer, size, format, args) \ |
|
22 _vsnprintf_s(buffer, size, _TRUNCATE, format, args) |
|
23 #define SNPRINTF _snprintf |
|
24 #else |
|
25 #define VSNPRINTF vsnprintf |
|
26 #define SNPRINTF snprintf |
|
27 #endif |
|
28 |
|
29 #define ARGS_TO_BUFFER(format, buffer, size) \ |
|
30 do { \ |
|
31 va_list args; \ |
|
32 va_start(args, format); \ |
|
33 VSNPRINTF(buffer, size, format, args); \ |
|
34 va_end(args); \ |
|
35 } while (0) |
|
36 |
|
37 /////////////////////////////////////////////////////////////////////////////// |
|
38 |
|
39 bool SkStrEndsWith(const char string[], const char suffixStr[]) { |
|
40 SkASSERT(string); |
|
41 SkASSERT(suffixStr); |
|
42 size_t strLen = strlen(string); |
|
43 size_t suffixLen = strlen(suffixStr); |
|
44 return strLen >= suffixLen && |
|
45 !strncmp(string + strLen - suffixLen, suffixStr, suffixLen); |
|
46 } |
|
47 |
|
48 bool SkStrEndsWith(const char string[], const char suffixChar) { |
|
49 SkASSERT(string); |
|
50 size_t strLen = strlen(string); |
|
51 if (0 == strLen) { |
|
52 return false; |
|
53 } else { |
|
54 return (suffixChar == string[strLen-1]); |
|
55 } |
|
56 } |
|
57 |
|
58 int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { |
|
59 int index = 0; |
|
60 do { |
|
61 const char* limit = strchr(prefixes, '\0'); |
|
62 if (!strncmp(string, prefixes, limit - prefixes)) { |
|
63 return index; |
|
64 } |
|
65 prefixes = limit + 1; |
|
66 index++; |
|
67 } while (prefixes[0]); |
|
68 return -1; |
|
69 } |
|
70 |
|
71 char* SkStrAppendU32(char string[], uint32_t dec) { |
|
72 SkDEBUGCODE(char* start = string;) |
|
73 |
|
74 char buffer[SkStrAppendU32_MaxSize]; |
|
75 char* p = buffer + sizeof(buffer); |
|
76 |
|
77 do { |
|
78 *--p = SkToU8('0' + dec % 10); |
|
79 dec /= 10; |
|
80 } while (dec != 0); |
|
81 |
|
82 SkASSERT(p >= buffer); |
|
83 char* stop = buffer + sizeof(buffer); |
|
84 while (p < stop) { |
|
85 *string++ = *p++; |
|
86 } |
|
87 SkASSERT(string - start <= SkStrAppendU32_MaxSize); |
|
88 return string; |
|
89 } |
|
90 |
|
91 char* SkStrAppendS32(char string[], int32_t dec) { |
|
92 if (dec < 0) { |
|
93 *string++ = '-'; |
|
94 dec = -dec; |
|
95 } |
|
96 return SkStrAppendU32(string, static_cast<uint32_t>(dec)); |
|
97 } |
|
98 |
|
99 char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) { |
|
100 SkDEBUGCODE(char* start = string;) |
|
101 |
|
102 char buffer[SkStrAppendU64_MaxSize]; |
|
103 char* p = buffer + sizeof(buffer); |
|
104 |
|
105 do { |
|
106 *--p = SkToU8('0' + (int32_t) (dec % 10)); |
|
107 dec /= 10; |
|
108 minDigits--; |
|
109 } while (dec != 0); |
|
110 |
|
111 while (minDigits > 0) { |
|
112 *--p = '0'; |
|
113 minDigits--; |
|
114 } |
|
115 |
|
116 SkASSERT(p >= buffer); |
|
117 size_t cp_len = buffer + sizeof(buffer) - p; |
|
118 memcpy(string, p, cp_len); |
|
119 string += cp_len; |
|
120 |
|
121 SkASSERT(string - start <= SkStrAppendU64_MaxSize); |
|
122 return string; |
|
123 } |
|
124 |
|
125 char* SkStrAppendS64(char string[], int64_t dec, int minDigits) { |
|
126 if (dec < 0) { |
|
127 *string++ = '-'; |
|
128 dec = -dec; |
|
129 } |
|
130 return SkStrAppendU64(string, static_cast<uint64_t>(dec), minDigits); |
|
131 } |
|
132 |
|
133 char* SkStrAppendFloat(char string[], float value) { |
|
134 // since floats have at most 8 significant digits, we limit our %g to that. |
|
135 static const char gFormat[] = "%.8g"; |
|
136 // make it 1 larger for the terminating 0 |
|
137 char buffer[SkStrAppendScalar_MaxSize + 1]; |
|
138 int len = SNPRINTF(buffer, sizeof(buffer), gFormat, value); |
|
139 memcpy(string, buffer, len); |
|
140 SkASSERT(len <= SkStrAppendScalar_MaxSize); |
|
141 return string + len; |
|
142 } |
|
143 |
|
144 char* SkStrAppendFixed(char string[], SkFixed x) { |
|
145 SkDEBUGCODE(char* start = string;) |
|
146 if (x < 0) { |
|
147 *string++ = '-'; |
|
148 x = -x; |
|
149 } |
|
150 |
|
151 unsigned frac = x & 0xFFFF; |
|
152 x >>= 16; |
|
153 if (frac == 0xFFFF) { |
|
154 // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999 |
|
155 x += 1; |
|
156 frac = 0; |
|
157 } |
|
158 string = SkStrAppendS32(string, x); |
|
159 |
|
160 // now handle the fractional part (if any) |
|
161 if (frac) { |
|
162 static const uint16_t gTens[] = { 1000, 100, 10, 1 }; |
|
163 const uint16_t* tens = gTens; |
|
164 |
|
165 x = SkFixedRoundToInt(frac * 10000); |
|
166 SkASSERT(x <= 10000); |
|
167 if (x == 10000) { |
|
168 x -= 1; |
|
169 } |
|
170 *string++ = '.'; |
|
171 do { |
|
172 unsigned powerOfTen = *tens++; |
|
173 *string++ = SkToU8('0' + x / powerOfTen); |
|
174 x %= powerOfTen; |
|
175 } while (x != 0); |
|
176 } |
|
177 |
|
178 SkASSERT(string - start <= SkStrAppendScalar_MaxSize); |
|
179 return string; |
|
180 } |
|
181 |
|
182 /////////////////////////////////////////////////////////////////////////////// |
|
183 |
|
184 // the 3 values are [length] [refcnt] [terminating zero data] |
|
185 const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 }; |
|
186 |
|
187 #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) |
|
188 |
|
189 static uint32_t trim_size_t_to_u32(size_t value) { |
|
190 if (sizeof(size_t) > sizeof(uint32_t)) { |
|
191 if (value > SK_MaxU32) { |
|
192 value = SK_MaxU32; |
|
193 } |
|
194 } |
|
195 return (uint32_t)value; |
|
196 } |
|
197 |
|
198 static size_t check_add32(size_t base, size_t extra) { |
|
199 SkASSERT(base <= SK_MaxU32); |
|
200 if (sizeof(size_t) > sizeof(uint32_t)) { |
|
201 if (base + extra > SK_MaxU32) { |
|
202 extra = SK_MaxU32 - base; |
|
203 } |
|
204 } |
|
205 return extra; |
|
206 } |
|
207 |
|
208 SkString::Rec* SkString::AllocRec(const char text[], size_t len) { |
|
209 Rec* rec; |
|
210 |
|
211 if (0 == len) { |
|
212 rec = const_cast<Rec*>(&gEmptyRec); |
|
213 } else { |
|
214 len = trim_size_t_to_u32(len); |
|
215 |
|
216 // add 1 for terminating 0, then align4 so we can have some slop when growing the string |
|
217 rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1)); |
|
218 rec->fLength = SkToU32(len); |
|
219 rec->fRefCnt = 1; |
|
220 if (text) { |
|
221 memcpy(rec->data(), text, len); |
|
222 } |
|
223 rec->data()[len] = 0; |
|
224 } |
|
225 return rec; |
|
226 } |
|
227 |
|
228 SkString::Rec* SkString::RefRec(Rec* src) { |
|
229 if (src != &gEmptyRec) { |
|
230 sk_atomic_inc(&src->fRefCnt); |
|
231 } |
|
232 return src; |
|
233 } |
|
234 |
|
235 #ifdef SK_DEBUG |
|
236 void SkString::validate() const { |
|
237 // make sure know one has written over our global |
|
238 SkASSERT(0 == gEmptyRec.fLength); |
|
239 SkASSERT(0 == gEmptyRec.fRefCnt); |
|
240 SkASSERT(0 == gEmptyRec.data()[0]); |
|
241 |
|
242 if (fRec != &gEmptyRec) { |
|
243 SkASSERT(fRec->fLength > 0); |
|
244 SkASSERT(fRec->fRefCnt > 0); |
|
245 SkASSERT(0 == fRec->data()[fRec->fLength]); |
|
246 } |
|
247 SkASSERT(fStr == c_str()); |
|
248 } |
|
249 #endif |
|
250 |
|
251 /////////////////////////////////////////////////////////////////////////////// |
|
252 |
|
253 SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) { |
|
254 #ifdef SK_DEBUG |
|
255 fStr = fRec->data(); |
|
256 #endif |
|
257 } |
|
258 |
|
259 SkString::SkString(size_t len) { |
|
260 fRec = AllocRec(NULL, len); |
|
261 #ifdef SK_DEBUG |
|
262 fStr = fRec->data(); |
|
263 #endif |
|
264 } |
|
265 |
|
266 SkString::SkString(const char text[]) { |
|
267 size_t len = text ? strlen(text) : 0; |
|
268 |
|
269 fRec = AllocRec(text, len); |
|
270 #ifdef SK_DEBUG |
|
271 fStr = fRec->data(); |
|
272 #endif |
|
273 } |
|
274 |
|
275 SkString::SkString(const char text[], size_t len) { |
|
276 fRec = AllocRec(text, len); |
|
277 #ifdef SK_DEBUG |
|
278 fStr = fRec->data(); |
|
279 #endif |
|
280 } |
|
281 |
|
282 SkString::SkString(const SkString& src) { |
|
283 src.validate(); |
|
284 |
|
285 fRec = RefRec(src.fRec); |
|
286 #ifdef SK_DEBUG |
|
287 fStr = fRec->data(); |
|
288 #endif |
|
289 } |
|
290 |
|
291 SkString::~SkString() { |
|
292 this->validate(); |
|
293 |
|
294 if (fRec->fLength) { |
|
295 SkASSERT(fRec->fRefCnt > 0); |
|
296 if (sk_atomic_dec(&fRec->fRefCnt) == 1) { |
|
297 sk_free(fRec); |
|
298 } |
|
299 } |
|
300 } |
|
301 |
|
302 bool SkString::equals(const SkString& src) const { |
|
303 return fRec == src.fRec || this->equals(src.c_str(), src.size()); |
|
304 } |
|
305 |
|
306 bool SkString::equals(const char text[]) const { |
|
307 return this->equals(text, text ? strlen(text) : 0); |
|
308 } |
|
309 |
|
310 bool SkString::equals(const char text[], size_t len) const { |
|
311 SkASSERT(len == 0 || text != NULL); |
|
312 |
|
313 return fRec->fLength == len && !memcmp(fRec->data(), text, len); |
|
314 } |
|
315 |
|
316 SkString& SkString::operator=(const SkString& src) { |
|
317 this->validate(); |
|
318 |
|
319 if (fRec != src.fRec) { |
|
320 SkString tmp(src); |
|
321 this->swap(tmp); |
|
322 } |
|
323 return *this; |
|
324 } |
|
325 |
|
326 SkString& SkString::operator=(const char text[]) { |
|
327 this->validate(); |
|
328 |
|
329 SkString tmp(text); |
|
330 this->swap(tmp); |
|
331 |
|
332 return *this; |
|
333 } |
|
334 |
|
335 void SkString::reset() { |
|
336 this->validate(); |
|
337 |
|
338 if (fRec->fLength) { |
|
339 SkASSERT(fRec->fRefCnt > 0); |
|
340 if (sk_atomic_dec(&fRec->fRefCnt) == 1) { |
|
341 sk_free(fRec); |
|
342 } |
|
343 } |
|
344 |
|
345 fRec = const_cast<Rec*>(&gEmptyRec); |
|
346 #ifdef SK_DEBUG |
|
347 fStr = fRec->data(); |
|
348 #endif |
|
349 } |
|
350 |
|
351 char* SkString::writable_str() { |
|
352 this->validate(); |
|
353 |
|
354 if (fRec->fLength) { |
|
355 if (fRec->fRefCnt > 1) { |
|
356 Rec* rec = AllocRec(fRec->data(), fRec->fLength); |
|
357 if (sk_atomic_dec(&fRec->fRefCnt) == 1) { |
|
358 // In this case after our check of fRecCnt > 1, we suddenly |
|
359 // did become the only owner, so now we have two copies of the |
|
360 // data (fRec and rec), so we need to delete one of them. |
|
361 sk_free(fRec); |
|
362 } |
|
363 fRec = rec; |
|
364 #ifdef SK_DEBUG |
|
365 fStr = fRec->data(); |
|
366 #endif |
|
367 } |
|
368 } |
|
369 return fRec->data(); |
|
370 } |
|
371 |
|
372 void SkString::set(const char text[]) { |
|
373 this->set(text, text ? strlen(text) : 0); |
|
374 } |
|
375 |
|
376 void SkString::set(const char text[], size_t len) { |
|
377 len = trim_size_t_to_u32(len); |
|
378 |
|
379 if (0 == len) { |
|
380 this->reset(); |
|
381 } else if (1 == fRec->fRefCnt && len <= fRec->fLength) { |
|
382 // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))? |
|
383 // just use less of the buffer without allocating a smaller one |
|
384 char* p = this->writable_str(); |
|
385 if (text) { |
|
386 memcpy(p, text, len); |
|
387 } |
|
388 p[len] = 0; |
|
389 fRec->fLength = SkToU32(len); |
|
390 } else if (1 == fRec->fRefCnt && (fRec->fLength >> 2) == (len >> 2)) { |
|
391 // we have spare room in the current allocation, so don't alloc a larger one |
|
392 char* p = this->writable_str(); |
|
393 if (text) { |
|
394 memcpy(p, text, len); |
|
395 } |
|
396 p[len] = 0; |
|
397 fRec->fLength = SkToU32(len); |
|
398 } else { |
|
399 SkString tmp(text, len); |
|
400 this->swap(tmp); |
|
401 } |
|
402 } |
|
403 |
|
404 void SkString::setUTF16(const uint16_t src[]) { |
|
405 int count = 0; |
|
406 |
|
407 while (src[count]) { |
|
408 count += 1; |
|
409 } |
|
410 this->setUTF16(src, count); |
|
411 } |
|
412 |
|
413 void SkString::setUTF16(const uint16_t src[], size_t count) { |
|
414 count = trim_size_t_to_u32(count); |
|
415 |
|
416 if (0 == count) { |
|
417 this->reset(); |
|
418 } else if (count <= fRec->fLength) { |
|
419 // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1)) |
|
420 if (count < fRec->fLength) { |
|
421 this->resize(count); |
|
422 } |
|
423 char* p = this->writable_str(); |
|
424 for (size_t i = 0; i < count; i++) { |
|
425 p[i] = SkToU8(src[i]); |
|
426 } |
|
427 p[count] = 0; |
|
428 } else { |
|
429 SkString tmp(count); // puts a null terminator at the end of the string |
|
430 char* p = tmp.writable_str(); |
|
431 |
|
432 for (size_t i = 0; i < count; i++) { |
|
433 p[i] = SkToU8(src[i]); |
|
434 } |
|
435 this->swap(tmp); |
|
436 } |
|
437 } |
|
438 |
|
439 void SkString::insert(size_t offset, const char text[]) { |
|
440 this->insert(offset, text, text ? strlen(text) : 0); |
|
441 } |
|
442 |
|
443 void SkString::insert(size_t offset, const char text[], size_t len) { |
|
444 if (len) { |
|
445 size_t length = fRec->fLength; |
|
446 if (offset > length) { |
|
447 offset = length; |
|
448 } |
|
449 |
|
450 // Check if length + len exceeds 32bits, we trim len |
|
451 len = check_add32(length, len); |
|
452 if (0 == len) { |
|
453 return; |
|
454 } |
|
455 |
|
456 /* If we're the only owner, and we have room in our allocation for the insert, |
|
457 do it in place, rather than allocating a new buffer. |
|
458 |
|
459 To know we have room, compare the allocated sizes |
|
460 beforeAlloc = SkAlign4(length + 1) |
|
461 afterAlloc = SkAligh4(length + 1 + len) |
|
462 but SkAlign4(x) is (x + 3) >> 2 << 2 |
|
463 which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 |
|
464 and we can then eliminate the +1+3 since that doesn't affec the answer |
|
465 */ |
|
466 if (1 == fRec->fRefCnt && (length >> 2) == ((length + len) >> 2)) { |
|
467 char* dst = this->writable_str(); |
|
468 |
|
469 if (offset < length) { |
|
470 memmove(dst + offset + len, dst + offset, length - offset); |
|
471 } |
|
472 memcpy(dst + offset, text, len); |
|
473 |
|
474 dst[length + len] = 0; |
|
475 fRec->fLength = SkToU32(length + len); |
|
476 } else { |
|
477 /* Seems we should use realloc here, since that is safe if it fails |
|
478 (we have the original data), and might be faster than alloc/copy/free. |
|
479 */ |
|
480 SkString tmp(fRec->fLength + len); |
|
481 char* dst = tmp.writable_str(); |
|
482 |
|
483 if (offset > 0) { |
|
484 memcpy(dst, fRec->data(), offset); |
|
485 } |
|
486 memcpy(dst + offset, text, len); |
|
487 if (offset < fRec->fLength) { |
|
488 memcpy(dst + offset + len, fRec->data() + offset, |
|
489 fRec->fLength - offset); |
|
490 } |
|
491 |
|
492 this->swap(tmp); |
|
493 } |
|
494 } |
|
495 } |
|
496 |
|
497 void SkString::insertUnichar(size_t offset, SkUnichar uni) { |
|
498 char buffer[kMaxBytesInUTF8Sequence]; |
|
499 size_t len = SkUTF8_FromUnichar(uni, buffer); |
|
500 |
|
501 if (len) { |
|
502 this->insert(offset, buffer, len); |
|
503 } |
|
504 } |
|
505 |
|
506 void SkString::insertS32(size_t offset, int32_t dec) { |
|
507 char buffer[SkStrAppendS32_MaxSize]; |
|
508 char* stop = SkStrAppendS32(buffer, dec); |
|
509 this->insert(offset, buffer, stop - buffer); |
|
510 } |
|
511 |
|
512 void SkString::insertS64(size_t offset, int64_t dec, int minDigits) { |
|
513 char buffer[SkStrAppendS64_MaxSize]; |
|
514 char* stop = SkStrAppendS64(buffer, dec, minDigits); |
|
515 this->insert(offset, buffer, stop - buffer); |
|
516 } |
|
517 |
|
518 void SkString::insertU32(size_t offset, uint32_t dec) { |
|
519 char buffer[SkStrAppendU32_MaxSize]; |
|
520 char* stop = SkStrAppendU32(buffer, dec); |
|
521 this->insert(offset, buffer, stop - buffer); |
|
522 } |
|
523 |
|
524 void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) { |
|
525 char buffer[SkStrAppendU64_MaxSize]; |
|
526 char* stop = SkStrAppendU64(buffer, dec, minDigits); |
|
527 this->insert(offset, buffer, stop - buffer); |
|
528 } |
|
529 |
|
530 void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { |
|
531 minDigits = SkPin32(minDigits, 0, 8); |
|
532 |
|
533 static const char gHex[] = "0123456789ABCDEF"; |
|
534 |
|
535 char buffer[8]; |
|
536 char* p = buffer + sizeof(buffer); |
|
537 |
|
538 do { |
|
539 *--p = gHex[hex & 0xF]; |
|
540 hex >>= 4; |
|
541 minDigits -= 1; |
|
542 } while (hex != 0); |
|
543 |
|
544 while (--minDigits >= 0) { |
|
545 *--p = '0'; |
|
546 } |
|
547 |
|
548 SkASSERT(p >= buffer); |
|
549 this->insert(offset, p, buffer + sizeof(buffer) - p); |
|
550 } |
|
551 |
|
552 void SkString::insertScalar(size_t offset, SkScalar value) { |
|
553 char buffer[SkStrAppendScalar_MaxSize]; |
|
554 char* stop = SkStrAppendScalar(buffer, value); |
|
555 this->insert(offset, buffer, stop - buffer); |
|
556 } |
|
557 |
|
558 void SkString::printf(const char format[], ...) { |
|
559 char buffer[kBufferSize]; |
|
560 ARGS_TO_BUFFER(format, buffer, kBufferSize); |
|
561 |
|
562 this->set(buffer, strlen(buffer)); |
|
563 } |
|
564 |
|
565 void SkString::appendf(const char format[], ...) { |
|
566 char buffer[kBufferSize]; |
|
567 ARGS_TO_BUFFER(format, buffer, kBufferSize); |
|
568 |
|
569 this->append(buffer, strlen(buffer)); |
|
570 } |
|
571 |
|
572 void SkString::appendVAList(const char format[], va_list args) { |
|
573 char buffer[kBufferSize]; |
|
574 VSNPRINTF(buffer, kBufferSize, format, args); |
|
575 |
|
576 this->append(buffer, strlen(buffer)); |
|
577 } |
|
578 |
|
579 void SkString::prependf(const char format[], ...) { |
|
580 char buffer[kBufferSize]; |
|
581 ARGS_TO_BUFFER(format, buffer, kBufferSize); |
|
582 |
|
583 this->prepend(buffer, strlen(buffer)); |
|
584 } |
|
585 |
|
586 /////////////////////////////////////////////////////////////////////////////// |
|
587 |
|
588 void SkString::remove(size_t offset, size_t length) { |
|
589 size_t size = this->size(); |
|
590 |
|
591 if (offset < size) { |
|
592 if (offset + length > size) { |
|
593 length = size - offset; |
|
594 } |
|
595 if (length > 0) { |
|
596 SkASSERT(size > length); |
|
597 SkString tmp(size - length); |
|
598 char* dst = tmp.writable_str(); |
|
599 const char* src = this->c_str(); |
|
600 |
|
601 if (offset) { |
|
602 SkASSERT(offset <= tmp.size()); |
|
603 memcpy(dst, src, offset); |
|
604 } |
|
605 size_t tail = size - offset - length; |
|
606 SkASSERT((int32_t)tail >= 0); |
|
607 if (tail) { |
|
608 // SkASSERT(offset + length <= tmp.size()); |
|
609 memcpy(dst + offset, src + offset + length, tail); |
|
610 } |
|
611 SkASSERT(dst[tmp.size()] == 0); |
|
612 this->swap(tmp); |
|
613 } |
|
614 } |
|
615 } |
|
616 |
|
617 void SkString::swap(SkString& other) { |
|
618 this->validate(); |
|
619 other.validate(); |
|
620 |
|
621 SkTSwap<Rec*>(fRec, other.fRec); |
|
622 #ifdef SK_DEBUG |
|
623 SkTSwap<const char*>(fStr, other.fStr); |
|
624 #endif |
|
625 } |
|
626 |
|
627 /////////////////////////////////////////////////////////////////////////////// |
|
628 |
|
629 SkString SkStringPrintf(const char* format, ...) { |
|
630 SkString formattedOutput; |
|
631 char buffer[kBufferSize]; |
|
632 ARGS_TO_BUFFER(format, buffer, kBufferSize); |
|
633 formattedOutput.set(buffer); |
|
634 return formattedOutput; |
|
635 } |
|
636 |
|
637 void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out) { |
|
638 const char* end = str + strlen(str); |
|
639 while (str != end) { |
|
640 // Find a token. |
|
641 const size_t len = strcspn(str, delimiters); |
|
642 out->push_back().set(str, len); |
|
643 str += len; |
|
644 // Skip any delimiters. |
|
645 str += strspn(str, delimiters); |
|
646 } |
|
647 } |
|
648 |
|
649 #undef VSNPRINTF |
|
650 #undef SNPRINTF |