|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkIntersections.h" |
|
8 #include "SkOpAngle.h" |
|
9 #include "SkOpSegment.h" |
|
10 #include "SkPathOpsCurve.h" |
|
11 #include "SkTSort.h" |
|
12 |
|
13 #if DEBUG_ANGLE |
|
14 #include "SkString.h" |
|
15 |
|
16 static const char funcName[] = "SkOpSegment::operator<"; |
|
17 static const int bugChar = strlen(funcName) + 1; |
|
18 #endif |
|
19 |
|
20 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest |
|
21 positive y. The largest angle has a positive x and a zero y. */ |
|
22 |
|
23 #if DEBUG_ANGLE |
|
24 static bool CompareResult(SkString* bugOut, const char* append, bool compare) { |
|
25 bugOut->appendf("%s", append); |
|
26 bugOut->writable_str()[bugChar] = "><"[compare]; |
|
27 SkDebugf("%s\n", bugOut->c_str()); |
|
28 return compare; |
|
29 } |
|
30 |
|
31 #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare) |
|
32 #else |
|
33 #define COMPARE_RESULT(append, compare) compare |
|
34 #endif |
|
35 |
|
36 bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const{ |
|
37 double absX = fabs(x); |
|
38 double absY = fabs(y); |
|
39 double length = absX < absY ? absX / 2 + absY : absX + absY / 2; |
|
40 int exponent; |
|
41 (void) frexp(length, &exponent); |
|
42 double epsilon = ldexp(FLT_EPSILON, exponent); |
|
43 SkPath::Verb verb = fSegment->verb(); |
|
44 SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb); |
|
45 // FIXME: the quad and cubic factors are made up ; determine actual values |
|
46 double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon; |
|
47 double xSlop = slop; |
|
48 double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ? |
|
49 double x1 = x - xSlop; |
|
50 double y1 = y + ySlop; |
|
51 double x_ry1 = x1 * ry; |
|
52 double rx_y1 = rx * y1; |
|
53 *result = x_ry1 < rx_y1; |
|
54 double x2 = x + xSlop; |
|
55 double y2 = y - ySlop; |
|
56 double x_ry2 = x2 * ry; |
|
57 double rx_y2 = rx * y2; |
|
58 bool less2 = x_ry2 < rx_y2; |
|
59 return *result == less2; |
|
60 } |
|
61 |
|
62 /* |
|
63 for quads and cubics, set up a parameterized line (e.g. LineParameters ) |
|
64 for points [0] to [1]. See if point [2] is on that line, or on one side |
|
65 or the other. If it both quads' end points are on the same side, choose |
|
66 the shorter tangent. If the tangents are equal, choose the better second |
|
67 tangent angle |
|
68 |
|
69 FIXME: maybe I could set up LineParameters lazily |
|
70 */ |
|
71 bool SkOpAngle::operator<(const SkOpAngle& rh) const { // this/lh: left-hand; rh: right-hand |
|
72 double y = dy(); |
|
73 double ry = rh.dy(); |
|
74 #if DEBUG_ANGLE |
|
75 SkString bugOut; |
|
76 bugOut.printf("%s _ id=%d segId=%d tStart=%1.9g tEnd=%1.9g" |
|
77 " | id=%d segId=%d tStart=%1.9g tEnd=%1.9g ", funcName, |
|
78 fID, fSegment->debugID(), fSegment->t(fStart), fSegment->t(fEnd), |
|
79 rh.fID, rh.fSegment->debugID(), rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); |
|
80 #endif |
|
81 double y_ry = y * ry; |
|
82 if (y_ry < 0) { // if y's are opposite signs, we can do a quick return |
|
83 return COMPARE_RESULT("1 y * ry < 0", y < 0); |
|
84 } |
|
85 // at this point, both y's must be the same sign, or one (or both) is zero |
|
86 double x = dx(); |
|
87 double rx = rh.dx(); |
|
88 if (x * rx < 0) { // if x's are opposite signs, use y to determine first or second half |
|
89 if (y < 0 && ry < 0) { // if y's are negative, lh x is smaller if positive |
|
90 return COMPARE_RESULT("2 x_rx < 0 && y < 0 ...", x > 0); |
|
91 } |
|
92 if (y >= 0 && ry >= 0) { // if y's are zero or positive, lh x is smaller if negative |
|
93 return COMPARE_RESULT("3 x_rx < 0 && y >= 0 ...", x < 0); |
|
94 } |
|
95 SkASSERT((y == 0) ^ (ry == 0)); // if one y is zero and one is negative, neg y is smaller |
|
96 return COMPARE_RESULT("4 x_rx < 0 && y == 0 ...", y < 0); |
|
97 } |
|
98 // at this point, both x's must be the same sign, or one (or both) is zero |
|
99 if (y_ry == 0) { // if either y is zero |
|
100 if (y + ry < 0) { // if the other y is less than zero, it must be smaller |
|
101 return COMPARE_RESULT("5 y_ry == 0 && y + ry < 0", y < 0); |
|
102 } |
|
103 if (y + ry > 0) { // if a y is greater than zero and an x is positive, non zero is smaller |
|
104 return COMPARE_RESULT("6 y_ry == 0 && y + ry > 0", (x + rx > 0) ^ (y == 0)); |
|
105 } |
|
106 // at this point, both y's are zero, so lines are coincident or one is degenerate |
|
107 SkASSERT(x * rx != 0); // and a degenerate line should haven't gotten this far |
|
108 } |
|
109 // see if either curve can be lengthened before trying the tangent |
|
110 if (fSegment->other(fEnd) != rh.fSegment // tangents not absolutely identical |
|
111 && rh.fSegment->other(rh.fEnd) != fSegment |
|
112 && y != -DBL_EPSILON |
|
113 && ry != -DBL_EPSILON) { // and not intersecting |
|
114 SkOpAngle longer = *this; |
|
115 SkOpAngle rhLonger = rh; |
|
116 if ((longer.lengthen(rh) | rhLonger.lengthen(*this)) // lengthen both |
|
117 && (fUnorderable || !longer.fUnorderable) |
|
118 && (rh.fUnorderable || !rhLonger.fUnorderable)) { |
|
119 #if DEBUG_ANGLE |
|
120 bugOut.prepend(" "); |
|
121 #endif |
|
122 return COMPARE_RESULT("10 longer.lengthen(rh) ...", longer < rhLonger); |
|
123 } |
|
124 } |
|
125 SkPath::Verb verb = fSegment->verb(); |
|
126 SkPath::Verb rVerb = rh.fSegment->verb(); |
|
127 if (y_ry != 0) { // if they aren't coincident, look for a stable cross product |
|
128 // at this point, y's are the same sign, neither is zero |
|
129 // and x's are the same sign, or one (or both) is zero |
|
130 double x_ry = x * ry; |
|
131 double rx_y = rx * y; |
|
132 if (!fComputed && !rh.fComputed) { |
|
133 if (!SkDLine::NearRay(x, y, rx, ry) && x_ry != rx_y) { |
|
134 return COMPARE_RESULT("7 !fComputed && !rh.fComputed", x_ry < rx_y); |
|
135 } |
|
136 if (fSide2 == 0 && rh.fSide2 == 0) { |
|
137 return COMPARE_RESULT("7a !fComputed && !rh.fComputed", x_ry < rx_y); |
|
138 } |
|
139 } else { |
|
140 // if the vector was a result of subdividing a curve, see if it is stable |
|
141 bool sloppy1 = x_ry < rx_y; |
|
142 bool sloppy2 = !sloppy1; |
|
143 if ((!fComputed || calcSlop(x, y, rx, ry, &sloppy1)) |
|
144 && (!rh.fComputed || rh.calcSlop(rx, ry, x, y, &sloppy2)) |
|
145 && sloppy1 != sloppy2) { |
|
146 return COMPARE_RESULT("8 CalcSlop(x, y ...", sloppy1); |
|
147 } |
|
148 } |
|
149 } |
|
150 if (fSide2 * rh.fSide2 == 0) { // one is zero |
|
151 #if DEBUG_ANGLE |
|
152 if (fSide2 == rh.fSide2 && y_ry) { // both is zero; coincidence was undetected |
|
153 SkDebugf("%s coincidence!\n", __FUNCTION__); |
|
154 } |
|
155 #endif |
|
156 return COMPARE_RESULT("9a fSide2 * rh.fSide2 == 0 ...", fSide2 < rh.fSide2); |
|
157 } |
|
158 // at this point, the initial tangent line is nearly coincident |
|
159 // see if edges curl away from each other |
|
160 if (fSide * rh.fSide < 0 && (!approximately_zero(fSide) || !approximately_zero(rh.fSide))) { |
|
161 return COMPARE_RESULT("9b fSide * rh.fSide < 0 ...", fSide < rh.fSide); |
|
162 } |
|
163 if (fUnsortable || rh.fUnsortable) { |
|
164 // even with no solution, return a stable sort |
|
165 return COMPARE_RESULT("11 fUnsortable || rh.fUnsortable", this < &rh); |
|
166 } |
|
167 if ((verb == SkPath::kLine_Verb && approximately_zero(y) && approximately_zero(x)) |
|
168 || (rVerb == SkPath::kLine_Verb |
|
169 && approximately_zero(ry) && approximately_zero(rx))) { |
|
170 // See general unsortable comment below. This case can happen when |
|
171 // one line has a non-zero change in t but no change in x and y. |
|
172 fUnsortable = true; |
|
173 return COMPARE_RESULT("12 verb == SkPath::kLine_Verb ...", this < &rh); |
|
174 } |
|
175 if (fSegment->isTiny(this) || rh.fSegment->isTiny(&rh)) { |
|
176 fUnsortable = true; |
|
177 return COMPARE_RESULT("13 verb == fSegment->isTiny(this) ...", this < &rh); |
|
178 } |
|
179 SkASSERT(verb >= SkPath::kQuad_Verb); |
|
180 SkASSERT(rVerb >= SkPath::kQuad_Verb); |
|
181 // FIXME: until I can think of something better, project a ray from the |
|
182 // end of the shorter tangent to midway between the end points |
|
183 // through both curves and use the resulting angle to sort |
|
184 // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive |
|
185 double len = fTangentPart.normalSquared(); |
|
186 double rlen = rh.fTangentPart.normalSquared(); |
|
187 SkDLine ray; |
|
188 SkIntersections i, ri; |
|
189 int roots, rroots; |
|
190 bool flip = false; |
|
191 bool useThis; |
|
192 bool leftLessThanRight = fSide > 0; |
|
193 do { |
|
194 useThis = (len < rlen) ^ flip; |
|
195 const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart; |
|
196 SkPath::Verb partVerb = useThis ? verb : rVerb; |
|
197 ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? |
|
198 part[2] : part[1]; |
|
199 ray[1] = SkDPoint::Mid(part[0], part[SkPathOpsVerbToPoints(partVerb)]); |
|
200 SkASSERT(ray[0] != ray[1]); |
|
201 roots = (i.*CurveRay[SkPathOpsVerbToPoints(verb)])(fSegment->pts(), ray); |
|
202 rroots = (ri.*CurveRay[SkPathOpsVerbToPoints(rVerb)])(rh.fSegment->pts(), ray); |
|
203 } while ((roots == 0 || rroots == 0) && (flip ^= true)); |
|
204 if (roots == 0 || rroots == 0) { |
|
205 // FIXME: we don't have a solution in this case. The interim solution |
|
206 // is to mark the edges as unsortable, exclude them from this and |
|
207 // future computations, and allow the returned path to be fragmented |
|
208 fUnsortable = true; |
|
209 return COMPARE_RESULT("roots == 0 || rroots == 0", this < &rh); |
|
210 } |
|
211 SkASSERT(fSide != 0 && rh.fSide != 0); |
|
212 if (fSide * rh.fSide < 0) { |
|
213 fUnsortable = true; |
|
214 return COMPARE_RESULT("14 fSide * rh.fSide < 0", this < &rh); |
|
215 } |
|
216 SkDPoint lLoc; |
|
217 double best = SK_ScalarInfinity; |
|
218 #if DEBUG_SORT |
|
219 SkDebugf("lh=%d rh=%d use-lh=%d ray={{%1.9g,%1.9g}, {%1.9g,%1.9g}} %c\n", |
|
220 fSegment->debugID(), rh.fSegment->debugID(), useThis, ray[0].fX, ray[0].fY, |
|
221 ray[1].fX, ray[1].fY, "-+"[fSide > 0]); |
|
222 #endif |
|
223 for (int index = 0; index < roots; ++index) { |
|
224 SkDPoint loc = i.pt(index); |
|
225 SkDVector dxy = loc - ray[0]; |
|
226 double dist = dxy.lengthSquared(); |
|
227 #if DEBUG_SORT |
|
228 SkDebugf("best=%1.9g dist=%1.9g loc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n", |
|
229 best, dist, loc.fX, loc.fY, dxy.fX, dxy.fY); |
|
230 #endif |
|
231 if (best > dist) { |
|
232 lLoc = loc; |
|
233 best = dist; |
|
234 } |
|
235 } |
|
236 flip = false; |
|
237 SkDPoint rLoc; |
|
238 for (int index = 0; index < rroots; ++index) { |
|
239 rLoc = ri.pt(index); |
|
240 SkDVector dxy = rLoc - ray[0]; |
|
241 double dist = dxy.lengthSquared(); |
|
242 #if DEBUG_SORT |
|
243 SkDebugf("best=%1.9g dist=%1.9g %c=(fSide < 0) rLoc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n", |
|
244 best, dist, "><"[fSide < 0], rLoc.fX, rLoc.fY, dxy.fX, dxy.fY); |
|
245 #endif |
|
246 if (best > dist) { |
|
247 flip = true; |
|
248 break; |
|
249 } |
|
250 } |
|
251 if (flip) { |
|
252 leftLessThanRight = !leftLessThanRight; |
|
253 } |
|
254 return COMPARE_RESULT("15 leftLessThanRight", leftLessThanRight); |
|
255 } |
|
256 |
|
257 bool SkOpAngle::isHorizontal() const { |
|
258 return dy() == 0 && fSegment->verb() == SkPath::kLine_Verb; |
|
259 } |
|
260 |
|
261 // lengthen cannot cross opposite angle |
|
262 bool SkOpAngle::lengthen(const SkOpAngle& opp) { |
|
263 if (fSegment->other(fEnd) == opp.fSegment) { |
|
264 return false; |
|
265 } |
|
266 // FIXME: make this a while loop instead and make it as large as possible? |
|
267 int newEnd = fEnd; |
|
268 if (fStart < fEnd ? ++newEnd < fSegment->count() : --newEnd >= 0) { |
|
269 fEnd = newEnd; |
|
270 setSpans(); |
|
271 return true; |
|
272 } |
|
273 return false; |
|
274 } |
|
275 |
|
276 void SkOpAngle::set(const SkOpSegment* segment, int start, int end) { |
|
277 fSegment = segment; |
|
278 fStart = start; |
|
279 fEnd = end; |
|
280 setSpans(); |
|
281 } |
|
282 |
|
283 void SkOpAngle::setSpans() { |
|
284 fUnorderable = fSegment->isTiny(this); |
|
285 fLastMarked = NULL; |
|
286 fUnsortable = false; |
|
287 const SkPoint* pts = fSegment->pts(); |
|
288 if (fSegment->verb() != SkPath::kLine_Verb) { |
|
289 fComputed = fSegment->subDivide(fStart, fEnd, &fCurvePart); |
|
290 fSegment->subDivide(fStart, fStart < fEnd ? fSegment->count() - 1 : 0, &fCurveHalf); |
|
291 } |
|
292 // FIXME: slight errors in subdivision cause sort trouble later on. As an experiment, try |
|
293 // rounding the curve part to float precision here |
|
294 // fCurvePart.round(fSegment->verb()); |
|
295 switch (fSegment->verb()) { |
|
296 case SkPath::kLine_Verb: { |
|
297 SkASSERT(fStart != fEnd); |
|
298 fCurvePart[0].set(pts[fStart > fEnd]); |
|
299 fCurvePart[1].set(pts[fStart < fEnd]); |
|
300 fComputed = false; |
|
301 // OPTIMIZATION: for pure line compares, we never need fTangentPart.c |
|
302 fTangentPart.lineEndPoints(*SkTCast<SkDLine*>(&fCurvePart)); |
|
303 fSide = 0; |
|
304 fSide2 = 0; |
|
305 } break; |
|
306 case SkPath::kQuad_Verb: { |
|
307 fSide2 = -fTangentHalf.quadPart(*SkTCast<SkDQuad*>(&fCurveHalf)); |
|
308 SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart); |
|
309 fTangentPart.quadEndPoints(quad); |
|
310 fSide = -fTangentPart.pointDistance(fCurvePart[2]); // not normalized -- compare sign only |
|
311 if (fComputed && dx() > 0 && approximately_zero(dy())) { |
|
312 SkDCubic origCurve; // can't use segment's curve in place since it may be flipped |
|
313 int last = fSegment->count() - 1; |
|
314 fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve); |
|
315 SkLineParameters origTan; |
|
316 origTan.quadEndPoints(*SkTCast<SkDQuad*>(&origCurve)); |
|
317 if (origTan.dx() <= 0 |
|
318 || (dy() != origTan.dy() && dy() * origTan.dy() <= 0)) { // signs match? |
|
319 fUnorderable = true; |
|
320 return; |
|
321 } |
|
322 } |
|
323 } break; |
|
324 case SkPath::kCubic_Verb: { |
|
325 double startT = fSegment->t(fStart); |
|
326 fSide2 = -fTangentHalf.cubicPart(fCurveHalf); |
|
327 fTangentPart.cubicEndPoints(fCurvePart); |
|
328 double testTs[4]; |
|
329 // OPTIMIZATION: keep inflections precomputed with cubic segment? |
|
330 int testCount = SkDCubic::FindInflections(pts, testTs); |
|
331 double endT = fSegment->t(fEnd); |
|
332 double limitT = endT; |
|
333 int index; |
|
334 for (index = 0; index < testCount; ++index) { |
|
335 if (!between(startT, testTs[index], limitT)) { |
|
336 testTs[index] = -1; |
|
337 } |
|
338 } |
|
339 testTs[testCount++] = startT; |
|
340 testTs[testCount++] = endT; |
|
341 SkTQSort<double>(testTs, &testTs[testCount - 1]); |
|
342 double bestSide = 0; |
|
343 int testCases = (testCount << 1) - 1; |
|
344 index = 0; |
|
345 while (testTs[index] < 0) { |
|
346 ++index; |
|
347 } |
|
348 index <<= 1; |
|
349 for (; index < testCases; ++index) { |
|
350 int testIndex = index >> 1; |
|
351 double testT = testTs[testIndex]; |
|
352 if (index & 1) { |
|
353 testT = (testT + testTs[testIndex + 1]) / 2; |
|
354 } |
|
355 // OPTIMIZE: could avoid call for t == startT, endT |
|
356 SkDPoint pt = dcubic_xy_at_t(pts, testT); |
|
357 double testSide = fTangentPart.pointDistance(pt); |
|
358 if (fabs(bestSide) < fabs(testSide)) { |
|
359 bestSide = testSide; |
|
360 } |
|
361 } |
|
362 fSide = -bestSide; // compare sign only |
|
363 SkASSERT(fSide == 0 || fSide2 != 0); |
|
364 if (fComputed && dx() > 0 && approximately_zero(dy())) { |
|
365 SkDCubic origCurve; // can't use segment's curve in place since it may be flipped |
|
366 int last = fSegment->count() - 1; |
|
367 fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve); |
|
368 SkDCubicPair split = origCurve.chopAt(startT); |
|
369 SkLineParameters splitTan; |
|
370 splitTan.cubicEndPoints(fStart < fEnd ? split.second() : split.first()); |
|
371 if (splitTan.dx() <= 0) { |
|
372 fUnorderable = true; |
|
373 fUnsortable = fSegment->isTiny(this); |
|
374 return; |
|
375 } |
|
376 // if one is < 0 and the other is >= 0 |
|
377 if (dy() * splitTan.dy() < 0) { |
|
378 fUnorderable = true; |
|
379 fUnsortable = fSegment->isTiny(this); |
|
380 return; |
|
381 } |
|
382 } |
|
383 } break; |
|
384 default: |
|
385 SkASSERT(0); |
|
386 } |
|
387 if ((fUnsortable = approximately_zero(dx()) && approximately_zero(dy()))) { |
|
388 return; |
|
389 } |
|
390 if (fSegment->verb() == SkPath::kLine_Verb) { |
|
391 return; |
|
392 } |
|
393 SkASSERT(fStart != fEnd); |
|
394 int smaller = SkMin32(fStart, fEnd); |
|
395 int larger = SkMax32(fStart, fEnd); |
|
396 while (smaller < larger && fSegment->span(smaller).fTiny) { |
|
397 ++smaller; |
|
398 } |
|
399 if (precisely_equal(fSegment->span(smaller).fT, fSegment->span(larger).fT)) { |
|
400 #if DEBUG_UNSORTABLE |
|
401 SkPoint iPt = fSegment->xyAtT(fStart); |
|
402 SkPoint ePt = fSegment->xyAtT(fEnd); |
|
403 SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
|
404 fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
|
405 #endif |
|
406 fUnsortable = true; |
|
407 return; |
|
408 } |
|
409 fUnsortable = fStart < fEnd ? fSegment->span(smaller).fUnsortableStart |
|
410 : fSegment->span(larger).fUnsortableEnd; |
|
411 #if DEBUG_UNSORTABLE |
|
412 if (fUnsortable) { |
|
413 SkPoint iPt = fSegment->xyAtT(smaller); |
|
414 SkPoint ePt = fSegment->xyAtT(larger); |
|
415 SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
|
416 smaller, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
|
417 } |
|
418 #endif |
|
419 return; |
|
420 } |
|
421 |
|
422 #ifdef SK_DEBUG |
|
423 void SkOpAngle::dump() const { |
|
424 const SkOpSpan& spanStart = fSegment->span(fStart); |
|
425 const SkOpSpan& spanEnd = fSegment->span(fEnd); |
|
426 const SkOpSpan& spanMin = fStart < fEnd ? spanStart : spanEnd; |
|
427 SkDebugf("id=%d (%1.9g,%1.9g) start=%d (%1.9g) end=%d (%1.9g) sumWind=", |
|
428 fSegment->debugID(), fSegment->xAtT(fStart), fSegment->yAtT(fStart), |
|
429 fStart, spanStart.fT, fEnd, spanEnd.fT); |
|
430 SkPathOpsDebug::WindingPrintf(spanMin.fWindSum); |
|
431 SkDebugf(" oppWind="); |
|
432 SkPathOpsDebug::WindingPrintf(spanMin.fOppSum), |
|
433 SkDebugf(" done=%d\n", spanMin.fDone); |
|
434 } |
|
435 #endif |