|
1 |
|
2 /* |
|
3 * Copyright 2011 Google Inc. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include "SkPDFShader.h" |
|
11 |
|
12 #include "SkData.h" |
|
13 #include "SkPDFCatalog.h" |
|
14 #include "SkPDFDevice.h" |
|
15 #include "SkPDFFormXObject.h" |
|
16 #include "SkPDFGraphicState.h" |
|
17 #include "SkPDFResourceDict.h" |
|
18 #include "SkPDFUtils.h" |
|
19 #include "SkScalar.h" |
|
20 #include "SkStream.h" |
|
21 #include "SkTemplates.h" |
|
22 #include "SkThread.h" |
|
23 #include "SkTSet.h" |
|
24 #include "SkTypes.h" |
|
25 |
|
26 static bool inverseTransformBBox(const SkMatrix& matrix, SkRect* bbox) { |
|
27 SkMatrix inverse; |
|
28 if (!matrix.invert(&inverse)) { |
|
29 return false; |
|
30 } |
|
31 inverse.mapRect(bbox); |
|
32 return true; |
|
33 } |
|
34 |
|
35 static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) { |
|
36 SkVector vec = pts[1] - pts[0]; |
|
37 SkScalar mag = vec.length(); |
|
38 SkScalar inv = mag ? SkScalarInvert(mag) : 0; |
|
39 |
|
40 vec.scale(inv); |
|
41 matrix->setSinCos(vec.fY, vec.fX); |
|
42 matrix->preScale(mag, mag); |
|
43 matrix->postTranslate(pts[0].fX, pts[0].fY); |
|
44 } |
|
45 |
|
46 /* Assumes t + startOffset is on the stack and does a linear interpolation on t |
|
47 between startOffset and endOffset from prevColor to curColor (for each color |
|
48 component), leaving the result in component order on the stack. It assumes |
|
49 there are always 3 components per color. |
|
50 @param range endOffset - startOffset |
|
51 @param curColor[components] The current color components. |
|
52 @param prevColor[components] The previous color components. |
|
53 @param result The result ps function. |
|
54 */ |
|
55 static void interpolateColorCode(SkScalar range, SkScalar* curColor, |
|
56 SkScalar* prevColor, SkString* result) { |
|
57 SkASSERT(range != SkIntToScalar(0)); |
|
58 static const int kColorComponents = 3; |
|
59 |
|
60 // Figure out how to scale each color component. |
|
61 SkScalar multiplier[kColorComponents]; |
|
62 for (int i = 0; i < kColorComponents; i++) { |
|
63 multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range); |
|
64 } |
|
65 |
|
66 // Calculate when we no longer need to keep a copy of the input parameter t. |
|
67 // If the last component to use t is i, then dupInput[0..i - 1] = true |
|
68 // and dupInput[i .. components] = false. |
|
69 bool dupInput[kColorComponents]; |
|
70 dupInput[kColorComponents - 1] = false; |
|
71 for (int i = kColorComponents - 2; i >= 0; i--) { |
|
72 dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0; |
|
73 } |
|
74 |
|
75 if (!dupInput[0] && multiplier[0] == 0) { |
|
76 result->append("pop "); |
|
77 } |
|
78 |
|
79 for (int i = 0; i < kColorComponents; i++) { |
|
80 // If the next components needs t and this component will consume a |
|
81 // copy, make another copy. |
|
82 if (dupInput[i] && multiplier[i] != 0) { |
|
83 result->append("dup "); |
|
84 } |
|
85 |
|
86 if (multiplier[i] == 0) { |
|
87 result->appendScalar(prevColor[i]); |
|
88 result->append(" "); |
|
89 } else { |
|
90 if (multiplier[i] != 1) { |
|
91 result->appendScalar(multiplier[i]); |
|
92 result->append(" mul "); |
|
93 } |
|
94 if (prevColor[i] != 0) { |
|
95 result->appendScalar(prevColor[i]); |
|
96 result->append(" add "); |
|
97 } |
|
98 } |
|
99 |
|
100 if (dupInput[i]) { |
|
101 result->append("exch\n"); |
|
102 } |
|
103 } |
|
104 } |
|
105 |
|
106 /* Generate Type 4 function code to map t=[0,1) to the passed gradient, |
|
107 clamping at the edges of the range. The generated code will be of the form: |
|
108 if (t < 0) { |
|
109 return colorData[0][r,g,b]; |
|
110 } else { |
|
111 if (t < info.fColorOffsets[1]) { |
|
112 return linearinterpolation(colorData[0][r,g,b], |
|
113 colorData[1][r,g,b]); |
|
114 } else { |
|
115 if (t < info.fColorOffsets[2]) { |
|
116 return linearinterpolation(colorData[1][r,g,b], |
|
117 colorData[2][r,g,b]); |
|
118 } else { |
|
119 |
|
120 ... } else { |
|
121 return colorData[info.fColorCount - 1][r,g,b]; |
|
122 } |
|
123 ... |
|
124 } |
|
125 } |
|
126 */ |
|
127 static void gradientFunctionCode(const SkShader::GradientInfo& info, |
|
128 SkString* result) { |
|
129 /* We want to linearly interpolate from the previous color to the next. |
|
130 Scale the colors from 0..255 to 0..1 and determine the multipliers |
|
131 for interpolation. |
|
132 C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}. |
|
133 */ |
|
134 static const int kColorComponents = 3; |
|
135 typedef SkScalar ColorTuple[kColorComponents]; |
|
136 SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount); |
|
137 ColorTuple *colorData = colorDataAlloc.get(); |
|
138 const SkScalar scale = SkScalarInvert(SkIntToScalar(255)); |
|
139 for (int i = 0; i < info.fColorCount; i++) { |
|
140 colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale); |
|
141 colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale); |
|
142 colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale); |
|
143 } |
|
144 |
|
145 // Clamp the initial color. |
|
146 result->append("dup 0 le {pop "); |
|
147 result->appendScalar(colorData[0][0]); |
|
148 result->append(" "); |
|
149 result->appendScalar(colorData[0][1]); |
|
150 result->append(" "); |
|
151 result->appendScalar(colorData[0][2]); |
|
152 result->append(" }\n"); |
|
153 |
|
154 // The gradient colors. |
|
155 int gradients = 0; |
|
156 for (int i = 1 ; i < info.fColorCount; i++) { |
|
157 if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) { |
|
158 continue; |
|
159 } |
|
160 gradients++; |
|
161 |
|
162 result->append("{dup "); |
|
163 result->appendScalar(info.fColorOffsets[i]); |
|
164 result->append(" le {"); |
|
165 if (info.fColorOffsets[i - 1] != 0) { |
|
166 result->appendScalar(info.fColorOffsets[i - 1]); |
|
167 result->append(" sub\n"); |
|
168 } |
|
169 |
|
170 interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1], |
|
171 colorData[i], colorData[i - 1], result); |
|
172 result->append("}\n"); |
|
173 } |
|
174 |
|
175 // Clamp the final color. |
|
176 result->append("{pop "); |
|
177 result->appendScalar(colorData[info.fColorCount - 1][0]); |
|
178 result->append(" "); |
|
179 result->appendScalar(colorData[info.fColorCount - 1][1]); |
|
180 result->append(" "); |
|
181 result->appendScalar(colorData[info.fColorCount - 1][2]); |
|
182 |
|
183 for (int i = 0 ; i < gradients + 1; i++) { |
|
184 result->append("} ifelse\n"); |
|
185 } |
|
186 } |
|
187 |
|
188 /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */ |
|
189 static void tileModeCode(SkShader::TileMode mode, SkString* result) { |
|
190 if (mode == SkShader::kRepeat_TileMode) { |
|
191 result->append("dup truncate sub\n"); // Get the fractional part. |
|
192 result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1) |
|
193 return; |
|
194 } |
|
195 |
|
196 if (mode == SkShader::kMirror_TileMode) { |
|
197 // Map t mod 2 into [0, 1, 1, 0]. |
|
198 // Code Stack |
|
199 result->append("abs " // Map negative to positive. |
|
200 "dup " // t.s t.s |
|
201 "truncate " // t.s t |
|
202 "dup " // t.s t t |
|
203 "cvi " // t.s t T |
|
204 "2 mod " // t.s t (i mod 2) |
|
205 "1 eq " // t.s t true|false |
|
206 "3 1 roll " // true|false t.s t |
|
207 "sub " // true|false 0.s |
|
208 "exch " // 0.s true|false |
|
209 "{1 exch sub} if\n"); // 1 - 0.s|0.s |
|
210 } |
|
211 } |
|
212 |
|
213 /** |
|
214 * Returns PS function code that applies inverse perspective |
|
215 * to a x, y point. |
|
216 * The function assumes that the stack has at least two elements, |
|
217 * and that the top 2 elements are numeric values. |
|
218 * After executing this code on a PS stack, the last 2 elements are updated |
|
219 * while the rest of the stack is preserved intact. |
|
220 * inversePerspectiveMatrix is the inverse perspective matrix. |
|
221 */ |
|
222 static SkString apply_perspective_to_coordinates( |
|
223 const SkMatrix& inversePerspectiveMatrix) { |
|
224 SkString code; |
|
225 if (!inversePerspectiveMatrix.hasPerspective()) { |
|
226 return code; |
|
227 } |
|
228 |
|
229 // Perspective matrix should be: |
|
230 // 1 0 0 |
|
231 // 0 1 0 |
|
232 // p0 p1 p2 |
|
233 |
|
234 const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0]; |
|
235 const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1]; |
|
236 const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2]; |
|
237 |
|
238 // y = y / (p2 + p0 x + p1 y) |
|
239 // x = x / (p2 + p0 x + p1 y) |
|
240 |
|
241 // Input on stack: x y |
|
242 code.append(" dup "); // x y y |
|
243 code.appendScalar(p1); // x y y p1 |
|
244 code.append(" mul " // x y y*p1 |
|
245 " 2 index "); // x y y*p1 x |
|
246 code.appendScalar(p0); // x y y p1 x p0 |
|
247 code.append(" mul "); // x y y*p1 x*p0 |
|
248 code.appendScalar(p2); // x y y p1 x*p0 p2 |
|
249 code.append(" add " // x y y*p1 x*p0+p2 |
|
250 "add " // x y y*p1+x*p0+p2 |
|
251 "3 1 roll " // y*p1+x*p0+p2 x y |
|
252 "2 index " // z x y y*p1+x*p0+p2 |
|
253 "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2) |
|
254 "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x |
|
255 "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2 |
|
256 "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2) |
|
257 "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2) |
|
258 return code; |
|
259 } |
|
260 |
|
261 static SkString linearCode(const SkShader::GradientInfo& info, |
|
262 const SkMatrix& perspectiveRemover) { |
|
263 SkString function("{"); |
|
264 |
|
265 function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
|
266 |
|
267 function.append("pop\n"); // Just ditch the y value. |
|
268 tileModeCode(info.fTileMode, &function); |
|
269 gradientFunctionCode(info, &function); |
|
270 function.append("}"); |
|
271 return function; |
|
272 } |
|
273 |
|
274 static SkString radialCode(const SkShader::GradientInfo& info, |
|
275 const SkMatrix& perspectiveRemover) { |
|
276 SkString function("{"); |
|
277 |
|
278 function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
|
279 |
|
280 // Find the distance from the origin. |
|
281 function.append("dup " // x y y |
|
282 "mul " // x y^2 |
|
283 "exch " // y^2 x |
|
284 "dup " // y^2 x x |
|
285 "mul " // y^2 x^2 |
|
286 "add " // y^2+x^2 |
|
287 "sqrt\n"); // sqrt(y^2+x^2) |
|
288 |
|
289 tileModeCode(info.fTileMode, &function); |
|
290 gradientFunctionCode(info, &function); |
|
291 function.append("}"); |
|
292 return function; |
|
293 } |
|
294 |
|
295 /* The math here is all based on the description in Two_Point_Radial_Gradient, |
|
296 with one simplification, the coordinate space has been scaled so that |
|
297 Dr = 1. This means we don't need to scale the entire equation by 1/Dr^2. |
|
298 */ |
|
299 static SkString twoPointRadialCode(const SkShader::GradientInfo& info, |
|
300 const SkMatrix& perspectiveRemover) { |
|
301 SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX; |
|
302 SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY; |
|
303 SkScalar sr = info.fRadius[0]; |
|
304 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1; |
|
305 bool posRoot = info.fRadius[1] > info.fRadius[0]; |
|
306 |
|
307 // We start with a stack of (x y), copy it and then consume one copy in |
|
308 // order to calculate b and the other to calculate c. |
|
309 SkString function("{"); |
|
310 |
|
311 function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
|
312 |
|
313 function.append("2 copy "); |
|
314 |
|
315 // Calculate -b and b^2. |
|
316 function.appendScalar(dy); |
|
317 function.append(" mul exch "); |
|
318 function.appendScalar(dx); |
|
319 function.append(" mul add "); |
|
320 function.appendScalar(sr); |
|
321 function.append(" sub 2 mul neg dup dup mul\n"); |
|
322 |
|
323 // Calculate c |
|
324 function.append("4 2 roll dup mul exch dup mul add "); |
|
325 function.appendScalar(SkScalarMul(sr, sr)); |
|
326 function.append(" sub\n"); |
|
327 |
|
328 // Calculate the determinate |
|
329 function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); |
|
330 function.append(" mul sub abs sqrt\n"); |
|
331 |
|
332 // And then the final value of t. |
|
333 if (posRoot) { |
|
334 function.append("sub "); |
|
335 } else { |
|
336 function.append("add "); |
|
337 } |
|
338 function.appendScalar(SkScalarMul(SkIntToScalar(2), a)); |
|
339 function.append(" div\n"); |
|
340 |
|
341 tileModeCode(info.fTileMode, &function); |
|
342 gradientFunctionCode(info, &function); |
|
343 function.append("}"); |
|
344 return function; |
|
345 } |
|
346 |
|
347 /* Conical gradient shader, based on the Canvas spec for radial gradients |
|
348 See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient |
|
349 */ |
|
350 static SkString twoPointConicalCode(const SkShader::GradientInfo& info, |
|
351 const SkMatrix& perspectiveRemover) { |
|
352 SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX; |
|
353 SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY; |
|
354 SkScalar r0 = info.fRadius[0]; |
|
355 SkScalar dr = info.fRadius[1] - info.fRadius[0]; |
|
356 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - |
|
357 SkScalarMul(dr, dr); |
|
358 |
|
359 // First compute t, if the pixel falls outside the cone, then we'll end |
|
360 // with 'false' on the stack, otherwise we'll push 'true' with t below it |
|
361 |
|
362 // We start with a stack of (x y), copy it and then consume one copy in |
|
363 // order to calculate b and the other to calculate c. |
|
364 SkString function("{"); |
|
365 |
|
366 function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
|
367 |
|
368 function.append("2 copy "); |
|
369 |
|
370 // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr). |
|
371 function.appendScalar(dy); |
|
372 function.append(" mul exch "); |
|
373 function.appendScalar(dx); |
|
374 function.append(" mul add "); |
|
375 function.appendScalar(SkScalarMul(r0, dr)); |
|
376 function.append(" add -2 mul dup dup mul\n"); |
|
377 |
|
378 // c = x^2 + y^2 + radius0^2 |
|
379 function.append("4 2 roll dup mul exch dup mul add "); |
|
380 function.appendScalar(SkScalarMul(r0, r0)); |
|
381 function.append(" sub dup 4 1 roll\n"); |
|
382 |
|
383 // Contents of the stack at this point: c, b, b^2, c |
|
384 |
|
385 // if a = 0, then we collapse to a simpler linear case |
|
386 if (a == 0) { |
|
387 |
|
388 // t = -c/b |
|
389 function.append("pop pop div neg dup "); |
|
390 |
|
391 // compute radius(t) |
|
392 function.appendScalar(dr); |
|
393 function.append(" mul "); |
|
394 function.appendScalar(r0); |
|
395 function.append(" add\n"); |
|
396 |
|
397 // if r(t) < 0, then it's outside the cone |
|
398 function.append("0 lt {pop false} {true} ifelse\n"); |
|
399 |
|
400 } else { |
|
401 |
|
402 // quadratic case: the Canvas spec wants the largest |
|
403 // root t for which radius(t) > 0 |
|
404 |
|
405 // compute the discriminant (b^2 - 4ac) |
|
406 function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); |
|
407 function.append(" mul sub dup\n"); |
|
408 |
|
409 // if d >= 0, proceed |
|
410 function.append("0 ge {\n"); |
|
411 |
|
412 // an intermediate value we'll use to compute the roots: |
|
413 // q = -0.5 * (b +/- sqrt(d)) |
|
414 function.append("sqrt exch dup 0 lt {exch -1 mul} if"); |
|
415 function.append(" add -0.5 mul dup\n"); |
|
416 |
|
417 // first root = q / a |
|
418 function.appendScalar(a); |
|
419 function.append(" div\n"); |
|
420 |
|
421 // second root = c / q |
|
422 function.append("3 1 roll div\n"); |
|
423 |
|
424 // put the larger root on top of the stack |
|
425 function.append("2 copy gt {exch} if\n"); |
|
426 |
|
427 // compute radius(t) for larger root |
|
428 function.append("dup "); |
|
429 function.appendScalar(dr); |
|
430 function.append(" mul "); |
|
431 function.appendScalar(r0); |
|
432 function.append(" add\n"); |
|
433 |
|
434 // if r(t) > 0, we have our t, pop off the smaller root and we're done |
|
435 function.append(" 0 gt {exch pop true}\n"); |
|
436 |
|
437 // otherwise, throw out the larger one and try the smaller root |
|
438 function.append("{pop dup\n"); |
|
439 function.appendScalar(dr); |
|
440 function.append(" mul "); |
|
441 function.appendScalar(r0); |
|
442 function.append(" add\n"); |
|
443 |
|
444 // if r(t) < 0, push false, otherwise the smaller root is our t |
|
445 function.append("0 le {pop false} {true} ifelse\n"); |
|
446 function.append("} ifelse\n"); |
|
447 |
|
448 // d < 0, clear the stack and push false |
|
449 function.append("} {pop pop pop false} ifelse\n"); |
|
450 } |
|
451 |
|
452 // if the pixel is in the cone, proceed to compute a color |
|
453 function.append("{"); |
|
454 tileModeCode(info.fTileMode, &function); |
|
455 gradientFunctionCode(info, &function); |
|
456 |
|
457 // otherwise, just write black |
|
458 function.append("} {0 0 0} ifelse }"); |
|
459 |
|
460 return function; |
|
461 } |
|
462 |
|
463 static SkString sweepCode(const SkShader::GradientInfo& info, |
|
464 const SkMatrix& perspectiveRemover) { |
|
465 SkString function("{exch atan 360 div\n"); |
|
466 tileModeCode(info.fTileMode, &function); |
|
467 gradientFunctionCode(info, &function); |
|
468 function.append("}"); |
|
469 return function; |
|
470 } |
|
471 |
|
472 class SkPDFShader::State { |
|
473 public: |
|
474 SkShader::GradientType fType; |
|
475 SkShader::GradientInfo fInfo; |
|
476 SkAutoFree fColorData; // This provides storage for arrays in fInfo. |
|
477 SkMatrix fCanvasTransform; |
|
478 SkMatrix fShaderTransform; |
|
479 SkIRect fBBox; |
|
480 |
|
481 SkBitmap fImage; |
|
482 uint32_t fPixelGeneration; |
|
483 SkShader::TileMode fImageTileModes[2]; |
|
484 |
|
485 State(const SkShader& shader, const SkMatrix& canvasTransform, |
|
486 const SkIRect& bbox); |
|
487 |
|
488 bool operator==(const State& b) const; |
|
489 |
|
490 SkPDFShader::State* CreateAlphaToLuminosityState() const; |
|
491 SkPDFShader::State* CreateOpaqueState() const; |
|
492 |
|
493 bool GradientHasAlpha() const; |
|
494 |
|
495 private: |
|
496 State(const State& other); |
|
497 State operator=(const State& rhs); |
|
498 void AllocateGradientInfoStorage(); |
|
499 }; |
|
500 |
|
501 class SkPDFFunctionShader : public SkPDFDict, public SkPDFShader { |
|
502 SK_DECLARE_INST_COUNT(SkPDFFunctionShader) |
|
503 public: |
|
504 explicit SkPDFFunctionShader(SkPDFShader::State* state); |
|
505 virtual ~SkPDFFunctionShader() { |
|
506 if (isValid()) { |
|
507 RemoveShader(this); |
|
508 } |
|
509 fResources.unrefAll(); |
|
510 } |
|
511 |
|
512 virtual bool isValid() { return fResources.count() > 0; } |
|
513 |
|
514 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, |
|
515 SkTSet<SkPDFObject*>* newResourceObjects) { |
|
516 GetResourcesHelper(&fResources, |
|
517 knownResourceObjects, |
|
518 newResourceObjects); |
|
519 } |
|
520 |
|
521 private: |
|
522 static SkPDFObject* RangeObject(); |
|
523 |
|
524 SkTDArray<SkPDFObject*> fResources; |
|
525 SkAutoTDelete<const SkPDFShader::State> fState; |
|
526 |
|
527 SkPDFStream* makePSFunction(const SkString& psCode, SkPDFArray* domain); |
|
528 typedef SkPDFDict INHERITED; |
|
529 }; |
|
530 |
|
531 /** |
|
532 * A shader for PDF gradients. This encapsulates the function shader |
|
533 * inside a tiling pattern while providing a common pattern interface. |
|
534 * The encapsulation allows the use of a SMask for transparency gradients. |
|
535 */ |
|
536 class SkPDFAlphaFunctionShader : public SkPDFStream, public SkPDFShader { |
|
537 public: |
|
538 explicit SkPDFAlphaFunctionShader(SkPDFShader::State* state); |
|
539 virtual ~SkPDFAlphaFunctionShader() { |
|
540 if (isValid()) { |
|
541 RemoveShader(this); |
|
542 } |
|
543 } |
|
544 |
|
545 virtual bool isValid() { |
|
546 return fColorShader.get() != NULL; |
|
547 } |
|
548 |
|
549 private: |
|
550 SkAutoTDelete<const SkPDFShader::State> fState; |
|
551 |
|
552 SkPDFGraphicState* CreateSMaskGraphicState(); |
|
553 |
|
554 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, |
|
555 SkTSet<SkPDFObject*>* newResourceObjects) { |
|
556 fResourceDict->getReferencedResources(knownResourceObjects, |
|
557 newResourceObjects, |
|
558 true); |
|
559 } |
|
560 |
|
561 SkAutoTUnref<SkPDFObject> fColorShader; |
|
562 SkAutoTUnref<SkPDFResourceDict> fResourceDict; |
|
563 }; |
|
564 |
|
565 class SkPDFImageShader : public SkPDFStream, public SkPDFShader { |
|
566 public: |
|
567 explicit SkPDFImageShader(SkPDFShader::State* state); |
|
568 virtual ~SkPDFImageShader() { |
|
569 if (isValid()) { |
|
570 RemoveShader(this); |
|
571 } |
|
572 fResources.unrefAll(); |
|
573 } |
|
574 |
|
575 virtual bool isValid() { return size() > 0; } |
|
576 |
|
577 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, |
|
578 SkTSet<SkPDFObject*>* newResourceObjects) { |
|
579 GetResourcesHelper(&fResources.toArray(), |
|
580 knownResourceObjects, |
|
581 newResourceObjects); |
|
582 } |
|
583 |
|
584 private: |
|
585 SkTSet<SkPDFObject*> fResources; |
|
586 SkAutoTDelete<const SkPDFShader::State> fState; |
|
587 }; |
|
588 |
|
589 SkPDFShader::SkPDFShader() {} |
|
590 |
|
591 // static |
|
592 SkPDFObject* SkPDFShader::GetPDFShaderByState(State* inState) { |
|
593 SkPDFObject* result; |
|
594 |
|
595 SkAutoTDelete<State> shaderState(inState); |
|
596 if (shaderState.get()->fType == SkShader::kNone_GradientType && |
|
597 shaderState.get()->fImage.isNull()) { |
|
598 // TODO(vandebo) This drops SKComposeShader on the floor. We could |
|
599 // handle compose shader by pulling things up to a layer, drawing with |
|
600 // the first shader, applying the xfer mode and drawing again with the |
|
601 // second shader, then applying the layer to the original drawing. |
|
602 return NULL; |
|
603 } |
|
604 |
|
605 ShaderCanonicalEntry entry(NULL, shaderState.get()); |
|
606 int index = CanonicalShaders().find(entry); |
|
607 if (index >= 0) { |
|
608 result = CanonicalShaders()[index].fPDFShader; |
|
609 result->ref(); |
|
610 return result; |
|
611 } |
|
612 |
|
613 bool valid = false; |
|
614 // The PDFShader takes ownership of the shaderSate. |
|
615 if (shaderState.get()->fType == SkShader::kNone_GradientType) { |
|
616 SkPDFImageShader* imageShader = |
|
617 new SkPDFImageShader(shaderState.detach()); |
|
618 valid = imageShader->isValid(); |
|
619 result = imageShader; |
|
620 } else { |
|
621 if (shaderState.get()->GradientHasAlpha()) { |
|
622 SkPDFAlphaFunctionShader* gradientShader = |
|
623 SkNEW_ARGS(SkPDFAlphaFunctionShader, (shaderState.detach())); |
|
624 valid = gradientShader->isValid(); |
|
625 result = gradientShader; |
|
626 } else { |
|
627 SkPDFFunctionShader* functionShader = |
|
628 SkNEW_ARGS(SkPDFFunctionShader, (shaderState.detach())); |
|
629 valid = functionShader->isValid(); |
|
630 result = functionShader; |
|
631 } |
|
632 } |
|
633 if (!valid) { |
|
634 delete result; |
|
635 return NULL; |
|
636 } |
|
637 entry.fPDFShader = result; |
|
638 CanonicalShaders().push(entry); |
|
639 return result; // return the reference that came from new. |
|
640 } |
|
641 |
|
642 // static |
|
643 void SkPDFShader::RemoveShader(SkPDFObject* shader) { |
|
644 SkAutoMutexAcquire lock(CanonicalShadersMutex()); |
|
645 ShaderCanonicalEntry entry(shader, NULL); |
|
646 int index = CanonicalShaders().find(entry); |
|
647 SkASSERT(index >= 0); |
|
648 CanonicalShaders().removeShuffle(index); |
|
649 } |
|
650 |
|
651 // static |
|
652 SkPDFObject* SkPDFShader::GetPDFShader(const SkShader& shader, |
|
653 const SkMatrix& matrix, |
|
654 const SkIRect& surfaceBBox) { |
|
655 SkAutoMutexAcquire lock(CanonicalShadersMutex()); |
|
656 return GetPDFShaderByState( |
|
657 SkNEW_ARGS(State, (shader, matrix, surfaceBBox))); |
|
658 } |
|
659 |
|
660 // static |
|
661 SkTDArray<SkPDFShader::ShaderCanonicalEntry>& SkPDFShader::CanonicalShaders() { |
|
662 // This initialization is only thread safe with gcc. |
|
663 static SkTDArray<ShaderCanonicalEntry> gCanonicalShaders; |
|
664 return gCanonicalShaders; |
|
665 } |
|
666 |
|
667 // static |
|
668 SkBaseMutex& SkPDFShader::CanonicalShadersMutex() { |
|
669 // This initialization is only thread safe with gcc or when |
|
670 // POD-style mutex initialization is used. |
|
671 SK_DECLARE_STATIC_MUTEX(gCanonicalShadersMutex); |
|
672 return gCanonicalShadersMutex; |
|
673 } |
|
674 |
|
675 // static |
|
676 SkPDFObject* SkPDFFunctionShader::RangeObject() { |
|
677 // This initialization is only thread safe with gcc. |
|
678 static SkPDFArray* range = NULL; |
|
679 // This method is only used with CanonicalShadersMutex, so it's safe to |
|
680 // populate domain. |
|
681 if (range == NULL) { |
|
682 range = new SkPDFArray; |
|
683 range->reserve(6); |
|
684 range->appendInt(0); |
|
685 range->appendInt(1); |
|
686 range->appendInt(0); |
|
687 range->appendInt(1); |
|
688 range->appendInt(0); |
|
689 range->appendInt(1); |
|
690 } |
|
691 return range; |
|
692 } |
|
693 |
|
694 static SkPDFResourceDict* get_gradient_resource_dict( |
|
695 SkPDFObject* functionShader, |
|
696 SkPDFObject* gState) { |
|
697 SkPDFResourceDict* dict = new SkPDFResourceDict(); |
|
698 |
|
699 if (functionShader != NULL) { |
|
700 dict->insertResourceAsReference( |
|
701 SkPDFResourceDict::kPattern_ResourceType, 0, functionShader); |
|
702 } |
|
703 if (gState != NULL) { |
|
704 dict->insertResourceAsReference( |
|
705 SkPDFResourceDict::kExtGState_ResourceType, 0, gState); |
|
706 } |
|
707 |
|
708 return dict; |
|
709 } |
|
710 |
|
711 static void populate_tiling_pattern_dict(SkPDFDict* pattern, |
|
712 SkRect& bbox, SkPDFDict* resources, |
|
713 const SkMatrix& matrix) { |
|
714 const int kTiling_PatternType = 1; |
|
715 const int kColoredTilingPattern_PaintType = 1; |
|
716 const int kConstantSpacing_TilingType = 1; |
|
717 |
|
718 pattern->insertName("Type", "Pattern"); |
|
719 pattern->insertInt("PatternType", kTiling_PatternType); |
|
720 pattern->insertInt("PaintType", kColoredTilingPattern_PaintType); |
|
721 pattern->insertInt("TilingType", kConstantSpacing_TilingType); |
|
722 pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref(); |
|
723 pattern->insertScalar("XStep", bbox.width()); |
|
724 pattern->insertScalar("YStep", bbox.height()); |
|
725 pattern->insert("Resources", resources); |
|
726 if (!matrix.isIdentity()) { |
|
727 pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref(); |
|
728 } |
|
729 } |
|
730 |
|
731 /** |
|
732 * Creates a content stream which fills the pattern P0 across bounds. |
|
733 * @param gsIndex A graphics state resource index to apply, or <0 if no |
|
734 * graphics state to apply. |
|
735 */ |
|
736 static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) { |
|
737 SkDynamicMemoryWStream content; |
|
738 if (gsIndex >= 0) { |
|
739 SkPDFUtils::ApplyGraphicState(gsIndex, &content); |
|
740 } |
|
741 SkPDFUtils::ApplyPattern(0, &content); |
|
742 SkPDFUtils::AppendRectangle(bounds, &content); |
|
743 SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType, |
|
744 &content); |
|
745 |
|
746 return content.detachAsStream(); |
|
747 } |
|
748 |
|
749 /** |
|
750 * Creates a ExtGState with the SMask set to the luminosityShader in |
|
751 * luminosity mode. The shader pattern extends to the bbox. |
|
752 */ |
|
753 SkPDFGraphicState* SkPDFAlphaFunctionShader::CreateSMaskGraphicState() { |
|
754 SkRect bbox; |
|
755 bbox.set(fState.get()->fBBox); |
|
756 |
|
757 SkAutoTUnref<SkPDFObject> luminosityShader( |
|
758 SkPDFShader::GetPDFShaderByState( |
|
759 fState->CreateAlphaToLuminosityState())); |
|
760 |
|
761 SkAutoTUnref<SkStream> alphaStream(create_pattern_fill_content(-1, bbox)); |
|
762 |
|
763 SkAutoTUnref<SkPDFResourceDict> |
|
764 resources(get_gradient_resource_dict(luminosityShader, NULL)); |
|
765 |
|
766 SkAutoTUnref<SkPDFFormXObject> alphaMask( |
|
767 new SkPDFFormXObject(alphaStream.get(), bbox, resources.get())); |
|
768 |
|
769 return SkPDFGraphicState::GetSMaskGraphicState( |
|
770 alphaMask.get(), false, |
|
771 SkPDFGraphicState::kLuminosity_SMaskMode); |
|
772 } |
|
773 |
|
774 SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state) |
|
775 : fState(state) { |
|
776 SkRect bbox; |
|
777 bbox.set(fState.get()->fBBox); |
|
778 |
|
779 fColorShader.reset( |
|
780 SkPDFShader::GetPDFShaderByState(state->CreateOpaqueState())); |
|
781 |
|
782 // Create resource dict with alpha graphics state as G0 and |
|
783 // pattern shader as P0, then write content stream. |
|
784 SkAutoTUnref<SkPDFGraphicState> alphaGs(CreateSMaskGraphicState()); |
|
785 fResourceDict.reset( |
|
786 get_gradient_resource_dict(fColorShader.get(), alphaGs.get())); |
|
787 |
|
788 SkAutoTUnref<SkStream> colorStream( |
|
789 create_pattern_fill_content(0, bbox)); |
|
790 setData(colorStream.get()); |
|
791 |
|
792 populate_tiling_pattern_dict(this, bbox, fResourceDict.get(), |
|
793 SkMatrix::I()); |
|
794 } |
|
795 |
|
796 // Finds affine and persp such that in = affine * persp. |
|
797 // but it returns the inverse of perspective matrix. |
|
798 static bool split_perspective(const SkMatrix in, SkMatrix* affine, |
|
799 SkMatrix* perspectiveInverse) { |
|
800 const SkScalar p2 = in[SkMatrix::kMPersp2]; |
|
801 |
|
802 if (SkScalarNearlyZero(p2)) { |
|
803 return false; |
|
804 } |
|
805 |
|
806 const SkScalar zero = SkIntToScalar(0); |
|
807 const SkScalar one = SkIntToScalar(1); |
|
808 |
|
809 const SkScalar sx = in[SkMatrix::kMScaleX]; |
|
810 const SkScalar kx = in[SkMatrix::kMSkewX]; |
|
811 const SkScalar tx = in[SkMatrix::kMTransX]; |
|
812 const SkScalar ky = in[SkMatrix::kMSkewY]; |
|
813 const SkScalar sy = in[SkMatrix::kMScaleY]; |
|
814 const SkScalar ty = in[SkMatrix::kMTransY]; |
|
815 const SkScalar p0 = in[SkMatrix::kMPersp0]; |
|
816 const SkScalar p1 = in[SkMatrix::kMPersp1]; |
|
817 |
|
818 // Perspective matrix would be: |
|
819 // 1 0 0 |
|
820 // 0 1 0 |
|
821 // p0 p1 p2 |
|
822 // But we need the inverse of persp. |
|
823 perspectiveInverse->setAll(one, zero, zero, |
|
824 zero, one, zero, |
|
825 -p0/p2, -p1/p2, 1/p2); |
|
826 |
|
827 affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2, |
|
828 ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2, |
|
829 zero, zero, one); |
|
830 |
|
831 return true; |
|
832 } |
|
833 |
|
834 SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state) |
|
835 : SkPDFDict("Pattern"), |
|
836 fState(state) { |
|
837 SkString (*codeFunction)(const SkShader::GradientInfo& info, |
|
838 const SkMatrix& perspectiveRemover) = NULL; |
|
839 SkPoint transformPoints[2]; |
|
840 |
|
841 // Depending on the type of the gradient, we want to transform the |
|
842 // coordinate space in different ways. |
|
843 const SkShader::GradientInfo* info = &fState.get()->fInfo; |
|
844 transformPoints[0] = info->fPoint[0]; |
|
845 transformPoints[1] = info->fPoint[1]; |
|
846 switch (fState.get()->fType) { |
|
847 case SkShader::kLinear_GradientType: |
|
848 codeFunction = &linearCode; |
|
849 break; |
|
850 case SkShader::kRadial_GradientType: |
|
851 transformPoints[1] = transformPoints[0]; |
|
852 transformPoints[1].fX += info->fRadius[0]; |
|
853 codeFunction = &radialCode; |
|
854 break; |
|
855 case SkShader::kRadial2_GradientType: { |
|
856 // Bail out if the radii are the same. Empty fResources signals |
|
857 // an error and isValid will return false. |
|
858 if (info->fRadius[0] == info->fRadius[1]) { |
|
859 return; |
|
860 } |
|
861 transformPoints[1] = transformPoints[0]; |
|
862 SkScalar dr = info->fRadius[1] - info->fRadius[0]; |
|
863 transformPoints[1].fX += dr; |
|
864 codeFunction = &twoPointRadialCode; |
|
865 break; |
|
866 } |
|
867 case SkShader::kConical_GradientType: { |
|
868 transformPoints[1] = transformPoints[0]; |
|
869 transformPoints[1].fX += SK_Scalar1; |
|
870 codeFunction = &twoPointConicalCode; |
|
871 break; |
|
872 } |
|
873 case SkShader::kSweep_GradientType: |
|
874 transformPoints[1] = transformPoints[0]; |
|
875 transformPoints[1].fX += SK_Scalar1; |
|
876 codeFunction = &sweepCode; |
|
877 break; |
|
878 case SkShader::kColor_GradientType: |
|
879 case SkShader::kNone_GradientType: |
|
880 default: |
|
881 return; |
|
882 } |
|
883 |
|
884 // Move any scaling (assuming a unit gradient) or translation |
|
885 // (and rotation for linear gradient), of the final gradient from |
|
886 // info->fPoints to the matrix (updating bbox appropriately). Now |
|
887 // the gradient can be drawn on on the unit segment. |
|
888 SkMatrix mapperMatrix; |
|
889 unitToPointsMatrix(transformPoints, &mapperMatrix); |
|
890 |
|
891 SkMatrix finalMatrix = fState.get()->fCanvasTransform; |
|
892 finalMatrix.preConcat(fState.get()->fShaderTransform); |
|
893 finalMatrix.preConcat(mapperMatrix); |
|
894 |
|
895 // Preserves as much as posible in the final matrix, and only removes |
|
896 // the perspective. The inverse of the perspective is stored in |
|
897 // perspectiveInverseOnly matrix and has 3 useful numbers |
|
898 // (p0, p1, p2), while everything else is either 0 or 1. |
|
899 // In this way the shader will handle it eficiently, with minimal code. |
|
900 SkMatrix perspectiveInverseOnly = SkMatrix::I(); |
|
901 if (finalMatrix.hasPerspective()) { |
|
902 if (!split_perspective(finalMatrix, |
|
903 &finalMatrix, &perspectiveInverseOnly)) { |
|
904 return; |
|
905 } |
|
906 } |
|
907 |
|
908 SkRect bbox; |
|
909 bbox.set(fState.get()->fBBox); |
|
910 if (!inverseTransformBBox(finalMatrix, &bbox)) { |
|
911 return; |
|
912 } |
|
913 |
|
914 SkAutoTUnref<SkPDFArray> domain(new SkPDFArray); |
|
915 domain->reserve(4); |
|
916 domain->appendScalar(bbox.fLeft); |
|
917 domain->appendScalar(bbox.fRight); |
|
918 domain->appendScalar(bbox.fTop); |
|
919 domain->appendScalar(bbox.fBottom); |
|
920 |
|
921 SkString functionCode; |
|
922 // The two point radial gradient further references fState.get()->fInfo |
|
923 // in translating from x, y coordinates to the t parameter. So, we have |
|
924 // to transform the points and radii according to the calculated matrix. |
|
925 if (fState.get()->fType == SkShader::kRadial2_GradientType) { |
|
926 SkShader::GradientInfo twoPointRadialInfo = *info; |
|
927 SkMatrix inverseMapperMatrix; |
|
928 if (!mapperMatrix.invert(&inverseMapperMatrix)) { |
|
929 return; |
|
930 } |
|
931 inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2); |
|
932 twoPointRadialInfo.fRadius[0] = |
|
933 inverseMapperMatrix.mapRadius(info->fRadius[0]); |
|
934 twoPointRadialInfo.fRadius[1] = |
|
935 inverseMapperMatrix.mapRadius(info->fRadius[1]); |
|
936 functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly); |
|
937 } else { |
|
938 functionCode = codeFunction(*info, perspectiveInverseOnly); |
|
939 } |
|
940 |
|
941 SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict); |
|
942 pdfShader->insertInt("ShadingType", 1); |
|
943 pdfShader->insertName("ColorSpace", "DeviceRGB"); |
|
944 pdfShader->insert("Domain", domain.get()); |
|
945 |
|
946 SkPDFStream* function = makePSFunction(functionCode, domain.get()); |
|
947 pdfShader->insert("Function", new SkPDFObjRef(function))->unref(); |
|
948 fResources.push(function); // Pass ownership to resource list. |
|
949 |
|
950 insertInt("PatternType", 2); |
|
951 insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref(); |
|
952 insert("Shading", pdfShader.get()); |
|
953 } |
|
954 |
|
955 SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) { |
|
956 fState.get()->fImage.lockPixels(); |
|
957 |
|
958 // The image shader pattern cell will be drawn into a separate device |
|
959 // in pattern cell space (no scaling on the bitmap, though there may be |
|
960 // translations so that all content is in the device, coordinates > 0). |
|
961 |
|
962 // Map clip bounds to shader space to ensure the device is large enough |
|
963 // to handle fake clamping. |
|
964 SkMatrix finalMatrix = fState.get()->fCanvasTransform; |
|
965 finalMatrix.preConcat(fState.get()->fShaderTransform); |
|
966 SkRect deviceBounds; |
|
967 deviceBounds.set(fState.get()->fBBox); |
|
968 if (!inverseTransformBBox(finalMatrix, &deviceBounds)) { |
|
969 return; |
|
970 } |
|
971 |
|
972 const SkBitmap* image = &fState.get()->fImage; |
|
973 SkRect bitmapBounds; |
|
974 image->getBounds(&bitmapBounds); |
|
975 |
|
976 // For tiling modes, the bounds should be extended to include the bitmap, |
|
977 // otherwise the bitmap gets clipped out and the shader is empty and awful. |
|
978 // For clamp modes, we're only interested in the clip region, whether |
|
979 // or not the main bitmap is in it. |
|
980 SkShader::TileMode tileModes[2]; |
|
981 tileModes[0] = fState.get()->fImageTileModes[0]; |
|
982 tileModes[1] = fState.get()->fImageTileModes[1]; |
|
983 if (tileModes[0] != SkShader::kClamp_TileMode || |
|
984 tileModes[1] != SkShader::kClamp_TileMode) { |
|
985 deviceBounds.join(bitmapBounds); |
|
986 } |
|
987 |
|
988 SkMatrix unflip; |
|
989 unflip.setTranslate(0, SkScalarRoundToScalar(deviceBounds.height())); |
|
990 unflip.preScale(SK_Scalar1, -SK_Scalar1); |
|
991 SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()), |
|
992 SkScalarRoundToInt(deviceBounds.height())); |
|
993 // TODO(edisonn): should we pass here the DCT encoder of the destination device? |
|
994 // TODO(edisonn): NYI Perspective, use SkPDFDeviceFlattener. |
|
995 SkPDFDevice pattern(size, size, unflip); |
|
996 SkCanvas canvas(&pattern); |
|
997 |
|
998 SkRect patternBBox; |
|
999 image->getBounds(&patternBBox); |
|
1000 |
|
1001 // Translate the canvas so that the bitmap origin is at (0, 0). |
|
1002 canvas.translate(-deviceBounds.left(), -deviceBounds.top()); |
|
1003 patternBBox.offset(-deviceBounds.left(), -deviceBounds.top()); |
|
1004 // Undo the translation in the final matrix |
|
1005 finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top()); |
|
1006 |
|
1007 // If the bitmap is out of bounds (i.e. clamp mode where we only see the |
|
1008 // stretched sides), canvas will clip this out and the extraneous data |
|
1009 // won't be saved to the PDF. |
|
1010 canvas.drawBitmap(*image, 0, 0); |
|
1011 |
|
1012 SkScalar width = SkIntToScalar(image->width()); |
|
1013 SkScalar height = SkIntToScalar(image->height()); |
|
1014 |
|
1015 // Tiling is implied. First we handle mirroring. |
|
1016 if (tileModes[0] == SkShader::kMirror_TileMode) { |
|
1017 SkMatrix xMirror; |
|
1018 xMirror.setScale(-1, 1); |
|
1019 xMirror.postTranslate(2 * width, 0); |
|
1020 canvas.drawBitmapMatrix(*image, xMirror); |
|
1021 patternBBox.fRight += width; |
|
1022 } |
|
1023 if (tileModes[1] == SkShader::kMirror_TileMode) { |
|
1024 SkMatrix yMirror; |
|
1025 yMirror.setScale(SK_Scalar1, -SK_Scalar1); |
|
1026 yMirror.postTranslate(0, 2 * height); |
|
1027 canvas.drawBitmapMatrix(*image, yMirror); |
|
1028 patternBBox.fBottom += height; |
|
1029 } |
|
1030 if (tileModes[0] == SkShader::kMirror_TileMode && |
|
1031 tileModes[1] == SkShader::kMirror_TileMode) { |
|
1032 SkMatrix mirror; |
|
1033 mirror.setScale(-1, -1); |
|
1034 mirror.postTranslate(2 * width, 2 * height); |
|
1035 canvas.drawBitmapMatrix(*image, mirror); |
|
1036 } |
|
1037 |
|
1038 // Then handle Clamping, which requires expanding the pattern canvas to |
|
1039 // cover the entire surfaceBBox. |
|
1040 |
|
1041 // If both x and y are in clamp mode, we start by filling in the corners. |
|
1042 // (Which are just a rectangles of the corner colors.) |
|
1043 if (tileModes[0] == SkShader::kClamp_TileMode && |
|
1044 tileModes[1] == SkShader::kClamp_TileMode) { |
|
1045 SkPaint paint; |
|
1046 SkRect rect; |
|
1047 rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0); |
|
1048 if (!rect.isEmpty()) { |
|
1049 paint.setColor(image->getColor(0, 0)); |
|
1050 canvas.drawRect(rect, paint); |
|
1051 } |
|
1052 |
|
1053 rect = SkRect::MakeLTRB(width, deviceBounds.top(), |
|
1054 deviceBounds.right(), 0); |
|
1055 if (!rect.isEmpty()) { |
|
1056 paint.setColor(image->getColor(image->width() - 1, 0)); |
|
1057 canvas.drawRect(rect, paint); |
|
1058 } |
|
1059 |
|
1060 rect = SkRect::MakeLTRB(width, height, |
|
1061 deviceBounds.right(), deviceBounds.bottom()); |
|
1062 if (!rect.isEmpty()) { |
|
1063 paint.setColor(image->getColor(image->width() - 1, |
|
1064 image->height() - 1)); |
|
1065 canvas.drawRect(rect, paint); |
|
1066 } |
|
1067 |
|
1068 rect = SkRect::MakeLTRB(deviceBounds.left(), height, |
|
1069 0, deviceBounds.bottom()); |
|
1070 if (!rect.isEmpty()) { |
|
1071 paint.setColor(image->getColor(0, image->height() - 1)); |
|
1072 canvas.drawRect(rect, paint); |
|
1073 } |
|
1074 } |
|
1075 |
|
1076 // Then expand the left, right, top, then bottom. |
|
1077 if (tileModes[0] == SkShader::kClamp_TileMode) { |
|
1078 SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height()); |
|
1079 if (deviceBounds.left() < 0) { |
|
1080 SkBitmap left; |
|
1081 SkAssertResult(image->extractSubset(&left, subset)); |
|
1082 |
|
1083 SkMatrix leftMatrix; |
|
1084 leftMatrix.setScale(-deviceBounds.left(), 1); |
|
1085 leftMatrix.postTranslate(deviceBounds.left(), 0); |
|
1086 canvas.drawBitmapMatrix(left, leftMatrix); |
|
1087 |
|
1088 if (tileModes[1] == SkShader::kMirror_TileMode) { |
|
1089 leftMatrix.postScale(SK_Scalar1, -SK_Scalar1); |
|
1090 leftMatrix.postTranslate(0, 2 * height); |
|
1091 canvas.drawBitmapMatrix(left, leftMatrix); |
|
1092 } |
|
1093 patternBBox.fLeft = 0; |
|
1094 } |
|
1095 |
|
1096 if (deviceBounds.right() > width) { |
|
1097 SkBitmap right; |
|
1098 subset.offset(image->width() - 1, 0); |
|
1099 SkAssertResult(image->extractSubset(&right, subset)); |
|
1100 |
|
1101 SkMatrix rightMatrix; |
|
1102 rightMatrix.setScale(deviceBounds.right() - width, 1); |
|
1103 rightMatrix.postTranslate(width, 0); |
|
1104 canvas.drawBitmapMatrix(right, rightMatrix); |
|
1105 |
|
1106 if (tileModes[1] == SkShader::kMirror_TileMode) { |
|
1107 rightMatrix.postScale(SK_Scalar1, -SK_Scalar1); |
|
1108 rightMatrix.postTranslate(0, 2 * height); |
|
1109 canvas.drawBitmapMatrix(right, rightMatrix); |
|
1110 } |
|
1111 patternBBox.fRight = deviceBounds.width(); |
|
1112 } |
|
1113 } |
|
1114 |
|
1115 if (tileModes[1] == SkShader::kClamp_TileMode) { |
|
1116 SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1); |
|
1117 if (deviceBounds.top() < 0) { |
|
1118 SkBitmap top; |
|
1119 SkAssertResult(image->extractSubset(&top, subset)); |
|
1120 |
|
1121 SkMatrix topMatrix; |
|
1122 topMatrix.setScale(SK_Scalar1, -deviceBounds.top()); |
|
1123 topMatrix.postTranslate(0, deviceBounds.top()); |
|
1124 canvas.drawBitmapMatrix(top, topMatrix); |
|
1125 |
|
1126 if (tileModes[0] == SkShader::kMirror_TileMode) { |
|
1127 topMatrix.postScale(-1, 1); |
|
1128 topMatrix.postTranslate(2 * width, 0); |
|
1129 canvas.drawBitmapMatrix(top, topMatrix); |
|
1130 } |
|
1131 patternBBox.fTop = 0; |
|
1132 } |
|
1133 |
|
1134 if (deviceBounds.bottom() > height) { |
|
1135 SkBitmap bottom; |
|
1136 subset.offset(0, image->height() - 1); |
|
1137 SkAssertResult(image->extractSubset(&bottom, subset)); |
|
1138 |
|
1139 SkMatrix bottomMatrix; |
|
1140 bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height); |
|
1141 bottomMatrix.postTranslate(0, height); |
|
1142 canvas.drawBitmapMatrix(bottom, bottomMatrix); |
|
1143 |
|
1144 if (tileModes[0] == SkShader::kMirror_TileMode) { |
|
1145 bottomMatrix.postScale(-1, 1); |
|
1146 bottomMatrix.postTranslate(2 * width, 0); |
|
1147 canvas.drawBitmapMatrix(bottom, bottomMatrix); |
|
1148 } |
|
1149 patternBBox.fBottom = deviceBounds.height(); |
|
1150 } |
|
1151 } |
|
1152 |
|
1153 // Put the canvas into the pattern stream (fContent). |
|
1154 SkAutoTUnref<SkStream> content(pattern.content()); |
|
1155 setData(content.get()); |
|
1156 SkPDFResourceDict* resourceDict = pattern.getResourceDict(); |
|
1157 resourceDict->getReferencedResources(fResources, &fResources, false); |
|
1158 |
|
1159 populate_tiling_pattern_dict(this, patternBBox, |
|
1160 pattern.getResourceDict(), finalMatrix); |
|
1161 |
|
1162 fState.get()->fImage.unlockPixels(); |
|
1163 } |
|
1164 |
|
1165 SkPDFStream* SkPDFFunctionShader::makePSFunction(const SkString& psCode, |
|
1166 SkPDFArray* domain) { |
|
1167 SkAutoDataUnref funcData(SkData::NewWithCopy(psCode.c_str(), |
|
1168 psCode.size())); |
|
1169 SkPDFStream* result = new SkPDFStream(funcData.get()); |
|
1170 result->insertInt("FunctionType", 4); |
|
1171 result->insert("Domain", domain); |
|
1172 result->insert("Range", RangeObject()); |
|
1173 return result; |
|
1174 } |
|
1175 |
|
1176 SkPDFShader::ShaderCanonicalEntry::ShaderCanonicalEntry(SkPDFObject* pdfShader, |
|
1177 const State* state) |
|
1178 : fPDFShader(pdfShader), |
|
1179 fState(state) { |
|
1180 } |
|
1181 |
|
1182 bool SkPDFShader::ShaderCanonicalEntry::operator==( |
|
1183 const ShaderCanonicalEntry& b) const { |
|
1184 return fPDFShader == b.fPDFShader || |
|
1185 (fState != NULL && b.fState != NULL && *fState == *b.fState); |
|
1186 } |
|
1187 |
|
1188 bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const { |
|
1189 if (fType != b.fType || |
|
1190 fCanvasTransform != b.fCanvasTransform || |
|
1191 fShaderTransform != b.fShaderTransform || |
|
1192 fBBox != b.fBBox) { |
|
1193 return false; |
|
1194 } |
|
1195 |
|
1196 if (fType == SkShader::kNone_GradientType) { |
|
1197 if (fPixelGeneration != b.fPixelGeneration || |
|
1198 fPixelGeneration == 0 || |
|
1199 fImageTileModes[0] != b.fImageTileModes[0] || |
|
1200 fImageTileModes[1] != b.fImageTileModes[1]) { |
|
1201 return false; |
|
1202 } |
|
1203 } else { |
|
1204 if (fInfo.fColorCount != b.fInfo.fColorCount || |
|
1205 memcmp(fInfo.fColors, b.fInfo.fColors, |
|
1206 sizeof(SkColor) * fInfo.fColorCount) != 0 || |
|
1207 memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets, |
|
1208 sizeof(SkScalar) * fInfo.fColorCount) != 0 || |
|
1209 fInfo.fPoint[0] != b.fInfo.fPoint[0] || |
|
1210 fInfo.fTileMode != b.fInfo.fTileMode) { |
|
1211 return false; |
|
1212 } |
|
1213 |
|
1214 switch (fType) { |
|
1215 case SkShader::kLinear_GradientType: |
|
1216 if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) { |
|
1217 return false; |
|
1218 } |
|
1219 break; |
|
1220 case SkShader::kRadial_GradientType: |
|
1221 if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) { |
|
1222 return false; |
|
1223 } |
|
1224 break; |
|
1225 case SkShader::kRadial2_GradientType: |
|
1226 case SkShader::kConical_GradientType: |
|
1227 if (fInfo.fPoint[1] != b.fInfo.fPoint[1] || |
|
1228 fInfo.fRadius[0] != b.fInfo.fRadius[0] || |
|
1229 fInfo.fRadius[1] != b.fInfo.fRadius[1]) { |
|
1230 return false; |
|
1231 } |
|
1232 break; |
|
1233 case SkShader::kSweep_GradientType: |
|
1234 case SkShader::kNone_GradientType: |
|
1235 case SkShader::kColor_GradientType: |
|
1236 break; |
|
1237 } |
|
1238 } |
|
1239 return true; |
|
1240 } |
|
1241 |
|
1242 SkPDFShader::State::State(const SkShader& shader, |
|
1243 const SkMatrix& canvasTransform, const SkIRect& bbox) |
|
1244 : fCanvasTransform(canvasTransform), |
|
1245 fBBox(bbox), |
|
1246 fPixelGeneration(0) { |
|
1247 fInfo.fColorCount = 0; |
|
1248 fInfo.fColors = NULL; |
|
1249 fInfo.fColorOffsets = NULL; |
|
1250 fShaderTransform = shader.getLocalMatrix(); |
|
1251 fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode; |
|
1252 |
|
1253 fType = shader.asAGradient(&fInfo); |
|
1254 |
|
1255 if (fType == SkShader::kNone_GradientType) { |
|
1256 SkShader::BitmapType bitmapType; |
|
1257 SkMatrix matrix; |
|
1258 bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes); |
|
1259 if (bitmapType != SkShader::kDefault_BitmapType) { |
|
1260 fImage.reset(); |
|
1261 return; |
|
1262 } |
|
1263 SkASSERT(matrix.isIdentity()); |
|
1264 fPixelGeneration = fImage.getGenerationID(); |
|
1265 } else { |
|
1266 AllocateGradientInfoStorage(); |
|
1267 shader.asAGradient(&fInfo); |
|
1268 } |
|
1269 } |
|
1270 |
|
1271 SkPDFShader::State::State(const SkPDFShader::State& other) |
|
1272 : fType(other.fType), |
|
1273 fCanvasTransform(other.fCanvasTransform), |
|
1274 fShaderTransform(other.fShaderTransform), |
|
1275 fBBox(other.fBBox) |
|
1276 { |
|
1277 // Only gradients supported for now, since that is all that is used. |
|
1278 // If needed, image state copy constructor can be added here later. |
|
1279 SkASSERT(fType != SkShader::kNone_GradientType); |
|
1280 |
|
1281 if (fType != SkShader::kNone_GradientType) { |
|
1282 fInfo = other.fInfo; |
|
1283 |
|
1284 AllocateGradientInfoStorage(); |
|
1285 for (int i = 0; i < fInfo.fColorCount; i++) { |
|
1286 fInfo.fColors[i] = other.fInfo.fColors[i]; |
|
1287 fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i]; |
|
1288 } |
|
1289 } |
|
1290 } |
|
1291 |
|
1292 /** |
|
1293 * Create a copy of this gradient state with alpha assigned to RGB luminousity. |
|
1294 * Only valid for gradient states. |
|
1295 */ |
|
1296 SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const { |
|
1297 SkASSERT(fType != SkShader::kNone_GradientType); |
|
1298 |
|
1299 SkPDFShader::State* newState = new SkPDFShader::State(*this); |
|
1300 |
|
1301 for (int i = 0; i < fInfo.fColorCount; i++) { |
|
1302 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); |
|
1303 newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha); |
|
1304 } |
|
1305 |
|
1306 return newState; |
|
1307 } |
|
1308 |
|
1309 /** |
|
1310 * Create a copy of this gradient state with alpha set to fully opaque |
|
1311 * Only valid for gradient states. |
|
1312 */ |
|
1313 SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const { |
|
1314 SkASSERT(fType != SkShader::kNone_GradientType); |
|
1315 |
|
1316 SkPDFShader::State* newState = new SkPDFShader::State(*this); |
|
1317 for (int i = 0; i < fInfo.fColorCount; i++) { |
|
1318 newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i], |
|
1319 SK_AlphaOPAQUE); |
|
1320 } |
|
1321 |
|
1322 return newState; |
|
1323 } |
|
1324 |
|
1325 /** |
|
1326 * Returns true if state is a gradient and the gradient has alpha. |
|
1327 */ |
|
1328 bool SkPDFShader::State::GradientHasAlpha() const { |
|
1329 if (fType == SkShader::kNone_GradientType) { |
|
1330 return false; |
|
1331 } |
|
1332 |
|
1333 for (int i = 0; i < fInfo.fColorCount; i++) { |
|
1334 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); |
|
1335 if (alpha != SK_AlphaOPAQUE) { |
|
1336 return true; |
|
1337 } |
|
1338 } |
|
1339 return false; |
|
1340 } |
|
1341 |
|
1342 void SkPDFShader::State::AllocateGradientInfoStorage() { |
|
1343 fColorData.set(sk_malloc_throw( |
|
1344 fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar)))); |
|
1345 fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get()); |
|
1346 fInfo.fColorOffsets = |
|
1347 reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount); |
|
1348 } |