|
1 |
|
2 /* |
|
3 * Copyright 2006 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include "SkDashPathEffect.h" |
|
11 #include "SkReadBuffer.h" |
|
12 #include "SkWriteBuffer.h" |
|
13 #include "SkPathMeasure.h" |
|
14 |
|
15 static inline int is_even(int x) { |
|
16 return (~x) << 31; |
|
17 } |
|
18 |
|
19 static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase, |
|
20 int32_t* index, int count) { |
|
21 for (int i = 0; i < count; ++i) { |
|
22 if (phase > intervals[i]) { |
|
23 phase -= intervals[i]; |
|
24 } else { |
|
25 *index = i; |
|
26 return intervals[i] - phase; |
|
27 } |
|
28 } |
|
29 // If we get here, phase "appears" to be larger than our length. This |
|
30 // shouldn't happen with perfect precision, but we can accumulate errors |
|
31 // during the initial length computation (rounding can make our sum be too |
|
32 // big or too small. In that event, we just have to eat the error here. |
|
33 *index = 0; |
|
34 return intervals[0]; |
|
35 } |
|
36 |
|
37 SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count, |
|
38 SkScalar phase, bool scaleToFit) |
|
39 : fScaleToFit(scaleToFit) { |
|
40 SkASSERT(intervals); |
|
41 SkASSERT(count > 1 && SkAlign2(count) == count); |
|
42 |
|
43 fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count); |
|
44 fCount = count; |
|
45 |
|
46 SkScalar len = 0; |
|
47 for (int i = 0; i < count; i++) { |
|
48 SkASSERT(intervals[i] >= 0); |
|
49 fIntervals[i] = intervals[i]; |
|
50 len += intervals[i]; |
|
51 } |
|
52 fIntervalLength = len; |
|
53 |
|
54 // watch out for values that might make us go out of bounds |
|
55 if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) { |
|
56 |
|
57 // Adjust phase to be between 0 and len, "flipping" phase if negative. |
|
58 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80 |
|
59 if (phase < 0) { |
|
60 phase = -phase; |
|
61 if (phase > len) { |
|
62 phase = SkScalarMod(phase, len); |
|
63 } |
|
64 phase = len - phase; |
|
65 |
|
66 // Due to finite precision, it's possible that phase == len, |
|
67 // even after the subtract (if len >>> phase), so fix that here. |
|
68 // This fixes http://crbug.com/124652 . |
|
69 SkASSERT(phase <= len); |
|
70 if (phase == len) { |
|
71 phase = 0; |
|
72 } |
|
73 } else if (phase >= len) { |
|
74 phase = SkScalarMod(phase, len); |
|
75 } |
|
76 SkASSERT(phase >= 0 && phase < len); |
|
77 |
|
78 fInitialDashLength = FindFirstInterval(intervals, phase, |
|
79 &fInitialDashIndex, count); |
|
80 |
|
81 SkASSERT(fInitialDashLength >= 0); |
|
82 SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount); |
|
83 } else { |
|
84 fInitialDashLength = -1; // signal bad dash intervals |
|
85 } |
|
86 } |
|
87 |
|
88 SkDashPathEffect::~SkDashPathEffect() { |
|
89 sk_free(fIntervals); |
|
90 } |
|
91 |
|
92 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { |
|
93 SkScalar radius = SkScalarHalf(rec.getWidth()); |
|
94 if (0 == radius) { |
|
95 radius = SK_Scalar1; // hairlines |
|
96 } |
|
97 if (SkPaint::kMiter_Join == rec.getJoin()) { |
|
98 radius = SkScalarMul(radius, rec.getMiter()); |
|
99 } |
|
100 rect->outset(radius, radius); |
|
101 } |
|
102 |
|
103 // Only handles lines for now. If returns true, dstPath is the new (smaller) |
|
104 // path. If returns false, then dstPath parameter is ignored. |
|
105 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec, |
|
106 const SkRect* cullRect, SkScalar intervalLength, |
|
107 SkPath* dstPath) { |
|
108 if (NULL == cullRect) { |
|
109 return false; |
|
110 } |
|
111 |
|
112 SkPoint pts[2]; |
|
113 if (!srcPath.isLine(pts)) { |
|
114 return false; |
|
115 } |
|
116 |
|
117 SkRect bounds = *cullRect; |
|
118 outset_for_stroke(&bounds, rec); |
|
119 |
|
120 SkScalar dx = pts[1].x() - pts[0].x(); |
|
121 SkScalar dy = pts[1].y() - pts[0].y(); |
|
122 |
|
123 // just do horizontal lines for now (lazy) |
|
124 if (dy) { |
|
125 return false; |
|
126 } |
|
127 |
|
128 SkScalar minX = pts[0].fX; |
|
129 SkScalar maxX = pts[1].fX; |
|
130 |
|
131 if (maxX < bounds.fLeft || minX > bounds.fRight) { |
|
132 return false; |
|
133 } |
|
134 |
|
135 if (dx < 0) { |
|
136 SkTSwap(minX, maxX); |
|
137 } |
|
138 |
|
139 // Now we actually perform the chop, removing the excess to the left and |
|
140 // right of the bounds (keeping our new line "in phase" with the dash, |
|
141 // hence the (mod intervalLength). |
|
142 |
|
143 if (minX < bounds.fLeft) { |
|
144 minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, |
|
145 intervalLength); |
|
146 } |
|
147 if (maxX > bounds.fRight) { |
|
148 maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, |
|
149 intervalLength); |
|
150 } |
|
151 |
|
152 SkASSERT(maxX >= minX); |
|
153 if (dx < 0) { |
|
154 SkTSwap(minX, maxX); |
|
155 } |
|
156 pts[0].fX = minX; |
|
157 pts[1].fX = maxX; |
|
158 |
|
159 dstPath->moveTo(pts[0]); |
|
160 dstPath->lineTo(pts[1]); |
|
161 return true; |
|
162 } |
|
163 |
|
164 class SpecialLineRec { |
|
165 public: |
|
166 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec, |
|
167 int intervalCount, SkScalar intervalLength) { |
|
168 if (rec->isHairlineStyle() || !src.isLine(fPts)) { |
|
169 return false; |
|
170 } |
|
171 |
|
172 // can relax this in the future, if we handle square and round caps |
|
173 if (SkPaint::kButt_Cap != rec->getCap()) { |
|
174 return false; |
|
175 } |
|
176 |
|
177 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]); |
|
178 |
|
179 fTangent = fPts[1] - fPts[0]; |
|
180 if (fTangent.isZero()) { |
|
181 return false; |
|
182 } |
|
183 |
|
184 fPathLength = pathLength; |
|
185 fTangent.scale(SkScalarInvert(pathLength)); |
|
186 fTangent.rotateCCW(&fNormal); |
|
187 fNormal.scale(SkScalarHalf(rec->getWidth())); |
|
188 |
|
189 // now estimate how many quads will be added to the path |
|
190 // resulting segments = pathLen * intervalCount / intervalLen |
|
191 // resulting points = 4 * segments |
|
192 |
|
193 SkScalar ptCount = SkScalarMulDiv(pathLength, |
|
194 SkIntToScalar(intervalCount), |
|
195 intervalLength); |
|
196 int n = SkScalarCeilToInt(ptCount) << 2; |
|
197 dst->incReserve(n); |
|
198 |
|
199 // we will take care of the stroking |
|
200 rec->setFillStyle(); |
|
201 return true; |
|
202 } |
|
203 |
|
204 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const { |
|
205 SkASSERT(d0 < fPathLength); |
|
206 // clamp the segment to our length |
|
207 if (d1 > fPathLength) { |
|
208 d1 = fPathLength; |
|
209 } |
|
210 |
|
211 SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0); |
|
212 SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1); |
|
213 SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0); |
|
214 SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1); |
|
215 |
|
216 SkPoint pts[4]; |
|
217 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo |
|
218 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo |
|
219 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo |
|
220 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo |
|
221 |
|
222 path->addPoly(pts, SK_ARRAY_COUNT(pts), false); |
|
223 } |
|
224 |
|
225 private: |
|
226 SkPoint fPts[2]; |
|
227 SkVector fTangent; |
|
228 SkVector fNormal; |
|
229 SkScalar fPathLength; |
|
230 }; |
|
231 |
|
232 bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src, |
|
233 SkStrokeRec* rec, const SkRect* cullRect) const { |
|
234 // we do nothing if the src wants to be filled, or if our dashlength is 0 |
|
235 if (rec->isFillStyle() || fInitialDashLength < 0) { |
|
236 return false; |
|
237 } |
|
238 |
|
239 const SkScalar* intervals = fIntervals; |
|
240 SkScalar dashCount = 0; |
|
241 int segCount = 0; |
|
242 |
|
243 SkPath cullPathStorage; |
|
244 const SkPath* srcPtr = &src; |
|
245 if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) { |
|
246 srcPtr = &cullPathStorage; |
|
247 } |
|
248 |
|
249 SpecialLineRec lineRec; |
|
250 bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength); |
|
251 |
|
252 SkPathMeasure meas(*srcPtr, false); |
|
253 |
|
254 do { |
|
255 bool skipFirstSegment = meas.isClosed(); |
|
256 bool addedSegment = false; |
|
257 SkScalar length = meas.getLength(); |
|
258 int index = fInitialDashIndex; |
|
259 SkScalar scale = SK_Scalar1; |
|
260 |
|
261 // Since the path length / dash length ratio may be arbitrarily large, we can exert |
|
262 // significant memory pressure while attempting to build the filtered path. To avoid this, |
|
263 // we simply give up dashing beyond a certain threshold. |
|
264 // |
|
265 // The original bug report (http://crbug.com/165432) is based on a path yielding more than |
|
266 // 90 million dash segments and crashing the memory allocator. A limit of 1 million |
|
267 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the |
|
268 // maximum dash memory overhead at roughly 17MB per path. |
|
269 static const SkScalar kMaxDashCount = 1000000; |
|
270 dashCount += length * (fCount >> 1) / fIntervalLength; |
|
271 if (dashCount > kMaxDashCount) { |
|
272 dst->reset(); |
|
273 return false; |
|
274 } |
|
275 |
|
276 if (fScaleToFit) { |
|
277 if (fIntervalLength >= length) { |
|
278 scale = SkScalarDiv(length, fIntervalLength); |
|
279 } else { |
|
280 SkScalar div = SkScalarDiv(length, fIntervalLength); |
|
281 int n = SkScalarFloorToInt(div); |
|
282 scale = SkScalarDiv(length, n * fIntervalLength); |
|
283 } |
|
284 } |
|
285 |
|
286 // Using double precision to avoid looping indefinitely due to single precision rounding |
|
287 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest. |
|
288 double distance = 0; |
|
289 double dlen = SkScalarMul(fInitialDashLength, scale); |
|
290 |
|
291 while (distance < length) { |
|
292 SkASSERT(dlen >= 0); |
|
293 addedSegment = false; |
|
294 if (is_even(index) && dlen > 0 && !skipFirstSegment) { |
|
295 addedSegment = true; |
|
296 ++segCount; |
|
297 |
|
298 if (specialLine) { |
|
299 lineRec.addSegment(SkDoubleToScalar(distance), |
|
300 SkDoubleToScalar(distance + dlen), |
|
301 dst); |
|
302 } else { |
|
303 meas.getSegment(SkDoubleToScalar(distance), |
|
304 SkDoubleToScalar(distance + dlen), |
|
305 dst, true); |
|
306 } |
|
307 } |
|
308 distance += dlen; |
|
309 |
|
310 // clear this so we only respect it the first time around |
|
311 skipFirstSegment = false; |
|
312 |
|
313 // wrap around our intervals array if necessary |
|
314 index += 1; |
|
315 SkASSERT(index <= fCount); |
|
316 if (index == fCount) { |
|
317 index = 0; |
|
318 } |
|
319 |
|
320 // fetch our next dlen |
|
321 dlen = SkScalarMul(intervals[index], scale); |
|
322 } |
|
323 |
|
324 // extend if we ended on a segment and we need to join up with the (skipped) initial segment |
|
325 if (meas.isClosed() && is_even(fInitialDashIndex) && |
|
326 fInitialDashLength > 0) { |
|
327 meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment); |
|
328 ++segCount; |
|
329 } |
|
330 } while (meas.nextContour()); |
|
331 |
|
332 if (segCount > 1) { |
|
333 dst->setConvexity(SkPath::kConcave_Convexity); |
|
334 } |
|
335 |
|
336 return true; |
|
337 } |
|
338 |
|
339 // Currently asPoints is more restrictive then it needs to be. In the future |
|
340 // we need to: |
|
341 // allow kRound_Cap capping (could allow rotations in the matrix with this) |
|
342 // allow paths to be returned |
|
343 bool SkDashPathEffect::asPoints(PointData* results, |
|
344 const SkPath& src, |
|
345 const SkStrokeRec& rec, |
|
346 const SkMatrix& matrix, |
|
347 const SkRect* cullRect) const { |
|
348 // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out |
|
349 if (fInitialDashLength < 0 || 0 >= rec.getWidth()) { |
|
350 return false; |
|
351 } |
|
352 |
|
353 // TODO: this next test could be eased up. We could allow any number of |
|
354 // intervals as long as all the ons match and all the offs match. |
|
355 // Additionally, they do not necessarily need to be integers. |
|
356 // We cannot allow arbitrary intervals since we want the returned points |
|
357 // to be uniformly sized. |
|
358 if (fCount != 2 || |
|
359 !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) || |
|
360 !SkScalarIsInt(fIntervals[0]) || |
|
361 !SkScalarIsInt(fIntervals[1])) { |
|
362 return false; |
|
363 } |
|
364 |
|
365 // TODO: this next test could be eased up. The rescaling should not impact |
|
366 // the equality of the ons & offs. However, we would need to remove the |
|
367 // integer intervals restriction first |
|
368 if (fScaleToFit) { |
|
369 return false; |
|
370 } |
|
371 |
|
372 SkPoint pts[2]; |
|
373 |
|
374 if (!src.isLine(pts)) { |
|
375 return false; |
|
376 } |
|
377 |
|
378 // TODO: this test could be eased up to allow circles |
|
379 if (SkPaint::kButt_Cap != rec.getCap()) { |
|
380 return false; |
|
381 } |
|
382 |
|
383 // TODO: this test could be eased up for circles. Rotations could be allowed. |
|
384 if (!matrix.rectStaysRect()) { |
|
385 return false; |
|
386 } |
|
387 |
|
388 SkScalar length = SkPoint::Distance(pts[1], pts[0]); |
|
389 |
|
390 SkVector tangent = pts[1] - pts[0]; |
|
391 if (tangent.isZero()) { |
|
392 return false; |
|
393 } |
|
394 |
|
395 tangent.scale(SkScalarInvert(length)); |
|
396 |
|
397 // TODO: make this test for horizontal & vertical lines more robust |
|
398 bool isXAxis = true; |
|
399 if (SK_Scalar1 == tangent.fX || -SK_Scalar1 == tangent.fX) { |
|
400 results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth())); |
|
401 } else if (SK_Scalar1 == tangent.fY || -SK_Scalar1 == tangent.fY) { |
|
402 results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0])); |
|
403 isXAxis = false; |
|
404 } else if (SkPaint::kRound_Cap != rec.getCap()) { |
|
405 // Angled lines don't have axis-aligned boxes. |
|
406 return false; |
|
407 } |
|
408 |
|
409 if (NULL != results) { |
|
410 results->fFlags = 0; |
|
411 SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength); |
|
412 |
|
413 if (SkPaint::kRound_Cap == rec.getCap()) { |
|
414 results->fFlags |= PointData::kCircles_PointFlag; |
|
415 } |
|
416 |
|
417 results->fNumPoints = 0; |
|
418 SkScalar len2 = length; |
|
419 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { |
|
420 SkASSERT(len2 >= clampedInitialDashLength); |
|
421 if (0 == fInitialDashIndex) { |
|
422 if (clampedInitialDashLength > 0) { |
|
423 if (clampedInitialDashLength >= fIntervals[0]) { |
|
424 ++results->fNumPoints; // partial first dash |
|
425 } |
|
426 len2 -= clampedInitialDashLength; |
|
427 } |
|
428 len2 -= fIntervals[1]; // also skip first space |
|
429 if (len2 < 0) { |
|
430 len2 = 0; |
|
431 } |
|
432 } else { |
|
433 len2 -= clampedInitialDashLength; // skip initial partial empty |
|
434 } |
|
435 } |
|
436 int numMidPoints = SkScalarFloorToInt(SkScalarDiv(len2, fIntervalLength)); |
|
437 results->fNumPoints += numMidPoints; |
|
438 len2 -= numMidPoints * fIntervalLength; |
|
439 bool partialLast = false; |
|
440 if (len2 > 0) { |
|
441 if (len2 < fIntervals[0]) { |
|
442 partialLast = true; |
|
443 } else { |
|
444 ++numMidPoints; |
|
445 ++results->fNumPoints; |
|
446 } |
|
447 } |
|
448 |
|
449 results->fPoints = new SkPoint[results->fNumPoints]; |
|
450 |
|
451 SkScalar distance = 0; |
|
452 int curPt = 0; |
|
453 |
|
454 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { |
|
455 SkASSERT(clampedInitialDashLength <= length); |
|
456 |
|
457 if (0 == fInitialDashIndex) { |
|
458 if (clampedInitialDashLength > 0) { |
|
459 // partial first block |
|
460 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles |
|
461 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength)); |
|
462 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength)); |
|
463 SkScalar halfWidth, halfHeight; |
|
464 if (isXAxis) { |
|
465 halfWidth = SkScalarHalf(clampedInitialDashLength); |
|
466 halfHeight = SkScalarHalf(rec.getWidth()); |
|
467 } else { |
|
468 halfWidth = SkScalarHalf(rec.getWidth()); |
|
469 halfHeight = SkScalarHalf(clampedInitialDashLength); |
|
470 } |
|
471 if (clampedInitialDashLength < fIntervals[0]) { |
|
472 // This one will not be like the others |
|
473 results->fFirst.addRect(x - halfWidth, y - halfHeight, |
|
474 x + halfWidth, y + halfHeight); |
|
475 } else { |
|
476 SkASSERT(curPt < results->fNumPoints); |
|
477 results->fPoints[curPt].set(x, y); |
|
478 ++curPt; |
|
479 } |
|
480 |
|
481 distance += clampedInitialDashLength; |
|
482 } |
|
483 |
|
484 distance += fIntervals[1]; // skip over the next blank block too |
|
485 } else { |
|
486 distance += clampedInitialDashLength; |
|
487 } |
|
488 } |
|
489 |
|
490 if (0 != numMidPoints) { |
|
491 distance += SkScalarHalf(fIntervals[0]); |
|
492 |
|
493 for (int i = 0; i < numMidPoints; ++i) { |
|
494 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance); |
|
495 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance); |
|
496 |
|
497 SkASSERT(curPt < results->fNumPoints); |
|
498 results->fPoints[curPt].set(x, y); |
|
499 ++curPt; |
|
500 |
|
501 distance += fIntervalLength; |
|
502 } |
|
503 |
|
504 distance -= SkScalarHalf(fIntervals[0]); |
|
505 } |
|
506 |
|
507 if (partialLast) { |
|
508 // partial final block |
|
509 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles |
|
510 SkScalar temp = length - distance; |
|
511 SkASSERT(temp < fIntervals[0]); |
|
512 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp)); |
|
513 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp)); |
|
514 SkScalar halfWidth, halfHeight; |
|
515 if (isXAxis) { |
|
516 halfWidth = SkScalarHalf(temp); |
|
517 halfHeight = SkScalarHalf(rec.getWidth()); |
|
518 } else { |
|
519 halfWidth = SkScalarHalf(rec.getWidth()); |
|
520 halfHeight = SkScalarHalf(temp); |
|
521 } |
|
522 results->fLast.addRect(x - halfWidth, y - halfHeight, |
|
523 x + halfWidth, y + halfHeight); |
|
524 } |
|
525 |
|
526 SkASSERT(curPt == results->fNumPoints); |
|
527 } |
|
528 |
|
529 return true; |
|
530 } |
|
531 |
|
532 SkFlattenable::Factory SkDashPathEffect::getFactory() const { |
|
533 return CreateProc; |
|
534 } |
|
535 |
|
536 void SkDashPathEffect::flatten(SkWriteBuffer& buffer) const { |
|
537 this->INHERITED::flatten(buffer); |
|
538 buffer.writeInt(fInitialDashIndex); |
|
539 buffer.writeScalar(fInitialDashLength); |
|
540 buffer.writeScalar(fIntervalLength); |
|
541 buffer.writeBool(fScaleToFit); |
|
542 buffer.writeScalarArray(fIntervals, fCount); |
|
543 } |
|
544 |
|
545 SkFlattenable* SkDashPathEffect::CreateProc(SkReadBuffer& buffer) { |
|
546 return SkNEW_ARGS(SkDashPathEffect, (buffer)); |
|
547 } |
|
548 |
|
549 SkDashPathEffect::SkDashPathEffect(SkReadBuffer& buffer) : INHERITED(buffer) { |
|
550 fInitialDashIndex = buffer.readInt(); |
|
551 fInitialDashLength = buffer.readScalar(); |
|
552 fIntervalLength = buffer.readScalar(); |
|
553 fScaleToFit = buffer.readBool(); |
|
554 |
|
555 fCount = buffer.getArrayCount(); |
|
556 size_t allocSize = sizeof(SkScalar) * fCount; |
|
557 if (buffer.validateAvailable(allocSize)) { |
|
558 fIntervals = (SkScalar*)sk_malloc_throw(allocSize); |
|
559 buffer.readScalarArray(fIntervals, fCount); |
|
560 } else { |
|
561 fIntervals = NULL; |
|
562 } |
|
563 } |