|
1 /* |
|
2 * Copyright 2012 The Android Open Source Project |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #include "SkBitmapProcState_opts_SSSE3.h" |
|
9 #include "SkPaint.h" |
|
10 #include "SkUtils.h" |
|
11 |
|
12 /* With the exception of the Android framework we always build the SSSE3 functions |
|
13 * and enable the caller to determine SSSE3 support. However for the Android framework |
|
14 * if the device does not support SSSE3 then the compiler will not supply the required |
|
15 * -mssse3 option needed to build this file, so instead we provide a stub implementation. |
|
16 */ |
|
17 #if !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) || SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
|
18 |
|
19 #include <tmmintrin.h> // SSSE3 |
|
20 |
|
21 // adding anonymous namespace seemed to force gcc to inline directly the |
|
22 // instantiation, instead of creating the functions |
|
23 // S32_generic_D32_filter_DX_SSSE3<true> and |
|
24 // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the |
|
25 // external functions. |
|
26 namespace { |
|
27 // In this file, variations for alpha and non alpha versions are implemented |
|
28 // with a template, as it makes the code more compact and a bit easier to |
|
29 // maintain, while making the compiler generate the same exact code as with |
|
30 // two functions that only differ by a few lines. |
|
31 |
|
32 |
|
33 // Prepare all necessary constants for a round of processing for two pixel |
|
34 // pairs. |
|
35 // @param xy is the location where the xy parameters for four pixels should be |
|
36 // read from. It is identical in concept with argument two of |
|
37 // S32_{opaque}_D32_filter_DX methods. |
|
38 // @param mask_3FFF vector of 32 bit constants containing 3FFF, |
|
39 // suitable to mask the bottom 14 bits of a XY value. |
|
40 // @param mask_000F vector of 32 bit constants containing 000F, |
|
41 // suitable to mask the bottom 4 bits of a XY value. |
|
42 // @param sixteen_8bit vector of 8 bit components containing the value 16. |
|
43 // @param mask_dist_select vector of 8 bit components containing the shuffling |
|
44 // parameters to reorder x[0-3] parameters. |
|
45 // @param all_x_result vector of 8 bit components that will contain the |
|
46 // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. |
|
47 // @param sixteen_minus_x vector of 8 bit components, containing |
|
48 // (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) |
|
49 inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, |
|
50 const __m128i& mask_3FFF, |
|
51 const __m128i& mask_000F, |
|
52 const __m128i& sixteen_8bit, |
|
53 const __m128i& mask_dist_select, |
|
54 __m128i* all_x_result, |
|
55 __m128i* sixteen_minus_x, |
|
56 int* x0, |
|
57 int* x1) { |
|
58 const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); |
|
59 |
|
60 // 4 delta X |
|
61 // (x03, x02, x01, x00) |
|
62 const __m128i x0_wide = _mm_srli_epi32(xx, 18); |
|
63 // (x13, x12, x11, x10) |
|
64 const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); |
|
65 |
|
66 _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); |
|
67 _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); |
|
68 |
|
69 __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); |
|
70 |
|
71 // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) |
|
72 all_x = _mm_shuffle_epi8(all_x, mask_dist_select); |
|
73 |
|
74 *all_x_result = all_x; |
|
75 // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) |
|
76 *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); |
|
77 } |
|
78 |
|
79 // Prepare all necessary constants for a round of processing for two pixel |
|
80 // pairs. |
|
81 // @param xy is the location where the xy parameters for four pixels should be |
|
82 // read from. It is identical in concept with argument two of |
|
83 // S32_{opaque}_D32_filter_DXDY methods. |
|
84 // @param mask_3FFF vector of 32 bit constants containing 3FFF, |
|
85 // suitable to mask the bottom 14 bits of a XY value. |
|
86 // @param mask_000F vector of 32 bit constants containing 000F, |
|
87 // suitable to mask the bottom 4 bits of a XY value. |
|
88 // @param sixteen_8bit vector of 8 bit components containing the value 16. |
|
89 // @param mask_dist_select vector of 8 bit components containing the shuffling |
|
90 // parameters to reorder x[0-3] parameters. |
|
91 // @param all_xy_result vector of 8 bit components that will contain the |
|
92 // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return. |
|
93 // @param sixteen_minus_x vector of 8 bit components, containing |
|
94 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)). |
|
95 inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy, |
|
96 const __m128i& mask_3FFF, |
|
97 const __m128i& mask_000F, |
|
98 const __m128i& sixteen_8bit, |
|
99 const __m128i& mask_dist_select, |
|
100 __m128i* all_xy_result, |
|
101 __m128i* sixteen_minus_xy, |
|
102 int* xy0, int* xy1) { |
|
103 const __m128i xy_wide = |
|
104 _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); |
|
105 |
|
106 // (x10, y10, x00, y00) |
|
107 __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18); |
|
108 // (y10, y00, x10, x00) |
|
109 xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1)); |
|
110 // (x11, y11, x01, y01) |
|
111 __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF); |
|
112 // (y11, y01, x11, x01) |
|
113 xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1)); |
|
114 |
|
115 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide); |
|
116 _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide); |
|
117 |
|
118 // (x1, y1, x0, y0) |
|
119 __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F); |
|
120 // (y1, y0, x1, x0) |
|
121 all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1)); |
|
122 // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) |
|
123 all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select); |
|
124 |
|
125 *all_xy_result = all_xy; |
|
126 // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)) |
|
127 *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy); |
|
128 } |
|
129 |
|
130 // Helper function used when processing one pixel pair. |
|
131 // @param pixel0..3 are the four input pixels |
|
132 // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This |
|
133 // will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) |
|
134 // or (4x(x3, 16-x3), 4x(x2, 16-x2)) |
|
135 // @return a vector of 16 bit components containing: |
|
136 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) |
|
137 inline __m128i ProcessPixelPairHelper(uint32_t pixel0, |
|
138 uint32_t pixel1, |
|
139 uint32_t pixel2, |
|
140 uint32_t pixel3, |
|
141 const __m128i& scale_x) { |
|
142 __m128i a0, a1, a2, a3; |
|
143 // Load 2 pairs of pixels |
|
144 a0 = _mm_cvtsi32_si128(pixel0); |
|
145 a1 = _mm_cvtsi32_si128(pixel1); |
|
146 |
|
147 // Interleave pixels. |
|
148 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) |
|
149 a0 = _mm_unpacklo_epi8(a0, a1); |
|
150 |
|
151 a2 = _mm_cvtsi32_si128(pixel2); |
|
152 a3 = _mm_cvtsi32_si128(pixel3); |
|
153 // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) |
|
154 a2 = _mm_unpacklo_epi8(a2, a3); |
|
155 |
|
156 // two pairs of pixel pairs, interleaved. |
|
157 // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, |
|
158 // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) |
|
159 a0 = _mm_unpacklo_epi64(a0, a2); |
|
160 |
|
161 // multiply and sum to 16 bit components. |
|
162 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) |
|
163 // At that point, we use up a bit less than 12 bits for each 16 bit |
|
164 // component: |
|
165 // All components are less than 255. So, |
|
166 // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. |
|
167 return _mm_maddubs_epi16(a0, scale_x); |
|
168 } |
|
169 |
|
170 // Scale back the results after multiplications to the [0:255] range, and scale |
|
171 // by alpha when has_alpha is true. |
|
172 // Depending on whether one set or two sets of multiplications had been applied, |
|
173 // the results have to be shifted by four places (dividing by 16), or shifted |
|
174 // by eight places (dividing by 256), since each multiplication is by a quantity |
|
175 // in the range [0:16]. |
|
176 template<bool has_alpha, int scale> |
|
177 inline __m128i ScaleFourPixels(__m128i* pixels, |
|
178 const __m128i& alpha) { |
|
179 // Divide each 16 bit component by 16 (or 256 depending on scale). |
|
180 *pixels = _mm_srli_epi16(*pixels, scale); |
|
181 |
|
182 if (has_alpha) { |
|
183 // Multiply by alpha. |
|
184 *pixels = _mm_mullo_epi16(*pixels, alpha); |
|
185 |
|
186 // Divide each 16 bit component by 256. |
|
187 *pixels = _mm_srli_epi16(*pixels, 8); |
|
188 } |
|
189 return *pixels; |
|
190 } |
|
191 |
|
192 // Wrapper to calculate two output pixels from four input pixels. The |
|
193 // arguments are the same as ProcessPixelPairHelper. Technically, there are |
|
194 // eight input pixels, but since sub_y == 0, the factors applied to half of the |
|
195 // pixels is zero (sub_y), and are therefore omitted here to save on some |
|
196 // processing. |
|
197 // @param alpha when has_alpha is true, scale all resulting components by this |
|
198 // value. |
|
199 // @return a vector of 16 bit components containing: |
|
200 // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., |
|
201 // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) |
|
202 // otherwise |
|
203 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) |
|
204 // In both cases, the results are renormalized (divided by 16) to match the |
|
205 // expected formats when storing back the results into memory. |
|
206 template<bool has_alpha> |
|
207 inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, |
|
208 uint32_t pixel1, |
|
209 uint32_t pixel2, |
|
210 uint32_t pixel3, |
|
211 const __m128i& scale_x, |
|
212 const __m128i& alpha) { |
|
213 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, |
|
214 scale_x); |
|
215 return ScaleFourPixels<has_alpha, 4>(&sum, alpha); |
|
216 } |
|
217 |
|
218 // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a |
|
219 // time instead of two. As in the above function, only two pixels are needed |
|
220 // to generate a single pixel since sub_y == 0. |
|
221 // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 |
|
222 // 16 bit components are set. |
|
223 template<bool has_alpha> |
|
224 inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, |
|
225 uint32_t pixel1, |
|
226 __m128i scale_x, |
|
227 __m128i alpha) { |
|
228 __m128i a0 = _mm_cvtsi32_si128(pixel0); |
|
229 __m128i a1 = _mm_cvtsi32_si128(pixel1); |
|
230 |
|
231 // Interleave |
|
232 a0 = _mm_unpacklo_epi8(a0, a1); |
|
233 |
|
234 // (a0 * (16-x) + a1 * x) |
|
235 __m128i sum = _mm_maddubs_epi16(a0, scale_x); |
|
236 |
|
237 return ScaleFourPixels<has_alpha, 4>(&sum, alpha); |
|
238 } |
|
239 |
|
240 // Methods when sub_y != 0 |
|
241 |
|
242 |
|
243 // Same as ProcessPixelPairHelper, except that the values are scaled by y. |
|
244 // @param y vector of 16 bit components containing 'y' values. There are two |
|
245 // cases in practice, where y will contain the sub_y constant, or will |
|
246 // contain the 16 - sub_y constant. |
|
247 // @return vector of 16 bit components containing: |
|
248 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) |
|
249 inline __m128i ProcessPixelPair(uint32_t pixel0, |
|
250 uint32_t pixel1, |
|
251 uint32_t pixel2, |
|
252 uint32_t pixel3, |
|
253 const __m128i& scale_x, |
|
254 const __m128i& y) { |
|
255 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, |
|
256 scale_x); |
|
257 |
|
258 // first row times 16-y or y depending on whether 'y' represents one or |
|
259 // the other. |
|
260 // Values will be up to 255 * 16 * 16 = 65280. |
|
261 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , |
|
262 // y * (Ra0 * (16 - x0) + Ra1 * x0)) |
|
263 sum = _mm_mullo_epi16(sum, y); |
|
264 |
|
265 return sum; |
|
266 } |
|
267 |
|
268 // Process two pixel pairs out of eight input pixels. |
|
269 // In other methods, the distinct pixels are passed one by one, but in this |
|
270 // case, the rows, and index offsets to the pixels into the row are passed |
|
271 // to generate the 8 pixels. |
|
272 // @param row0..1 top and bottom row where to find input pixels. |
|
273 // @param x0..1 offsets into the row for all eight input pixels. |
|
274 // @param all_y vector of 16 bit components containing the constant sub_y |
|
275 // @param neg_y vector of 16 bit components containing the constant 16 - sub_y |
|
276 // @param alpha vector of 16 bit components containing the alpha value to scale |
|
277 // the results by, when has_alpha is true. |
|
278 // @return |
|
279 // (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + |
|
280 // y * (Aa2' * (16-x1) + Aa3' * x1)), |
|
281 // ... |
|
282 // alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) + |
|
283 // y * (Ra0' * (16-x0) + Ra1' * x0)) |
|
284 // With the factor alpha removed when has_alpha is false. |
|
285 // The values are scaled back to 16 bit components, but with only the bottom |
|
286 // 8 bits being set. |
|
287 template<bool has_alpha> |
|
288 inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, |
|
289 const uint32_t* row1, |
|
290 const int* x0, |
|
291 const int* x1, |
|
292 const __m128i& scale_x, |
|
293 const __m128i& all_y, |
|
294 const __m128i& neg_y, |
|
295 const __m128i& alpha) { |
|
296 __m128i sum0 = ProcessPixelPair( |
|
297 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], |
|
298 scale_x, neg_y); |
|
299 __m128i sum1 = ProcessPixelPair( |
|
300 row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], |
|
301 scale_x, all_y); |
|
302 |
|
303 // 2 samples fully summed. |
|
304 // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + |
|
305 // y * (Aa2' * (16-x1) + Aa3' * x1), |
|
306 // ... |
|
307 // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + |
|
308 // y * (Ra0' * (16-x0) + Ra1' * x0)) |
|
309 // Each component, again can be at most 256 * 255 = 65280, so no overflow. |
|
310 sum0 = _mm_add_epi16(sum0, sum1); |
|
311 |
|
312 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); |
|
313 } |
|
314 |
|
315 // Similar to ProcessTwoPixelPairs except the pixel indexes. |
|
316 template<bool has_alpha> |
|
317 inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00, |
|
318 const uint32_t* row01, |
|
319 const uint32_t* row10, |
|
320 const uint32_t* row11, |
|
321 const int* xy0, |
|
322 const int* xy1, |
|
323 const __m128i& scale_x, |
|
324 const __m128i& all_y, |
|
325 const __m128i& neg_y, |
|
326 const __m128i& alpha) { |
|
327 // first row |
|
328 __m128i sum0 = ProcessPixelPair( |
|
329 row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]], |
|
330 scale_x, neg_y); |
|
331 // second row |
|
332 __m128i sum1 = ProcessPixelPair( |
|
333 row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]], |
|
334 scale_x, all_y); |
|
335 |
|
336 // 2 samples fully summed. |
|
337 // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) + |
|
338 // y0 * (Aa2' * (16-x1) + Aa3' * x1), |
|
339 // ... |
|
340 // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) + |
|
341 // y0 * (Ra0' * (16-x0) + Ra1' * x0)) |
|
342 // Each component, again can be at most 256 * 255 = 65280, so no overflow. |
|
343 sum0 = _mm_add_epi16(sum0, sum1); |
|
344 |
|
345 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); |
|
346 } |
|
347 |
|
348 |
|
349 // Same as ProcessPixelPair, except that performing the math one output pixel |
|
350 // at a time. This means that only the bottom four 16 bit components are set. |
|
351 inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, |
|
352 const __m128i& scale_x, const __m128i& y) { |
|
353 __m128i a0 = _mm_cvtsi32_si128(pixel0); |
|
354 __m128i a1 = _mm_cvtsi32_si128(pixel1); |
|
355 |
|
356 // Interleave |
|
357 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) |
|
358 a0 = _mm_unpacklo_epi8(a0, a1); |
|
359 |
|
360 // (a0 * (16-x) + a1 * x) |
|
361 a0 = _mm_maddubs_epi16(a0, scale_x); |
|
362 |
|
363 // scale row by y |
|
364 return _mm_mullo_epi16(a0, y); |
|
365 } |
|
366 |
|
367 // Notes about the various tricks that are used in this implementation: |
|
368 // - specialization for sub_y == 0. |
|
369 // Statistically, 1/16th of the samples will have sub_y == 0. When this |
|
370 // happens, the math goes from: |
|
371 // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 |
|
372 // to: |
|
373 // (16 - x)*a00 + 16*x*a01 |
|
374 // much simpler. The simplification makes for an easy boost in performance. |
|
375 // - calculating 4 output pixels at a time. |
|
376 // This allows loading the coefficients x0 and x1 and shuffling them to the |
|
377 // optimum location only once per loop, instead of twice per loop. |
|
378 // This also allows us to store the four pixels with a single store. |
|
379 // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction |
|
380 // version): |
|
381 // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded |
|
382 // in 32 bit values to 8 bit values repeated four times. |
|
383 // _mm_maddubs_epi16 : this allows us to perform multiplications and additions |
|
384 // in one swoop of 8bit values storing the results in 16 bit values. This |
|
385 // instruction is actually crucial for the speed of the implementation since |
|
386 // as one can see in the SSE2 implementation, all inputs have to be used as |
|
387 // 16 bits because the results are 16 bits. This basically allows us to process |
|
388 // twice as many pixel components per iteration. |
|
389 // |
|
390 // As a result, this method behaves faster than the traditional SSE2. The actual |
|
391 // boost varies greatly on the underlying architecture. |
|
392 template<bool has_alpha> |
|
393 void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
|
394 const uint32_t* xy, |
|
395 int count, uint32_t* colors) { |
|
396 SkASSERT(count > 0 && colors != NULL); |
|
397 SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel); |
|
398 SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); |
|
399 if (has_alpha) { |
|
400 SkASSERT(s.fAlphaScale < 256); |
|
401 } else { |
|
402 SkASSERT(s.fAlphaScale == 256); |
|
403 } |
|
404 |
|
405 const uint8_t* src_addr = |
|
406 static_cast<const uint8_t*>(s.fBitmap->getPixels()); |
|
407 const size_t rb = s.fBitmap->rowBytes(); |
|
408 const uint32_t XY = *xy++; |
|
409 const unsigned y0 = XY >> 14; |
|
410 const uint32_t* row0 = |
|
411 reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb); |
|
412 const uint32_t* row1 = |
|
413 reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb); |
|
414 const unsigned sub_y = y0 & 0xF; |
|
415 |
|
416 // vector constants |
|
417 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, |
|
418 8, 8, 8, 8, |
|
419 4, 4, 4, 4, |
|
420 0, 0, 0, 0); |
|
421 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); |
|
422 const __m128i mask_000F = _mm_set1_epi32(0x000F); |
|
423 const __m128i sixteen_8bit = _mm_set1_epi8(16); |
|
424 // (0, 0, 0, 0, 0, 0, 0, 0) |
|
425 const __m128i zero = _mm_setzero_si128(); |
|
426 |
|
427 __m128i alpha = _mm_setzero_si128(); |
|
428 if (has_alpha) |
|
429 // 8x(alpha) |
|
430 alpha = _mm_set1_epi16(s.fAlphaScale); |
|
431 |
|
432 if (sub_y == 0) { |
|
433 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) |
|
434 while (count > 3) { |
|
435 count -= 4; |
|
436 |
|
437 int x0[4]; |
|
438 int x1[4]; |
|
439 __m128i all_x, sixteen_minus_x; |
|
440 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, |
|
441 sixteen_8bit, mask_dist_select, |
|
442 &all_x, &sixteen_minus_x, x0, x1); |
|
443 xy += 4; |
|
444 |
|
445 // First pair of pixel pairs. |
|
446 // (4x(x1, 16-x1), 4x(x0, 16-x0)) |
|
447 __m128i scale_x; |
|
448 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); |
|
449 |
|
450 __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>( |
|
451 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], |
|
452 scale_x, alpha); |
|
453 |
|
454 // second pair of pixel pairs |
|
455 // (4x (x3, 16-x3), 4x (16-x2, x2)) |
|
456 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); |
|
457 |
|
458 __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>( |
|
459 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], |
|
460 scale_x, alpha); |
|
461 |
|
462 // Pack lower 4 16 bit values of sum into lower 4 bytes. |
|
463 sum0 = _mm_packus_epi16(sum0, sum1); |
|
464 |
|
465 // Extract low int and store. |
|
466 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); |
|
467 |
|
468 colors += 4; |
|
469 } |
|
470 |
|
471 // handle remainder |
|
472 while (count-- > 0) { |
|
473 uint32_t xx = *xy++; // x0:14 | 4 | x1:14 |
|
474 unsigned x0 = xx >> 18; |
|
475 unsigned x1 = xx & 0x3FFF; |
|
476 |
|
477 // 16x(x) |
|
478 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); |
|
479 |
|
480 // (16x(16-x)) |
|
481 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); |
|
482 |
|
483 scale_x = _mm_unpacklo_epi8(scale_x, all_x); |
|
484 |
|
485 __m128i sum = ProcessOnePixelZeroSubY<has_alpha>( |
|
486 row0[x0], row0[x1], |
|
487 scale_x, alpha); |
|
488 |
|
489 // Pack lower 4 16 bit values of sum into lower 4 bytes. |
|
490 sum = _mm_packus_epi16(sum, zero); |
|
491 |
|
492 // Extract low int and store. |
|
493 *colors++ = _mm_cvtsi128_si32(sum); |
|
494 } |
|
495 } else { // more general case, y != 0 |
|
496 // 8x(16) |
|
497 const __m128i sixteen_16bit = _mm_set1_epi16(16); |
|
498 |
|
499 // 8x (y) |
|
500 const __m128i all_y = _mm_set1_epi16(sub_y); |
|
501 |
|
502 // 8x (16-y) |
|
503 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); |
|
504 |
|
505 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) |
|
506 while (count > 3) { |
|
507 count -= 4; |
|
508 |
|
509 int x0[4]; |
|
510 int x1[4]; |
|
511 __m128i all_x, sixteen_minus_x; |
|
512 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, |
|
513 sixteen_8bit, mask_dist_select, |
|
514 &all_x, &sixteen_minus_x, x0, x1); |
|
515 xy += 4; |
|
516 |
|
517 // First pair of pixel pairs |
|
518 // (4x(x1, 16-x1), 4x(x0, 16-x0)) |
|
519 __m128i scale_x; |
|
520 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); |
|
521 |
|
522 __m128i sum0 = ProcessTwoPixelPairs<has_alpha>( |
|
523 row0, row1, x0, x1, |
|
524 scale_x, all_y, neg_y, alpha); |
|
525 |
|
526 // second pair of pixel pairs |
|
527 // (4x (x3, 16-x3), 4x (16-x2, x2)) |
|
528 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); |
|
529 |
|
530 __m128i sum1 = ProcessTwoPixelPairs<has_alpha>( |
|
531 row0, row1, x0 + 2, x1 + 2, |
|
532 scale_x, all_y, neg_y, alpha); |
|
533 |
|
534 // Do the final packing of the two results |
|
535 |
|
536 // Pack lower 4 16 bit values of sum into lower 4 bytes. |
|
537 sum0 = _mm_packus_epi16(sum0, sum1); |
|
538 |
|
539 // Extract low int and store. |
|
540 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); |
|
541 |
|
542 colors += 4; |
|
543 } |
|
544 |
|
545 // Left over. |
|
546 while (count-- > 0) { |
|
547 const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 |
|
548 const unsigned x0 = xx >> 18; |
|
549 const unsigned x1 = xx & 0x3FFF; |
|
550 |
|
551 // 16x(x) |
|
552 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); |
|
553 |
|
554 // 16x (16-x) |
|
555 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); |
|
556 |
|
557 // (8x (x, 16-x)) |
|
558 scale_x = _mm_unpacklo_epi8(scale_x, all_x); |
|
559 |
|
560 // first row. |
|
561 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); |
|
562 // second row. |
|
563 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); |
|
564 |
|
565 // Add both rows for full sample |
|
566 sum0 = _mm_add_epi16(sum0, sum1); |
|
567 |
|
568 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); |
|
569 |
|
570 // Pack lower 4 16 bit values of sum into lower 4 bytes. |
|
571 sum0 = _mm_packus_epi16(sum0, zero); |
|
572 |
|
573 // Extract low int and store. |
|
574 *colors++ = _mm_cvtsi128_si32(sum0); |
|
575 } |
|
576 } |
|
577 } |
|
578 |
|
579 /* |
|
580 * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the |
|
581 * special case suby == 0 as suby is changing in every loop. |
|
582 */ |
|
583 template<bool has_alpha> |
|
584 void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, |
|
585 const uint32_t* xy, |
|
586 int count, uint32_t* colors) { |
|
587 SkASSERT(count > 0 && colors != NULL); |
|
588 SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel); |
|
589 SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); |
|
590 if (has_alpha) { |
|
591 SkASSERT(s.fAlphaScale < 256); |
|
592 } else { |
|
593 SkASSERT(s.fAlphaScale == 256); |
|
594 } |
|
595 |
|
596 const uint8_t* src_addr = |
|
597 static_cast<const uint8_t*>(s.fBitmap->getPixels()); |
|
598 const size_t rb = s.fBitmap->rowBytes(); |
|
599 |
|
600 // vector constants |
|
601 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, |
|
602 8, 8, 8, 8, |
|
603 4, 4, 4, 4, |
|
604 0, 0, 0, 0); |
|
605 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); |
|
606 const __m128i mask_000F = _mm_set1_epi32(0x000F); |
|
607 const __m128i sixteen_8bit = _mm_set1_epi8(16); |
|
608 |
|
609 __m128i alpha; |
|
610 if (has_alpha) { |
|
611 // 8x(alpha) |
|
612 alpha = _mm_set1_epi16(s.fAlphaScale); |
|
613 } |
|
614 |
|
615 // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small) |
|
616 while (count >= 2) { |
|
617 int xy0[4]; |
|
618 int xy1[4]; |
|
619 __m128i all_xy, sixteen_minus_xy; |
|
620 PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F, |
|
621 sixteen_8bit, mask_dist_select, |
|
622 &all_xy, &sixteen_minus_xy, xy0, xy1); |
|
623 |
|
624 // (4x(x1, 16-x1), 4x(x0, 16-x0)) |
|
625 __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy); |
|
626 // (4x(0, y1), 4x(0, y0)) |
|
627 __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128()); |
|
628 __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y); |
|
629 |
|
630 const uint32_t* row00 = |
|
631 reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb); |
|
632 const uint32_t* row01 = |
|
633 reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb); |
|
634 const uint32_t* row10 = |
|
635 reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb); |
|
636 const uint32_t* row11 = |
|
637 reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb); |
|
638 |
|
639 __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>( |
|
640 row00, row01, row10, row11, xy0, xy1, |
|
641 scale_x, all_y, neg_y, alpha); |
|
642 |
|
643 // Pack lower 4 16 bit values of sum into lower 4 bytes. |
|
644 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); |
|
645 |
|
646 // Extract low int and store. |
|
647 _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0); |
|
648 |
|
649 xy += 4; |
|
650 colors += 2; |
|
651 count -= 2; |
|
652 } |
|
653 |
|
654 // Handle the remainder |
|
655 while (count-- > 0) { |
|
656 uint32_t data = *xy++; |
|
657 unsigned y0 = data >> 14; |
|
658 unsigned y1 = data & 0x3FFF; |
|
659 unsigned subY = y0 & 0xF; |
|
660 y0 >>= 4; |
|
661 |
|
662 data = *xy++; |
|
663 unsigned x0 = data >> 14; |
|
664 unsigned x1 = data & 0x3FFF; |
|
665 unsigned subX = x0 & 0xF; |
|
666 x0 >>= 4; |
|
667 |
|
668 const uint32_t* row0 = |
|
669 reinterpret_cast<const uint32_t*>(src_addr + y0 * rb); |
|
670 const uint32_t* row1 = |
|
671 reinterpret_cast<const uint32_t*>(src_addr + y1 * rb); |
|
672 |
|
673 // 16x(x) |
|
674 const __m128i all_x = _mm_set1_epi8(subX); |
|
675 |
|
676 // 16x (16-x) |
|
677 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); |
|
678 |
|
679 // (8x (x, 16-x)) |
|
680 scale_x = _mm_unpacklo_epi8(scale_x, all_x); |
|
681 |
|
682 // 8x(16) |
|
683 const __m128i sixteen_16bit = _mm_set1_epi16(16); |
|
684 |
|
685 // 8x (y) |
|
686 const __m128i all_y = _mm_set1_epi16(subY); |
|
687 |
|
688 // 8x (16-y) |
|
689 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); |
|
690 |
|
691 // first row. |
|
692 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); |
|
693 // second row. |
|
694 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); |
|
695 |
|
696 // Add both rows for full sample |
|
697 sum0 = _mm_add_epi16(sum0, sum1); |
|
698 |
|
699 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); |
|
700 |
|
701 // Pack lower 4 16 bit values of sum into lower 4 bytes. |
|
702 sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); |
|
703 |
|
704 // Extract low int and store. |
|
705 *colors++ = _mm_cvtsi128_si32(sum0); |
|
706 } |
|
707 } |
|
708 } // namepace |
|
709 |
|
710 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
|
711 const uint32_t* xy, |
|
712 int count, uint32_t* colors) { |
|
713 S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors); |
|
714 } |
|
715 |
|
716 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
|
717 const uint32_t* xy, |
|
718 int count, uint32_t* colors) { |
|
719 S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors); |
|
720 } |
|
721 |
|
722 void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, |
|
723 const uint32_t* xy, |
|
724 int count, uint32_t* colors) { |
|
725 S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors); |
|
726 } |
|
727 |
|
728 void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, |
|
729 const uint32_t* xy, |
|
730 int count, uint32_t* colors) { |
|
731 S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors); |
|
732 } |
|
733 |
|
734 #else // !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) || SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
|
735 |
|
736 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
|
737 const uint32_t* xy, |
|
738 int count, uint32_t* colors) { |
|
739 sk_throw(); |
|
740 } |
|
741 |
|
742 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, |
|
743 const uint32_t* xy, |
|
744 int count, uint32_t* colors) { |
|
745 sk_throw(); |
|
746 } |
|
747 |
|
748 void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, |
|
749 const uint32_t* xy, |
|
750 int count, uint32_t* colors) { |
|
751 sk_throw(); |
|
752 } |
|
753 |
|
754 void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, |
|
755 const uint32_t* xy, |
|
756 int count, uint32_t* colors) { |
|
757 sk_throw(); |
|
758 } |
|
759 |
|
760 #endif |