|
1 /* |
|
2 * Copyright 2012 Google Inc. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #ifndef SkFloatUtils_DEFINED |
|
9 #define SkFloatUtils_DEFINED |
|
10 |
|
11 #include "SkTypes.h" |
|
12 #include <limits.h> |
|
13 #include <float.h> |
|
14 |
|
15 template <size_t size> |
|
16 class SkTypeWithSize { |
|
17 public: |
|
18 // Prevents using SkTypeWithSize<N> with non-specialized N. |
|
19 typedef void UInt; |
|
20 }; |
|
21 |
|
22 template <> |
|
23 class SkTypeWithSize<32> { |
|
24 public: |
|
25 typedef uint32_t UInt; |
|
26 }; |
|
27 |
|
28 template <> |
|
29 class SkTypeWithSize<64> { |
|
30 public: |
|
31 typedef uint64_t UInt; |
|
32 }; |
|
33 |
|
34 template <typename RawType> |
|
35 struct SkNumericLimits { |
|
36 static const int digits = 0; |
|
37 }; |
|
38 |
|
39 template <> |
|
40 struct SkNumericLimits<double> { |
|
41 static const int digits = DBL_MANT_DIG; |
|
42 }; |
|
43 |
|
44 template <> |
|
45 struct SkNumericLimits<float> { |
|
46 static const int digits = FLT_MANT_DIG; |
|
47 }; |
|
48 |
|
49 //See |
|
50 //http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299 |
|
51 //http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h |
|
52 //http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm |
|
53 |
|
54 template <typename RawType, unsigned int ULPs> |
|
55 class SkFloatingPoint { |
|
56 public: |
|
57 /** Bits is a unsigned integer the same size as the floating point number. */ |
|
58 typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits; |
|
59 |
|
60 /** # of bits in a number. */ |
|
61 static const size_t kBitCount = CHAR_BIT * sizeof(RawType); |
|
62 |
|
63 /** # of fraction bits in a number. */ |
|
64 static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1; |
|
65 |
|
66 /** # of exponent bits in a number. */ |
|
67 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
|
68 |
|
69 /** The mask for the sign bit. */ |
|
70 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
|
71 |
|
72 /** The mask for the fraction bits. */ |
|
73 static const Bits kFractionBitMask = |
|
74 ~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
|
75 |
|
76 /** The mask for the exponent bits. */ |
|
77 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
|
78 |
|
79 /** How many ULP's (Units in the Last Place) to tolerate when comparing. */ |
|
80 static const size_t kMaxUlps = ULPs; |
|
81 |
|
82 /** |
|
83 * Constructs a FloatingPoint from a raw floating-point number. |
|
84 * |
|
85 * On an Intel CPU, passing a non-normalized NAN (Not a Number) |
|
86 * around may change its bits, although the new value is guaranteed |
|
87 * to be also a NAN. Therefore, don't expect this constructor to |
|
88 * preserve the bits in x when x is a NAN. |
|
89 */ |
|
90 explicit SkFloatingPoint(const RawType& x) { fU.value = x; } |
|
91 |
|
92 /** Returns the exponent bits of this number. */ |
|
93 Bits exponent_bits() const { return kExponentBitMask & fU.bits; } |
|
94 |
|
95 /** Returns the fraction bits of this number. */ |
|
96 Bits fraction_bits() const { return kFractionBitMask & fU.bits; } |
|
97 |
|
98 /** Returns true iff this is NAN (not a number). */ |
|
99 bool is_nan() const { |
|
100 // It's a NAN if both of the folloowing are true: |
|
101 // * the exponent bits are all ones |
|
102 // * the fraction bits are not all zero. |
|
103 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
|
104 } |
|
105 |
|
106 /** |
|
107 * Returns true iff this number is at most kMaxUlps ULP's away from ths. |
|
108 * In particular, this function: |
|
109 * - returns false if either number is (or both are) NAN. |
|
110 * - treats really large numbers as almost equal to infinity. |
|
111 * - thinks +0.0 and -0.0 are 0 DLP's apart. |
|
112 */ |
|
113 bool AlmostEquals(const SkFloatingPoint& rhs) const { |
|
114 // Any comparison operation involving a NAN must return false. |
|
115 if (is_nan() || rhs.is_nan()) return false; |
|
116 |
|
117 const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits, |
|
118 rhs.fU.bits); |
|
119 //SkDEBUGF(("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist)); |
|
120 return dist <= kMaxUlps; |
|
121 } |
|
122 |
|
123 private: |
|
124 /** The data type used to store the actual floating-point number. */ |
|
125 union FloatingPointUnion { |
|
126 /** The raw floating-point number. */ |
|
127 RawType value; |
|
128 /** The bits that represent the number. */ |
|
129 Bits bits; |
|
130 }; |
|
131 |
|
132 /** |
|
133 * Converts an integer from the sign-and-magnitude representation to |
|
134 * the biased representation. More precisely, let N be 2 to the |
|
135 * power of (kBitCount - 1), an integer x is represented by the |
|
136 * unsigned number x + N. |
|
137 * |
|
138 * For instance, |
|
139 * |
|
140 * -N + 1 (the most negative number representable using |
|
141 * sign-and-magnitude) is represented by 1; |
|
142 * 0 is represented by N; and |
|
143 * N - 1 (the biggest number representable using |
|
144 * sign-and-magnitude) is represented by 2N - 1. |
|
145 * |
|
146 * Read http://en.wikipedia.org/wiki/Signed_number_representations |
|
147 * for more details on signed number representations. |
|
148 */ |
|
149 static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
|
150 if (kSignBitMask & sam) { |
|
151 // sam represents a negative number. |
|
152 return ~sam + 1; |
|
153 } else { |
|
154 // sam represents a positive number. |
|
155 return kSignBitMask | sam; |
|
156 } |
|
157 } |
|
158 |
|
159 /** |
|
160 * Given two numbers in the sign-and-magnitude representation, |
|
161 * returns the distance between them as an unsigned number. |
|
162 */ |
|
163 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
|
164 const Bits &sam2) { |
|
165 const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
|
166 const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
|
167 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
|
168 } |
|
169 |
|
170 FloatingPointUnion fU; |
|
171 }; |
|
172 |
|
173 #endif |