|
1 /* |
|
2 * Copyright 2011 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #ifndef GrRedBlackTree_DEFINED |
|
9 #define GrRedBlackTree_DEFINED |
|
10 |
|
11 #include "GrConfig.h" |
|
12 #include "SkTypes.h" |
|
13 |
|
14 template <typename T> |
|
15 class GrLess { |
|
16 public: |
|
17 bool operator()(const T& a, const T& b) const { return a < b; } |
|
18 }; |
|
19 |
|
20 template <typename T> |
|
21 class GrLess<T*> { |
|
22 public: |
|
23 bool operator()(const T* a, const T* b) const { return *a < *b; } |
|
24 }; |
|
25 |
|
26 class GrStrLess { |
|
27 public: |
|
28 bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; } |
|
29 }; |
|
30 |
|
31 /** |
|
32 * In debug build this will cause full traversals of the tree when the validate |
|
33 * is called on insert and remove. Useful for debugging but very slow. |
|
34 */ |
|
35 #define DEEP_VALIDATE 0 |
|
36 |
|
37 /** |
|
38 * A sorted tree that uses the red-black tree algorithm. Allows duplicate |
|
39 * entries. Data is of type T and is compared using functor C. A single C object |
|
40 * will be created and used for all comparisons. |
|
41 */ |
|
42 template <typename T, typename C = GrLess<T> > |
|
43 class GrRedBlackTree : public SkNoncopyable { |
|
44 public: |
|
45 /** |
|
46 * Creates an empty tree. |
|
47 */ |
|
48 GrRedBlackTree(); |
|
49 virtual ~GrRedBlackTree(); |
|
50 |
|
51 /** |
|
52 * Class used to iterater through the tree. The valid range of the tree |
|
53 * is given by [begin(), end()). It is legal to dereference begin() but not |
|
54 * end(). The iterator has preincrement and predecrement operators, it is |
|
55 * legal to decerement end() if the tree is not empty to get the last |
|
56 * element. However, a last() helper is provided. |
|
57 */ |
|
58 class Iter; |
|
59 |
|
60 /** |
|
61 * Add an element to the tree. Duplicates are allowed. |
|
62 * @param t the item to add. |
|
63 * @return an iterator to the item. |
|
64 */ |
|
65 Iter insert(const T& t); |
|
66 |
|
67 /** |
|
68 * Removes all items in the tree. |
|
69 */ |
|
70 void reset(); |
|
71 |
|
72 /** |
|
73 * @return true if there are no items in the tree, false otherwise. |
|
74 */ |
|
75 bool empty() const {return 0 == fCount;} |
|
76 |
|
77 /** |
|
78 * @return the number of items in the tree. |
|
79 */ |
|
80 int count() const {return fCount;} |
|
81 |
|
82 /** |
|
83 * @return an iterator to the first item in sorted order, or end() if empty |
|
84 */ |
|
85 Iter begin(); |
|
86 /** |
|
87 * Gets the last valid iterator. This is always valid, even on an empty. |
|
88 * However, it can never be dereferenced. Useful as a loop terminator. |
|
89 * @return an iterator that is just beyond the last item in sorted order. |
|
90 */ |
|
91 Iter end(); |
|
92 /** |
|
93 * @return an iterator that to the last item in sorted order, or end() if |
|
94 * empty. |
|
95 */ |
|
96 Iter last(); |
|
97 |
|
98 /** |
|
99 * Finds an occurrence of an item. |
|
100 * @param t the item to find. |
|
101 * @return an iterator to a tree element equal to t or end() if none exists. |
|
102 */ |
|
103 Iter find(const T& t); |
|
104 /** |
|
105 * Finds the first of an item in iterator order. |
|
106 * @param t the item to find. |
|
107 * @return an iterator to the first element equal to t or end() if |
|
108 * none exists. |
|
109 */ |
|
110 Iter findFirst(const T& t); |
|
111 /** |
|
112 * Finds the last of an item in iterator order. |
|
113 * @param t the item to find. |
|
114 * @return an iterator to the last element equal to t or end() if |
|
115 * none exists. |
|
116 */ |
|
117 Iter findLast(const T& t); |
|
118 /** |
|
119 * Gets the number of items in the tree equal to t. |
|
120 * @param t the item to count. |
|
121 * @return number of items equal to t in the tree |
|
122 */ |
|
123 int countOf(const T& t) const; |
|
124 |
|
125 /** |
|
126 * Removes the item indicated by an iterator. The iterator will not be valid |
|
127 * afterwards. |
|
128 * |
|
129 * @param iter iterator of item to remove. Must be valid (not end()). |
|
130 */ |
|
131 void remove(const Iter& iter) { deleteAtNode(iter.fN); } |
|
132 |
|
133 private: |
|
134 enum Color { |
|
135 kRed_Color, |
|
136 kBlack_Color |
|
137 }; |
|
138 |
|
139 enum Child { |
|
140 kLeft_Child = 0, |
|
141 kRight_Child = 1 |
|
142 }; |
|
143 |
|
144 struct Node { |
|
145 T fItem; |
|
146 Color fColor; |
|
147 |
|
148 Node* fParent; |
|
149 Node* fChildren[2]; |
|
150 }; |
|
151 |
|
152 void rotateRight(Node* n); |
|
153 void rotateLeft(Node* n); |
|
154 |
|
155 static Node* SuccessorNode(Node* x); |
|
156 static Node* PredecessorNode(Node* x); |
|
157 |
|
158 void deleteAtNode(Node* x); |
|
159 static void RecursiveDelete(Node* x); |
|
160 |
|
161 int onCountOf(const Node* n, const T& t) const; |
|
162 |
|
163 #ifdef SK_DEBUG |
|
164 void validate() const; |
|
165 int checkNode(Node* n, int* blackHeight) const; |
|
166 // checks relationship between a node and its children. allowRedRed means |
|
167 // node may be in an intermediate state where a red parent has a red child. |
|
168 bool validateChildRelations(const Node* n, bool allowRedRed) const; |
|
169 // place to stick break point if validateChildRelations is failing. |
|
170 bool validateChildRelationsFailed() const { return false; } |
|
171 #else |
|
172 void validate() const {} |
|
173 #endif |
|
174 |
|
175 int fCount; |
|
176 Node* fRoot; |
|
177 Node* fFirst; |
|
178 Node* fLast; |
|
179 |
|
180 const C fComp; |
|
181 }; |
|
182 |
|
183 template <typename T, typename C> |
|
184 class GrRedBlackTree<T,C>::Iter { |
|
185 public: |
|
186 Iter() {}; |
|
187 Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;} |
|
188 Iter& operator =(const Iter& i) { |
|
189 fN = i.fN; |
|
190 fTree = i.fTree; |
|
191 return *this; |
|
192 } |
|
193 // altering the sort value of the item using this method will cause |
|
194 // errors. |
|
195 T& operator *() const { return fN->fItem; } |
|
196 bool operator ==(const Iter& i) const { |
|
197 return fN == i.fN && fTree == i.fTree; |
|
198 } |
|
199 bool operator !=(const Iter& i) const { return !(*this == i); } |
|
200 Iter& operator ++() { |
|
201 SkASSERT(*this != fTree->end()); |
|
202 fN = SuccessorNode(fN); |
|
203 return *this; |
|
204 } |
|
205 Iter& operator --() { |
|
206 SkASSERT(*this != fTree->begin()); |
|
207 if (NULL != fN) { |
|
208 fN = PredecessorNode(fN); |
|
209 } else { |
|
210 *this = fTree->last(); |
|
211 } |
|
212 return *this; |
|
213 } |
|
214 |
|
215 private: |
|
216 friend class GrRedBlackTree; |
|
217 explicit Iter(Node* n, GrRedBlackTree* tree) { |
|
218 fN = n; |
|
219 fTree = tree; |
|
220 } |
|
221 Node* fN; |
|
222 GrRedBlackTree* fTree; |
|
223 }; |
|
224 |
|
225 template <typename T, typename C> |
|
226 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() { |
|
227 fRoot = NULL; |
|
228 fFirst = NULL; |
|
229 fLast = NULL; |
|
230 fCount = 0; |
|
231 validate(); |
|
232 } |
|
233 |
|
234 template <typename T, typename C> |
|
235 GrRedBlackTree<T,C>::~GrRedBlackTree() { |
|
236 RecursiveDelete(fRoot); |
|
237 } |
|
238 |
|
239 template <typename T, typename C> |
|
240 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() { |
|
241 return Iter(fFirst, this); |
|
242 } |
|
243 |
|
244 template <typename T, typename C> |
|
245 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() { |
|
246 return Iter(NULL, this); |
|
247 } |
|
248 |
|
249 template <typename T, typename C> |
|
250 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() { |
|
251 return Iter(fLast, this); |
|
252 } |
|
253 |
|
254 template <typename T, typename C> |
|
255 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) { |
|
256 Node* n = fRoot; |
|
257 while (NULL != n) { |
|
258 if (fComp(t, n->fItem)) { |
|
259 n = n->fChildren[kLeft_Child]; |
|
260 } else { |
|
261 if (!fComp(n->fItem, t)) { |
|
262 return Iter(n, this); |
|
263 } |
|
264 n = n->fChildren[kRight_Child]; |
|
265 } |
|
266 } |
|
267 return end(); |
|
268 } |
|
269 |
|
270 template <typename T, typename C> |
|
271 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) { |
|
272 Node* n = fRoot; |
|
273 Node* leftMost = NULL; |
|
274 while (NULL != n) { |
|
275 if (fComp(t, n->fItem)) { |
|
276 n = n->fChildren[kLeft_Child]; |
|
277 } else { |
|
278 if (!fComp(n->fItem, t)) { |
|
279 // found one. check if another in left subtree. |
|
280 leftMost = n; |
|
281 n = n->fChildren[kLeft_Child]; |
|
282 } else { |
|
283 n = n->fChildren[kRight_Child]; |
|
284 } |
|
285 } |
|
286 } |
|
287 return Iter(leftMost, this); |
|
288 } |
|
289 |
|
290 template <typename T, typename C> |
|
291 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) { |
|
292 Node* n = fRoot; |
|
293 Node* rightMost = NULL; |
|
294 while (NULL != n) { |
|
295 if (fComp(t, n->fItem)) { |
|
296 n = n->fChildren[kLeft_Child]; |
|
297 } else { |
|
298 if (!fComp(n->fItem, t)) { |
|
299 // found one. check if another in right subtree. |
|
300 rightMost = n; |
|
301 } |
|
302 n = n->fChildren[kRight_Child]; |
|
303 } |
|
304 } |
|
305 return Iter(rightMost, this); |
|
306 } |
|
307 |
|
308 template <typename T, typename C> |
|
309 int GrRedBlackTree<T,C>::countOf(const T& t) const { |
|
310 return onCountOf(fRoot, t); |
|
311 } |
|
312 |
|
313 template <typename T, typename C> |
|
314 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const { |
|
315 // this is count*log(n) :( |
|
316 while (NULL != n) { |
|
317 if (fComp(t, n->fItem)) { |
|
318 n = n->fChildren[kLeft_Child]; |
|
319 } else { |
|
320 if (!fComp(n->fItem, t)) { |
|
321 int count = 1; |
|
322 count += onCountOf(n->fChildren[kLeft_Child], t); |
|
323 count += onCountOf(n->fChildren[kRight_Child], t); |
|
324 return count; |
|
325 } |
|
326 n = n->fChildren[kRight_Child]; |
|
327 } |
|
328 } |
|
329 return 0; |
|
330 |
|
331 } |
|
332 |
|
333 template <typename T, typename C> |
|
334 void GrRedBlackTree<T,C>::reset() { |
|
335 RecursiveDelete(fRoot); |
|
336 fRoot = NULL; |
|
337 fFirst = NULL; |
|
338 fLast = NULL; |
|
339 fCount = 0; |
|
340 } |
|
341 |
|
342 template <typename T, typename C> |
|
343 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
|
344 validate(); |
|
345 |
|
346 ++fCount; |
|
347 |
|
348 Node* x = SkNEW(Node); |
|
349 x->fChildren[kLeft_Child] = NULL; |
|
350 x->fChildren[kRight_Child] = NULL; |
|
351 x->fItem = t; |
|
352 |
|
353 Node* returnNode = x; |
|
354 |
|
355 Node* gp = NULL; |
|
356 Node* p = NULL; |
|
357 Node* n = fRoot; |
|
358 Child pc = kLeft_Child; // suppress uninit warning |
|
359 Child gpc = kLeft_Child; |
|
360 |
|
361 bool first = true; |
|
362 bool last = true; |
|
363 while (NULL != n) { |
|
364 gpc = pc; |
|
365 pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; |
|
366 first = first && kLeft_Child == pc; |
|
367 last = last && kRight_Child == pc; |
|
368 gp = p; |
|
369 p = n; |
|
370 n = p->fChildren[pc]; |
|
371 } |
|
372 if (last) { |
|
373 fLast = x; |
|
374 } |
|
375 if (first) { |
|
376 fFirst = x; |
|
377 } |
|
378 |
|
379 if (NULL == p) { |
|
380 fRoot = x; |
|
381 x->fColor = kBlack_Color; |
|
382 x->fParent = NULL; |
|
383 SkASSERT(1 == fCount); |
|
384 return Iter(returnNode, this); |
|
385 } |
|
386 p->fChildren[pc] = x; |
|
387 x->fColor = kRed_Color; |
|
388 x->fParent = p; |
|
389 |
|
390 do { |
|
391 // assumptions at loop start. |
|
392 SkASSERT(NULL != x); |
|
393 SkASSERT(kRed_Color == x->fColor); |
|
394 // can't have a grandparent but no parent. |
|
395 SkASSERT(!(NULL != gp && NULL == p)); |
|
396 // make sure pc and gpc are correct |
|
397 SkASSERT(NULL == p || p->fChildren[pc] == x); |
|
398 SkASSERT(NULL == gp || gp->fChildren[gpc] == p); |
|
399 |
|
400 // if x's parent is black then we didn't violate any of the |
|
401 // red/black properties when we added x as red. |
|
402 if (kBlack_Color == p->fColor) { |
|
403 return Iter(returnNode, this); |
|
404 } |
|
405 // gp must be valid because if p was the root then it is black |
|
406 SkASSERT(NULL != gp); |
|
407 // gp must be black since it's child, p, is red. |
|
408 SkASSERT(kBlack_Color == gp->fColor); |
|
409 |
|
410 |
|
411 // x and its parent are red, violating red-black property. |
|
412 Node* u = gp->fChildren[1-gpc]; |
|
413 // if x's uncle (p's sibling) is also red then we can flip |
|
414 // p and u to black and make gp red. But then we have to recurse |
|
415 // up to gp since it's parent may also be red. |
|
416 if (NULL != u && kRed_Color == u->fColor) { |
|
417 p->fColor = kBlack_Color; |
|
418 u->fColor = kBlack_Color; |
|
419 gp->fColor = kRed_Color; |
|
420 x = gp; |
|
421 p = x->fParent; |
|
422 if (NULL == p) { |
|
423 // x (prev gp) is the root, color it black and be done. |
|
424 SkASSERT(fRoot == x); |
|
425 x->fColor = kBlack_Color; |
|
426 validate(); |
|
427 return Iter(returnNode, this); |
|
428 } |
|
429 gp = p->fParent; |
|
430 pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : |
|
431 kRight_Child; |
|
432 if (NULL != gp) { |
|
433 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : |
|
434 kRight_Child; |
|
435 } |
|
436 continue; |
|
437 } break; |
|
438 } while (true); |
|
439 // Here p is red but u is black and we still have to resolve the fact |
|
440 // that x and p are both red. |
|
441 SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); |
|
442 SkASSERT(kRed_Color == x->fColor); |
|
443 SkASSERT(kRed_Color == p->fColor); |
|
444 SkASSERT(kBlack_Color == gp->fColor); |
|
445 |
|
446 // make x be on the same side of p as p is of gp. If it isn't already |
|
447 // the case then rotate x up to p and swap their labels. |
|
448 if (pc != gpc) { |
|
449 if (kRight_Child == pc) { |
|
450 rotateLeft(p); |
|
451 Node* temp = p; |
|
452 p = x; |
|
453 x = temp; |
|
454 pc = kLeft_Child; |
|
455 } else { |
|
456 rotateRight(p); |
|
457 Node* temp = p; |
|
458 p = x; |
|
459 x = temp; |
|
460 pc = kRight_Child; |
|
461 } |
|
462 } |
|
463 // we now rotate gp down, pulling up p to be it's new parent. |
|
464 // gp's child, u, that is not affected we know to be black. gp's new |
|
465 // child is p's previous child (x's pre-rotation sibling) which must be |
|
466 // black since p is red. |
|
467 SkASSERT(NULL == p->fChildren[1-pc] || |
|
468 kBlack_Color == p->fChildren[1-pc]->fColor); |
|
469 // Since gp's two children are black it can become red if p is made |
|
470 // black. This leaves the black-height of both of p's new subtrees |
|
471 // preserved and removes the red/red parent child relationship. |
|
472 p->fColor = kBlack_Color; |
|
473 gp->fColor = kRed_Color; |
|
474 if (kLeft_Child == pc) { |
|
475 rotateRight(gp); |
|
476 } else { |
|
477 rotateLeft(gp); |
|
478 } |
|
479 validate(); |
|
480 return Iter(returnNode, this); |
|
481 } |
|
482 |
|
483 |
|
484 template <typename T, typename C> |
|
485 void GrRedBlackTree<T,C>::rotateRight(Node* n) { |
|
486 /* d? d? |
|
487 * / / |
|
488 * n s |
|
489 * / \ ---> / \ |
|
490 * s a? c? n |
|
491 * / \ / \ |
|
492 * c? b? b? a? |
|
493 */ |
|
494 Node* d = n->fParent; |
|
495 Node* s = n->fChildren[kLeft_Child]; |
|
496 SkASSERT(NULL != s); |
|
497 Node* b = s->fChildren[kRight_Child]; |
|
498 |
|
499 if (NULL != d) { |
|
500 Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : |
|
501 kRight_Child; |
|
502 d->fChildren[c] = s; |
|
503 } else { |
|
504 SkASSERT(fRoot == n); |
|
505 fRoot = s; |
|
506 } |
|
507 s->fParent = d; |
|
508 s->fChildren[kRight_Child] = n; |
|
509 n->fParent = s; |
|
510 n->fChildren[kLeft_Child] = b; |
|
511 if (NULL != b) { |
|
512 b->fParent = n; |
|
513 } |
|
514 |
|
515 GR_DEBUGASSERT(validateChildRelations(d, true)); |
|
516 GR_DEBUGASSERT(validateChildRelations(s, true)); |
|
517 GR_DEBUGASSERT(validateChildRelations(n, false)); |
|
518 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); |
|
519 GR_DEBUGASSERT(validateChildRelations(b, true)); |
|
520 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); |
|
521 } |
|
522 |
|
523 template <typename T, typename C> |
|
524 void GrRedBlackTree<T,C>::rotateLeft(Node* n) { |
|
525 |
|
526 Node* d = n->fParent; |
|
527 Node* s = n->fChildren[kRight_Child]; |
|
528 SkASSERT(NULL != s); |
|
529 Node* b = s->fChildren[kLeft_Child]; |
|
530 |
|
531 if (NULL != d) { |
|
532 Child c = d->fChildren[kRight_Child] == n ? kRight_Child : |
|
533 kLeft_Child; |
|
534 d->fChildren[c] = s; |
|
535 } else { |
|
536 SkASSERT(fRoot == n); |
|
537 fRoot = s; |
|
538 } |
|
539 s->fParent = d; |
|
540 s->fChildren[kLeft_Child] = n; |
|
541 n->fParent = s; |
|
542 n->fChildren[kRight_Child] = b; |
|
543 if (NULL != b) { |
|
544 b->fParent = n; |
|
545 } |
|
546 |
|
547 GR_DEBUGASSERT(validateChildRelations(d, true)); |
|
548 GR_DEBUGASSERT(validateChildRelations(s, true)); |
|
549 GR_DEBUGASSERT(validateChildRelations(n, true)); |
|
550 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); |
|
551 GR_DEBUGASSERT(validateChildRelations(b, true)); |
|
552 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); |
|
553 } |
|
554 |
|
555 template <typename T, typename C> |
|
556 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) { |
|
557 SkASSERT(NULL != x); |
|
558 if (NULL != x->fChildren[kRight_Child]) { |
|
559 x = x->fChildren[kRight_Child]; |
|
560 while (NULL != x->fChildren[kLeft_Child]) { |
|
561 x = x->fChildren[kLeft_Child]; |
|
562 } |
|
563 return x; |
|
564 } |
|
565 while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) { |
|
566 x = x->fParent; |
|
567 } |
|
568 return x->fParent; |
|
569 } |
|
570 |
|
571 template <typename T, typename C> |
|
572 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) { |
|
573 SkASSERT(NULL != x); |
|
574 if (NULL != x->fChildren[kLeft_Child]) { |
|
575 x = x->fChildren[kLeft_Child]; |
|
576 while (NULL != x->fChildren[kRight_Child]) { |
|
577 x = x->fChildren[kRight_Child]; |
|
578 } |
|
579 return x; |
|
580 } |
|
581 while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) { |
|
582 x = x->fParent; |
|
583 } |
|
584 return x->fParent; |
|
585 } |
|
586 |
|
587 template <typename T, typename C> |
|
588 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
|
589 SkASSERT(NULL != x); |
|
590 validate(); |
|
591 --fCount; |
|
592 |
|
593 bool hasLeft = NULL != x->fChildren[kLeft_Child]; |
|
594 bool hasRight = NULL != x->fChildren[kRight_Child]; |
|
595 Child c = hasLeft ? kLeft_Child : kRight_Child; |
|
596 |
|
597 if (hasLeft && hasRight) { |
|
598 // first and last can't have two children. |
|
599 SkASSERT(fFirst != x); |
|
600 SkASSERT(fLast != x); |
|
601 // if x is an interior node then we find it's successor |
|
602 // and swap them. |
|
603 Node* s = x->fChildren[kRight_Child]; |
|
604 while (NULL != s->fChildren[kLeft_Child]) { |
|
605 s = s->fChildren[kLeft_Child]; |
|
606 } |
|
607 SkASSERT(NULL != s); |
|
608 // this might be expensive relative to swapping node ptrs around. |
|
609 // depends on T. |
|
610 x->fItem = s->fItem; |
|
611 x = s; |
|
612 c = kRight_Child; |
|
613 } else if (NULL == x->fParent) { |
|
614 // if x was the root we just replace it with its child and make |
|
615 // the new root (if the tree is not empty) black. |
|
616 SkASSERT(fRoot == x); |
|
617 fRoot = x->fChildren[c]; |
|
618 if (NULL != fRoot) { |
|
619 fRoot->fParent = NULL; |
|
620 fRoot->fColor = kBlack_Color; |
|
621 if (x == fLast) { |
|
622 SkASSERT(c == kLeft_Child); |
|
623 fLast = fRoot; |
|
624 } else if (x == fFirst) { |
|
625 SkASSERT(c == kRight_Child); |
|
626 fFirst = fRoot; |
|
627 } |
|
628 } else { |
|
629 SkASSERT(fFirst == fLast && x == fFirst); |
|
630 fFirst = NULL; |
|
631 fLast = NULL; |
|
632 SkASSERT(0 == fCount); |
|
633 } |
|
634 delete x; |
|
635 validate(); |
|
636 return; |
|
637 } |
|
638 |
|
639 Child pc; |
|
640 Node* p = x->fParent; |
|
641 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child; |
|
642 |
|
643 if (NULL == x->fChildren[c]) { |
|
644 if (fLast == x) { |
|
645 fLast = p; |
|
646 SkASSERT(p == PredecessorNode(x)); |
|
647 } else if (fFirst == x) { |
|
648 fFirst = p; |
|
649 SkASSERT(p == SuccessorNode(x)); |
|
650 } |
|
651 // x has two implicit black children. |
|
652 Color xcolor = x->fColor; |
|
653 p->fChildren[pc] = NULL; |
|
654 delete x; |
|
655 x = NULL; |
|
656 // when x is red it can be with an implicit black leaf without |
|
657 // violating any of the red-black tree properties. |
|
658 if (kRed_Color == xcolor) { |
|
659 validate(); |
|
660 return; |
|
661 } |
|
662 // s is p's other child (x's sibling) |
|
663 Node* s = p->fChildren[1-pc]; |
|
664 |
|
665 //s cannot be an implicit black node because the original |
|
666 // black-height at x was >= 2 and s's black-height must equal the |
|
667 // initial black height of x. |
|
668 SkASSERT(NULL != s); |
|
669 SkASSERT(p == s->fParent); |
|
670 |
|
671 // assigned in loop |
|
672 Node* sl; |
|
673 Node* sr; |
|
674 bool slRed; |
|
675 bool srRed; |
|
676 |
|
677 do { |
|
678 // When we start this loop x may already be deleted it is/was |
|
679 // p's child on its pc side. x's children are/were black. The |
|
680 // first time through the loop they are implict children. |
|
681 // On later passes we will be walking up the tree and they will |
|
682 // be real nodes. |
|
683 // The x side of p has a black-height that is one less than the |
|
684 // s side. It must be rebalanced. |
|
685 SkASSERT(NULL != s); |
|
686 SkASSERT(p == s->fParent); |
|
687 SkASSERT(NULL == x || x->fParent == p); |
|
688 |
|
689 //sl and sr are s's children, which may be implicit. |
|
690 sl = s->fChildren[kLeft_Child]; |
|
691 sr = s->fChildren[kRight_Child]; |
|
692 |
|
693 // if the s is red we will rotate s and p, swap their colors so |
|
694 // that x's new sibling is black |
|
695 if (kRed_Color == s->fColor) { |
|
696 // if s is red then it's parent must be black. |
|
697 SkASSERT(kBlack_Color == p->fColor); |
|
698 // s's children must also be black since s is red. They can't |
|
699 // be implicit since s is red and it's black-height is >= 2. |
|
700 SkASSERT(NULL != sl && kBlack_Color == sl->fColor); |
|
701 SkASSERT(NULL != sr && kBlack_Color == sr->fColor); |
|
702 p->fColor = kRed_Color; |
|
703 s->fColor = kBlack_Color; |
|
704 if (kLeft_Child == pc) { |
|
705 rotateLeft(p); |
|
706 s = sl; |
|
707 } else { |
|
708 rotateRight(p); |
|
709 s = sr; |
|
710 } |
|
711 sl = s->fChildren[kLeft_Child]; |
|
712 sr = s->fChildren[kRight_Child]; |
|
713 } |
|
714 // x and s are now both black. |
|
715 SkASSERT(kBlack_Color == s->fColor); |
|
716 SkASSERT(NULL == x || kBlack_Color == x->fColor); |
|
717 SkASSERT(p == s->fParent); |
|
718 SkASSERT(NULL == x || p == x->fParent); |
|
719 |
|
720 // when x is deleted its subtree will have reduced black-height. |
|
721 slRed = (NULL != sl && kRed_Color == sl->fColor); |
|
722 srRed = (NULL != sr && kRed_Color == sr->fColor); |
|
723 if (!slRed && !srRed) { |
|
724 // if s can be made red that will balance out x's removal |
|
725 // to make both subtrees of p have the same black-height. |
|
726 if (kBlack_Color == p->fColor) { |
|
727 s->fColor = kRed_Color; |
|
728 // now subtree at p has black-height of one less than |
|
729 // p's parent's other child's subtree. We move x up to |
|
730 // p and go through the loop again. At the top of loop |
|
731 // we assumed x and x's children are black, which holds |
|
732 // by above ifs. |
|
733 // if p is the root there is no other subtree to balance |
|
734 // against. |
|
735 x = p; |
|
736 p = x->fParent; |
|
737 if (NULL == p) { |
|
738 SkASSERT(fRoot == x); |
|
739 validate(); |
|
740 return; |
|
741 } else { |
|
742 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : |
|
743 kRight_Child; |
|
744 |
|
745 } |
|
746 s = p->fChildren[1-pc]; |
|
747 SkASSERT(NULL != s); |
|
748 SkASSERT(p == s->fParent); |
|
749 continue; |
|
750 } else if (kRed_Color == p->fColor) { |
|
751 // we can make p black and s red. This balance out p's |
|
752 // two subtrees and keep the same black-height as it was |
|
753 // before the delete. |
|
754 s->fColor = kRed_Color; |
|
755 p->fColor = kBlack_Color; |
|
756 validate(); |
|
757 return; |
|
758 } |
|
759 } |
|
760 break; |
|
761 } while (true); |
|
762 // if we made it here one or both of sl and sr is red. |
|
763 // s and x are black. We make sure that a red child is on |
|
764 // the same side of s as s is of p. |
|
765 SkASSERT(slRed || srRed); |
|
766 if (kLeft_Child == pc && !srRed) { |
|
767 s->fColor = kRed_Color; |
|
768 sl->fColor = kBlack_Color; |
|
769 rotateRight(s); |
|
770 sr = s; |
|
771 s = sl; |
|
772 //sl = s->fChildren[kLeft_Child]; don't need this |
|
773 } else if (kRight_Child == pc && !slRed) { |
|
774 s->fColor = kRed_Color; |
|
775 sr->fColor = kBlack_Color; |
|
776 rotateLeft(s); |
|
777 sl = s; |
|
778 s = sr; |
|
779 //sr = s->fChildren[kRight_Child]; don't need this |
|
780 } |
|
781 // now p is either red or black, x and s are red and s's 1-pc |
|
782 // child is red. |
|
783 // We rotate p towards x, pulling s up to replace p. We make |
|
784 // p be black and s takes p's old color. |
|
785 // Whether p was red or black, we've increased its pc subtree |
|
786 // rooted at x by 1 (balancing the imbalance at the start) and |
|
787 // we've also its subtree rooted at s's black-height by 1. This |
|
788 // can be balanced by making s's red child be black. |
|
789 s->fColor = p->fColor; |
|
790 p->fColor = kBlack_Color; |
|
791 if (kLeft_Child == pc) { |
|
792 SkASSERT(NULL != sr && kRed_Color == sr->fColor); |
|
793 sr->fColor = kBlack_Color; |
|
794 rotateLeft(p); |
|
795 } else { |
|
796 SkASSERT(NULL != sl && kRed_Color == sl->fColor); |
|
797 sl->fColor = kBlack_Color; |
|
798 rotateRight(p); |
|
799 } |
|
800 } |
|
801 else { |
|
802 // x has exactly one implicit black child. x cannot be red. |
|
803 // Proof by contradiction: Assume X is red. Let c0 be x's implicit |
|
804 // child and c1 be its non-implicit child. c1 must be black because |
|
805 // red nodes always have two black children. Then the two subtrees |
|
806 // of x rooted at c0 and c1 will have different black-heights. |
|
807 SkASSERT(kBlack_Color == x->fColor); |
|
808 // So we know x is black and has one implicit black child, c0. c1 |
|
809 // must be red, otherwise the subtree at c1 will have a different |
|
810 // black-height than the subtree rooted at c0. |
|
811 SkASSERT(kRed_Color == x->fChildren[c]->fColor); |
|
812 // replace x with c1, making c1 black, preserves all red-black tree |
|
813 // props. |
|
814 Node* c1 = x->fChildren[c]; |
|
815 if (x == fFirst) { |
|
816 SkASSERT(c == kRight_Child); |
|
817 fFirst = c1; |
|
818 while (NULL != fFirst->fChildren[kLeft_Child]) { |
|
819 fFirst = fFirst->fChildren[kLeft_Child]; |
|
820 } |
|
821 SkASSERT(fFirst == SuccessorNode(x)); |
|
822 } else if (x == fLast) { |
|
823 SkASSERT(c == kLeft_Child); |
|
824 fLast = c1; |
|
825 while (NULL != fLast->fChildren[kRight_Child]) { |
|
826 fLast = fLast->fChildren[kRight_Child]; |
|
827 } |
|
828 SkASSERT(fLast == PredecessorNode(x)); |
|
829 } |
|
830 c1->fParent = p; |
|
831 p->fChildren[pc] = c1; |
|
832 c1->fColor = kBlack_Color; |
|
833 delete x; |
|
834 validate(); |
|
835 } |
|
836 validate(); |
|
837 } |
|
838 |
|
839 template <typename T, typename C> |
|
840 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { |
|
841 if (NULL != x) { |
|
842 RecursiveDelete(x->fChildren[kLeft_Child]); |
|
843 RecursiveDelete(x->fChildren[kRight_Child]); |
|
844 delete x; |
|
845 } |
|
846 } |
|
847 |
|
848 #ifdef SK_DEBUG |
|
849 template <typename T, typename C> |
|
850 void GrRedBlackTree<T,C>::validate() const { |
|
851 if (fCount) { |
|
852 SkASSERT(NULL == fRoot->fParent); |
|
853 SkASSERT(NULL != fFirst); |
|
854 SkASSERT(NULL != fLast); |
|
855 |
|
856 SkASSERT(kBlack_Color == fRoot->fColor); |
|
857 if (1 == fCount) { |
|
858 SkASSERT(fFirst == fRoot); |
|
859 SkASSERT(fLast == fRoot); |
|
860 SkASSERT(0 == fRoot->fChildren[kLeft_Child]); |
|
861 SkASSERT(0 == fRoot->fChildren[kRight_Child]); |
|
862 } |
|
863 } else { |
|
864 SkASSERT(NULL == fRoot); |
|
865 SkASSERT(NULL == fFirst); |
|
866 SkASSERT(NULL == fLast); |
|
867 } |
|
868 #if DEEP_VALIDATE |
|
869 int bh; |
|
870 int count = checkNode(fRoot, &bh); |
|
871 SkASSERT(count == fCount); |
|
872 #endif |
|
873 } |
|
874 |
|
875 template <typename T, typename C> |
|
876 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { |
|
877 if (NULL != n) { |
|
878 SkASSERT(validateChildRelations(n, false)); |
|
879 if (kBlack_Color == n->fColor) { |
|
880 *bh += 1; |
|
881 } |
|
882 SkASSERT(!fComp(n->fItem, fFirst->fItem)); |
|
883 SkASSERT(!fComp(fLast->fItem, n->fItem)); |
|
884 int leftBh = *bh; |
|
885 int rightBh = *bh; |
|
886 int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); |
|
887 int cr = checkNode(n->fChildren[kRight_Child], &rightBh); |
|
888 SkASSERT(leftBh == rightBh); |
|
889 *bh = leftBh; |
|
890 return 1 + cl + cr; |
|
891 } |
|
892 return 0; |
|
893 } |
|
894 |
|
895 template <typename T, typename C> |
|
896 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n, |
|
897 bool allowRedRed) const { |
|
898 if (NULL != n) { |
|
899 if (NULL != n->fChildren[kLeft_Child] || |
|
900 NULL != n->fChildren[kRight_Child]) { |
|
901 if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { |
|
902 return validateChildRelationsFailed(); |
|
903 } |
|
904 if (n->fChildren[kLeft_Child] == n->fParent && |
|
905 NULL != n->fParent) { |
|
906 return validateChildRelationsFailed(); |
|
907 } |
|
908 if (n->fChildren[kRight_Child] == n->fParent && |
|
909 NULL != n->fParent) { |
|
910 return validateChildRelationsFailed(); |
|
911 } |
|
912 if (NULL != n->fChildren[kLeft_Child]) { |
|
913 if (!allowRedRed && |
|
914 kRed_Color == n->fChildren[kLeft_Child]->fColor && |
|
915 kRed_Color == n->fColor) { |
|
916 return validateChildRelationsFailed(); |
|
917 } |
|
918 if (n->fChildren[kLeft_Child]->fParent != n) { |
|
919 return validateChildRelationsFailed(); |
|
920 } |
|
921 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || |
|
922 (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && |
|
923 !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { |
|
924 return validateChildRelationsFailed(); |
|
925 } |
|
926 } |
|
927 if (NULL != n->fChildren[kRight_Child]) { |
|
928 if (!allowRedRed && |
|
929 kRed_Color == n->fChildren[kRight_Child]->fColor && |
|
930 kRed_Color == n->fColor) { |
|
931 return validateChildRelationsFailed(); |
|
932 } |
|
933 if (n->fChildren[kRight_Child]->fParent != n) { |
|
934 return validateChildRelationsFailed(); |
|
935 } |
|
936 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || |
|
937 (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && |
|
938 !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { |
|
939 return validateChildRelationsFailed(); |
|
940 } |
|
941 } |
|
942 } |
|
943 } |
|
944 return true; |
|
945 } |
|
946 #endif |
|
947 |
|
948 #endif |