|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 #include "SkIntersections.h" |
|
8 #include "SkLineParameters.h" |
|
9 #include "SkPathOpsCubic.h" |
|
10 #include "SkPathOpsQuad.h" |
|
11 #include "SkPathOpsTriangle.h" |
|
12 |
|
13 // from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html |
|
14 // (currently only used by testing) |
|
15 double SkDQuad::nearestT(const SkDPoint& pt) const { |
|
16 SkDVector pos = fPts[0] - pt; |
|
17 // search points P of bezier curve with PM.(dP / dt) = 0 |
|
18 // a calculus leads to a 3d degree equation : |
|
19 SkDVector A = fPts[1] - fPts[0]; |
|
20 SkDVector B = fPts[2] - fPts[1]; |
|
21 B -= A; |
|
22 double a = B.dot(B); |
|
23 double b = 3 * A.dot(B); |
|
24 double c = 2 * A.dot(A) + pos.dot(B); |
|
25 double d = pos.dot(A); |
|
26 double ts[3]; |
|
27 int roots = SkDCubic::RootsValidT(a, b, c, d, ts); |
|
28 double d0 = pt.distanceSquared(fPts[0]); |
|
29 double d2 = pt.distanceSquared(fPts[2]); |
|
30 double distMin = SkTMin(d0, d2); |
|
31 int bestIndex = -1; |
|
32 for (int index = 0; index < roots; ++index) { |
|
33 SkDPoint onQuad = ptAtT(ts[index]); |
|
34 double dist = pt.distanceSquared(onQuad); |
|
35 if (distMin > dist) { |
|
36 distMin = dist; |
|
37 bestIndex = index; |
|
38 } |
|
39 } |
|
40 if (bestIndex >= 0) { |
|
41 return ts[bestIndex]; |
|
42 } |
|
43 return d0 < d2 ? 0 : 1; |
|
44 } |
|
45 |
|
46 bool SkDQuad::pointInHull(const SkDPoint& pt) const { |
|
47 return ((const SkDTriangle&) fPts).contains(pt); |
|
48 } |
|
49 |
|
50 SkDPoint SkDQuad::top(double startT, double endT) const { |
|
51 SkDQuad sub = subDivide(startT, endT); |
|
52 SkDPoint topPt = sub[0]; |
|
53 if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) { |
|
54 topPt = sub[2]; |
|
55 } |
|
56 if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) { |
|
57 double extremeT; |
|
58 if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) { |
|
59 extremeT = startT + (endT - startT) * extremeT; |
|
60 SkDPoint test = ptAtT(extremeT); |
|
61 if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) { |
|
62 topPt = test; |
|
63 } |
|
64 } |
|
65 } |
|
66 return topPt; |
|
67 } |
|
68 |
|
69 int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { |
|
70 int foundRoots = 0; |
|
71 for (int index = 0; index < realRoots; ++index) { |
|
72 double tValue = s[index]; |
|
73 if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { |
|
74 if (approximately_less_than_zero(tValue)) { |
|
75 tValue = 0; |
|
76 } else if (approximately_greater_than_one(tValue)) { |
|
77 tValue = 1; |
|
78 } |
|
79 for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
|
80 if (approximately_equal(t[idx2], tValue)) { |
|
81 goto nextRoot; |
|
82 } |
|
83 } |
|
84 t[foundRoots++] = tValue; |
|
85 } |
|
86 nextRoot: |
|
87 {} |
|
88 } |
|
89 return foundRoots; |
|
90 } |
|
91 |
|
92 // note: caller expects multiple results to be sorted smaller first |
|
93 // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
|
94 // analysis of the quadratic equation, suggesting why the following looks at |
|
95 // the sign of B -- and further suggesting that the greatest loss of precision |
|
96 // is in b squared less two a c |
|
97 int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { |
|
98 double s[2]; |
|
99 int realRoots = RootsReal(A, B, C, s); |
|
100 int foundRoots = AddValidTs(s, realRoots, t); |
|
101 return foundRoots; |
|
102 } |
|
103 |
|
104 /* |
|
105 Numeric Solutions (5.6) suggests to solve the quadratic by computing |
|
106 Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
|
107 and using the roots |
|
108 t1 = Q / A |
|
109 t2 = C / Q |
|
110 */ |
|
111 // this does not discard real roots <= 0 or >= 1 |
|
112 int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { |
|
113 const double p = B / (2 * A); |
|
114 const double q = C / A; |
|
115 if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { |
|
116 if (approximately_zero(B)) { |
|
117 s[0] = 0; |
|
118 return C == 0; |
|
119 } |
|
120 s[0] = -C / B; |
|
121 return 1; |
|
122 } |
|
123 /* normal form: x^2 + px + q = 0 */ |
|
124 const double p2 = p * p; |
|
125 if (!AlmostDequalUlps(p2, q) && p2 < q) { |
|
126 return 0; |
|
127 } |
|
128 double sqrt_D = 0; |
|
129 if (p2 > q) { |
|
130 sqrt_D = sqrt(p2 - q); |
|
131 } |
|
132 s[0] = sqrt_D - p; |
|
133 s[1] = -sqrt_D - p; |
|
134 return 1 + !AlmostDequalUlps(s[0], s[1]); |
|
135 } |
|
136 |
|
137 bool SkDQuad::isLinear(int startIndex, int endIndex) const { |
|
138 SkLineParameters lineParameters; |
|
139 lineParameters.quadEndPoints(*this, startIndex, endIndex); |
|
140 // FIXME: maybe it's possible to avoid this and compare non-normalized |
|
141 lineParameters.normalize(); |
|
142 double distance = lineParameters.controlPtDistance(*this); |
|
143 return approximately_zero(distance); |
|
144 } |
|
145 |
|
146 SkDCubic SkDQuad::toCubic() const { |
|
147 SkDCubic cubic; |
|
148 cubic[0] = fPts[0]; |
|
149 cubic[2] = fPts[1]; |
|
150 cubic[3] = fPts[2]; |
|
151 cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3; |
|
152 cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3; |
|
153 cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3; |
|
154 cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3; |
|
155 return cubic; |
|
156 } |
|
157 |
|
158 SkDVector SkDQuad::dxdyAtT(double t) const { |
|
159 double a = t - 1; |
|
160 double b = 1 - 2 * t; |
|
161 double c = t; |
|
162 SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
|
163 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
|
164 return result; |
|
165 } |
|
166 |
|
167 // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? |
|
168 SkDPoint SkDQuad::ptAtT(double t) const { |
|
169 if (0 == t) { |
|
170 return fPts[0]; |
|
171 } |
|
172 if (1 == t) { |
|
173 return fPts[2]; |
|
174 } |
|
175 double one_t = 1 - t; |
|
176 double a = one_t * one_t; |
|
177 double b = 2 * one_t * t; |
|
178 double c = t * t; |
|
179 SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
|
180 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
|
181 return result; |
|
182 } |
|
183 |
|
184 /* |
|
185 Given a quadratic q, t1, and t2, find a small quadratic segment. |
|
186 |
|
187 The new quadratic is defined by A, B, and C, where |
|
188 A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 |
|
189 C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 |
|
190 |
|
191 To find B, compute the point halfway between t1 and t2: |
|
192 |
|
193 q(at (t1 + t2)/2) == D |
|
194 |
|
195 Next, compute where D must be if we know the value of B: |
|
196 |
|
197 _12 = A/2 + B/2 |
|
198 12_ = B/2 + C/2 |
|
199 123 = A/4 + B/2 + C/4 |
|
200 = D |
|
201 |
|
202 Group the known values on one side: |
|
203 |
|
204 B = D*2 - A/2 - C/2 |
|
205 */ |
|
206 |
|
207 static double interp_quad_coords(const double* src, double t) { |
|
208 double ab = SkDInterp(src[0], src[2], t); |
|
209 double bc = SkDInterp(src[2], src[4], t); |
|
210 double abc = SkDInterp(ab, bc, t); |
|
211 return abc; |
|
212 } |
|
213 |
|
214 bool SkDQuad::monotonicInY() const { |
|
215 return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); |
|
216 } |
|
217 |
|
218 SkDQuad SkDQuad::subDivide(double t1, double t2) const { |
|
219 SkDQuad dst; |
|
220 double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); |
|
221 double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); |
|
222 double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); |
|
223 double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); |
|
224 double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); |
|
225 double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); |
|
226 /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2; |
|
227 /* by = */ dst[1].fY = 2*dy - (ay + cy)/2; |
|
228 return dst; |
|
229 } |
|
230 |
|
231 void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { |
|
232 if (fPts[endIndex].fX == fPts[1].fX) { |
|
233 dstPt->fX = fPts[endIndex].fX; |
|
234 } |
|
235 if (fPts[endIndex].fY == fPts[1].fY) { |
|
236 dstPt->fY = fPts[endIndex].fY; |
|
237 } |
|
238 } |
|
239 |
|
240 SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { |
|
241 SkASSERT(t1 != t2); |
|
242 SkDPoint b; |
|
243 #if 0 |
|
244 // this approach assumes that the control point computed directly is accurate enough |
|
245 double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); |
|
246 double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); |
|
247 b.fX = 2 * dx - (a.fX + c.fX) / 2; |
|
248 b.fY = 2 * dy - (a.fY + c.fY) / 2; |
|
249 #else |
|
250 SkDQuad sub = subDivide(t1, t2); |
|
251 SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; |
|
252 SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; |
|
253 SkIntersections i; |
|
254 i.intersectRay(b0, b1); |
|
255 if (i.used() == 1) { |
|
256 b = i.pt(0); |
|
257 } else { |
|
258 SkASSERT(i.used() == 2 || i.used() == 0); |
|
259 b = SkDPoint::Mid(b0[1], b1[1]); |
|
260 } |
|
261 #endif |
|
262 if (t1 == 0 || t2 == 0) { |
|
263 align(0, &b); |
|
264 } |
|
265 if (t1 == 1 || t2 == 1) { |
|
266 align(2, &b); |
|
267 } |
|
268 if (precisely_subdivide_equal(b.fX, a.fX)) { |
|
269 b.fX = a.fX; |
|
270 } else if (precisely_subdivide_equal(b.fX, c.fX)) { |
|
271 b.fX = c.fX; |
|
272 } |
|
273 if (precisely_subdivide_equal(b.fY, a.fY)) { |
|
274 b.fY = a.fY; |
|
275 } else if (precisely_subdivide_equal(b.fY, c.fY)) { |
|
276 b.fY = c.fY; |
|
277 } |
|
278 return b; |
|
279 } |
|
280 |
|
281 /* classic one t subdivision */ |
|
282 static void interp_quad_coords(const double* src, double* dst, double t) { |
|
283 double ab = SkDInterp(src[0], src[2], t); |
|
284 double bc = SkDInterp(src[2], src[4], t); |
|
285 dst[0] = src[0]; |
|
286 dst[2] = ab; |
|
287 dst[4] = SkDInterp(ab, bc, t); |
|
288 dst[6] = bc; |
|
289 dst[8] = src[4]; |
|
290 } |
|
291 |
|
292 SkDQuadPair SkDQuad::chopAt(double t) const |
|
293 { |
|
294 SkDQuadPair dst; |
|
295 interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
|
296 interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
|
297 return dst; |
|
298 } |
|
299 |
|
300 static int valid_unit_divide(double numer, double denom, double* ratio) |
|
301 { |
|
302 if (numer < 0) { |
|
303 numer = -numer; |
|
304 denom = -denom; |
|
305 } |
|
306 if (denom == 0 || numer == 0 || numer >= denom) { |
|
307 return 0; |
|
308 } |
|
309 double r = numer / denom; |
|
310 if (r == 0) { // catch underflow if numer <<<< denom |
|
311 return 0; |
|
312 } |
|
313 *ratio = r; |
|
314 return 1; |
|
315 } |
|
316 |
|
317 /** Quad'(t) = At + B, where |
|
318 A = 2(a - 2b + c) |
|
319 B = 2(b - a) |
|
320 Solve for t, only if it fits between 0 < t < 1 |
|
321 */ |
|
322 int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) { |
|
323 /* At + B == 0 |
|
324 t = -B / A |
|
325 */ |
|
326 return valid_unit_divide(a - b, a - b - b + c, tValue); |
|
327 } |
|
328 |
|
329 /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) |
|
330 * |
|
331 * a = A - 2*B + C |
|
332 * b = 2*B - 2*C |
|
333 * c = C |
|
334 */ |
|
335 void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { |
|
336 *a = quad[0]; // a = A |
|
337 *b = 2 * quad[2]; // b = 2*B |
|
338 *c = quad[4]; // c = C |
|
339 *b -= *c; // b = 2*B - C |
|
340 *a -= *b; // a = A - 2*B + C |
|
341 *b -= *c; // b = 2*B - 2*C |
|
342 } |
|
343 |
|
344 #ifdef SK_DEBUG |
|
345 void SkDQuad::dump() { |
|
346 SkDebugf("{{"); |
|
347 int index = 0; |
|
348 do { |
|
349 fPts[index].dump(); |
|
350 SkDebugf(", "); |
|
351 } while (++index < 2); |
|
352 fPts[index].dump(); |
|
353 SkDebugf("}}\n"); |
|
354 } |
|
355 #endif |