|
1 /* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */ |
|
2 /**************************************************************** |
|
3 * |
|
4 * The author of this software is David M. Gay. |
|
5 * |
|
6 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
|
7 * |
|
8 * Permission to use, copy, modify, and distribute this software for any |
|
9 * purpose without fee is hereby granted, provided that this entire notice |
|
10 * is included in all copies of any software which is or includes a copy |
|
11 * or modification of this software and in all copies of the supporting |
|
12 * documentation for such software. |
|
13 * |
|
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
|
15 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
|
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
|
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
|
18 * |
|
19 ***************************************************************/ |
|
20 |
|
21 /* Please send bug reports to David M. Gay (dmg at acm dot org, |
|
22 * with " at " changed at "@" and " dot " changed to "."). */ |
|
23 |
|
24 /* On a machine with IEEE extended-precision registers, it is |
|
25 * necessary to specify double-precision (53-bit) rounding precision |
|
26 * before invoking strtod or dtoa. If the machine uses (the equivalent |
|
27 * of) Intel 80x87 arithmetic, the call |
|
28 * _control87(PC_53, MCW_PC); |
|
29 * does this with many compilers. Whether this or another call is |
|
30 * appropriate depends on the compiler; for this to work, it may be |
|
31 * necessary to #include "float.h" or another system-dependent header |
|
32 * file. |
|
33 */ |
|
34 |
|
35 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
|
36 * |
|
37 * This strtod returns a nearest machine number to the input decimal |
|
38 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
|
39 * broken by the IEEE round-even rule. Otherwise ties are broken by |
|
40 * biased rounding (add half and chop). |
|
41 * |
|
42 * Inspired loosely by William D. Clinger's paper "How to Read Floating |
|
43 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
|
44 * |
|
45 * Modifications: |
|
46 * |
|
47 * 1. We only require IEEE, IBM, or VAX double-precision |
|
48 * arithmetic (not IEEE double-extended). |
|
49 * 2. We get by with floating-point arithmetic in a case that |
|
50 * Clinger missed -- when we're computing d * 10^n |
|
51 * for a small integer d and the integer n is not too |
|
52 * much larger than 22 (the maximum integer k for which |
|
53 * we can represent 10^k exactly), we may be able to |
|
54 * compute (d*10^k) * 10^(e-k) with just one roundoff. |
|
55 * 3. Rather than a bit-at-a-time adjustment of the binary |
|
56 * result in the hard case, we use floating-point |
|
57 * arithmetic to determine the adjustment to within |
|
58 * one bit; only in really hard cases do we need to |
|
59 * compute a second residual. |
|
60 * 4. Because of 3., we don't need a large table of powers of 10 |
|
61 * for ten-to-e (just some small tables, e.g. of 10^k |
|
62 * for 0 <= k <= 22). |
|
63 */ |
|
64 |
|
65 /* |
|
66 * #define IEEE_8087 for IEEE-arithmetic machines where the least |
|
67 * significant byte has the lowest address. |
|
68 * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
|
69 * significant byte has the lowest address. |
|
70 * #define Long int on machines with 32-bit ints and 64-bit longs. |
|
71 * #define IBM for IBM mainframe-style floating-point arithmetic. |
|
72 * #define VAX for VAX-style floating-point arithmetic (D_floating). |
|
73 * #define No_leftright to omit left-right logic in fast floating-point |
|
74 * computation of dtoa. |
|
75 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
|
76 * and strtod and dtoa should round accordingly. |
|
77 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
|
78 * and Honor_FLT_ROUNDS is not #defined. |
|
79 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines |
|
80 * that use extended-precision instructions to compute rounded |
|
81 * products and quotients) with IBM. |
|
82 * #define ROUND_BIASED for IEEE-format with biased rounding. |
|
83 * #define Inaccurate_Divide for IEEE-format with correctly rounded |
|
84 * products but inaccurate quotients, e.g., for Intel i860. |
|
85 * #define NO_LONG_LONG on machines that do not have a "long long" |
|
86 * integer type (of >= 64 bits). On such machines, you can |
|
87 * #define Just_16 to store 16 bits per 32-bit Long when doing |
|
88 * high-precision integer arithmetic. Whether this speeds things |
|
89 * up or slows things down depends on the machine and the number |
|
90 * being converted. If long long is available and the name is |
|
91 * something other than "long long", #define Llong to be the name, |
|
92 * and if "unsigned Llong" does not work as an unsigned version of |
|
93 * Llong, #define #ULLong to be the corresponding unsigned type. |
|
94 * #define KR_headers for old-style C function headers. |
|
95 * #define Bad_float_h if your system lacks a float.h or if it does not |
|
96 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
|
97 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
|
98 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) |
|
99 * if memory is available and otherwise does something you deem |
|
100 * appropriate. If MALLOC is undefined, malloc will be invoked |
|
101 * directly -- and assumed always to succeed. Similarly, if you |
|
102 * want something other than the system's free() to be called to |
|
103 * recycle memory acquired from MALLOC, #define FREE to be the |
|
104 * name of the alternate routine. (Unless you #define |
|
105 * NO_GLOBAL_STATE and call destroydtoa, FREE or free is only |
|
106 * called in pathological cases, e.g., in a dtoa call after a dtoa |
|
107 * return in mode 3 with thousands of digits requested.) |
|
108 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
|
109 * memory allocations from a private pool of memory when possible. |
|
110 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, |
|
111 * unless #defined to be a different length. This default length |
|
112 * suffices to get rid of MALLOC calls except for unusual cases, |
|
113 * such as decimal-to-binary conversion of a very long string of |
|
114 * digits. The longest string dtoa can return is about 751 bytes |
|
115 * long. For conversions by strtod of strings of 800 digits and |
|
116 * all dtoa conversions in single-threaded executions with 8-byte |
|
117 * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte |
|
118 * pointers, PRIVATE_MEM >= 7112 appears adequate. |
|
119 * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
|
120 * multiple threads. In this case, you must provide (or suitably |
|
121 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed |
|
122 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed |
|
123 * in pow5mult, ensures lazy evaluation of only one copy of high |
|
124 * powers of 5; omitting this lock would introduce a small |
|
125 * probability of wasting memory, but would otherwise be harmless.) |
|
126 * You must also invoke freedtoa(s) to free the value s returned by |
|
127 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. |
|
128 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
|
129 * avoids underflows on inputs whose result does not underflow. |
|
130 * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
|
131 * floating-point numbers and flushes underflows to zero rather |
|
132 * than implementing gradual underflow, then you must also #define |
|
133 * Sudden_Underflow. |
|
134 * #define USE_LOCALE to use the current locale's decimal_point value. |
|
135 * #define SET_INEXACT if IEEE arithmetic is being used and extra |
|
136 * computation should be done to set the inexact flag when the |
|
137 * result is inexact and avoid setting inexact when the result |
|
138 * is exact. In this case, dtoa.c must be compiled in |
|
139 * an environment, perhaps provided by #include "dtoa.c" in a |
|
140 * suitable wrapper, that defines two functions, |
|
141 * int get_inexact(void); |
|
142 * void clear_inexact(void); |
|
143 * such that get_inexact() returns a nonzero value if the |
|
144 * inexact bit is already set, and clear_inexact() sets the |
|
145 * inexact bit to 0. When SET_INEXACT is #defined, strtod |
|
146 * also does extra computations to set the underflow and overflow |
|
147 * flags when appropriate (i.e., when the result is tiny and |
|
148 * inexact or when it is a numeric value rounded to +-infinity). |
|
149 * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
|
150 * the result overflows to +-Infinity or underflows to 0. |
|
151 * #define NO_GLOBAL_STATE to avoid defining any non-const global or |
|
152 * static variables. Instead the necessary state is stored in an |
|
153 * opaque struct, DtoaState, a pointer to which must be passed to |
|
154 * every entry point. Two new functions are added to the API: |
|
155 * DtoaState *newdtoa(void); |
|
156 * void destroydtoa(DtoaState *); |
|
157 */ |
|
158 |
|
159 #ifndef Long |
|
160 #define Long long |
|
161 #endif |
|
162 #ifndef ULong |
|
163 typedef unsigned Long ULong; |
|
164 #endif |
|
165 |
|
166 #ifdef DEBUG |
|
167 #include <stdio.h> |
|
168 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
|
169 #endif |
|
170 |
|
171 #include <stdlib.h> |
|
172 #include <string.h> |
|
173 |
|
174 #ifdef USE_LOCALE |
|
175 #include <locale.h> |
|
176 #endif |
|
177 |
|
178 #ifdef MALLOC |
|
179 #ifdef KR_headers |
|
180 extern char *MALLOC(); |
|
181 #else |
|
182 extern void *MALLOC(size_t); |
|
183 #endif |
|
184 #else |
|
185 #define MALLOC malloc |
|
186 #endif |
|
187 |
|
188 #ifndef FREE |
|
189 #define FREE free |
|
190 #endif |
|
191 |
|
192 #ifndef Omit_Private_Memory |
|
193 #ifndef PRIVATE_MEM |
|
194 #define PRIVATE_MEM 2304 |
|
195 #endif |
|
196 #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
|
197 #endif |
|
198 |
|
199 #undef IEEE_Arith |
|
200 #undef Avoid_Underflow |
|
201 #ifdef IEEE_MC68k |
|
202 #define IEEE_Arith |
|
203 #endif |
|
204 #ifdef IEEE_8087 |
|
205 #define IEEE_Arith |
|
206 #endif |
|
207 |
|
208 #include <errno.h> |
|
209 |
|
210 #ifdef Bad_float_h |
|
211 |
|
212 #ifdef IEEE_Arith |
|
213 #define DBL_DIG 15 |
|
214 #define DBL_MAX_10_EXP 308 |
|
215 #define DBL_MAX_EXP 1024 |
|
216 #define FLT_RADIX 2 |
|
217 #endif /*IEEE_Arith*/ |
|
218 |
|
219 #ifdef IBM |
|
220 #define DBL_DIG 16 |
|
221 #define DBL_MAX_10_EXP 75 |
|
222 #define DBL_MAX_EXP 63 |
|
223 #define FLT_RADIX 16 |
|
224 #define DBL_MAX 7.2370055773322621e+75 |
|
225 #endif |
|
226 |
|
227 #ifdef VAX |
|
228 #define DBL_DIG 16 |
|
229 #define DBL_MAX_10_EXP 38 |
|
230 #define DBL_MAX_EXP 127 |
|
231 #define FLT_RADIX 2 |
|
232 #define DBL_MAX 1.7014118346046923e+38 |
|
233 #endif |
|
234 |
|
235 #ifndef LONG_MAX |
|
236 #define LONG_MAX 2147483647 |
|
237 #endif |
|
238 |
|
239 #else /* ifndef Bad_float_h */ |
|
240 #include <float.h> |
|
241 #endif /* Bad_float_h */ |
|
242 |
|
243 #ifndef __MATH_H__ |
|
244 #include <math.h> |
|
245 #endif |
|
246 |
|
247 #ifndef CONST |
|
248 #ifdef KR_headers |
|
249 #define CONST /* blank */ |
|
250 #else |
|
251 #define CONST const |
|
252 #endif |
|
253 #endif |
|
254 |
|
255 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 |
|
256 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. |
|
257 #endif |
|
258 |
|
259 typedef union { double d; ULong L[2]; } U; |
|
260 |
|
261 #define dval(x) ((x).d) |
|
262 #ifdef IEEE_8087 |
|
263 #define word0(x) ((x).L[1]) |
|
264 #define word1(x) ((x).L[0]) |
|
265 #else |
|
266 #define word0(x) ((x).L[0]) |
|
267 #define word1(x) ((x).L[1]) |
|
268 #endif |
|
269 |
|
270 /* The following definition of Storeinc is appropriate for MIPS processors. |
|
271 * An alternative that might be better on some machines is |
|
272 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
|
273 */ |
|
274 #if defined(IEEE_8087) + defined(VAX) |
|
275 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
|
276 ((unsigned short *)a)[0] = (unsigned short)c, a++) |
|
277 #else |
|
278 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
|
279 ((unsigned short *)a)[1] = (unsigned short)c, a++) |
|
280 #endif |
|
281 |
|
282 /* #define P DBL_MANT_DIG */ |
|
283 /* Ten_pmax = floor(P*log(2)/log(5)) */ |
|
284 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
|
285 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
|
286 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
|
287 |
|
288 #ifdef IEEE_Arith |
|
289 #define Exp_shift 20 |
|
290 #define Exp_shift1 20 |
|
291 #define Exp_msk1 0x100000 |
|
292 #define Exp_msk11 0x100000 |
|
293 #define Exp_mask 0x7ff00000 |
|
294 #define P 53 |
|
295 #define Bias 1023 |
|
296 #define Emin (-1022) |
|
297 #define Exp_1 0x3ff00000 |
|
298 #define Exp_11 0x3ff00000 |
|
299 #define Ebits 11 |
|
300 #define Frac_mask 0xfffff |
|
301 #define Frac_mask1 0xfffff |
|
302 #define Ten_pmax 22 |
|
303 #define Bletch 0x10 |
|
304 #define Bndry_mask 0xfffff |
|
305 #define Bndry_mask1 0xfffff |
|
306 #define LSB 1 |
|
307 #define Sign_bit 0x80000000 |
|
308 #define Log2P 1 |
|
309 #define Tiny0 0 |
|
310 #define Tiny1 1 |
|
311 #define Quick_max 14 |
|
312 #define Int_max 14 |
|
313 #ifndef NO_IEEE_Scale |
|
314 #define Avoid_Underflow |
|
315 #ifdef Flush_Denorm /* debugging option */ |
|
316 #undef Sudden_Underflow |
|
317 #endif |
|
318 #endif |
|
319 |
|
320 #ifndef Flt_Rounds |
|
321 #ifdef FLT_ROUNDS |
|
322 #define Flt_Rounds FLT_ROUNDS |
|
323 #else |
|
324 #define Flt_Rounds 1 |
|
325 #endif |
|
326 #endif /*Flt_Rounds*/ |
|
327 |
|
328 #ifdef Honor_FLT_ROUNDS |
|
329 #define Rounding rounding |
|
330 #undef Check_FLT_ROUNDS |
|
331 #define Check_FLT_ROUNDS |
|
332 #else |
|
333 #define Rounding Flt_Rounds |
|
334 #endif |
|
335 |
|
336 #else /* ifndef IEEE_Arith */ |
|
337 #undef Check_FLT_ROUNDS |
|
338 #undef Honor_FLT_ROUNDS |
|
339 #undef SET_INEXACT |
|
340 #undef Sudden_Underflow |
|
341 #define Sudden_Underflow |
|
342 #ifdef IBM |
|
343 #undef Flt_Rounds |
|
344 #define Flt_Rounds 0 |
|
345 #define Exp_shift 24 |
|
346 #define Exp_shift1 24 |
|
347 #define Exp_msk1 0x1000000 |
|
348 #define Exp_msk11 0x1000000 |
|
349 #define Exp_mask 0x7f000000 |
|
350 #define P 14 |
|
351 #define Bias 65 |
|
352 #define Exp_1 0x41000000 |
|
353 #define Exp_11 0x41000000 |
|
354 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ |
|
355 #define Frac_mask 0xffffff |
|
356 #define Frac_mask1 0xffffff |
|
357 #define Bletch 4 |
|
358 #define Ten_pmax 22 |
|
359 #define Bndry_mask 0xefffff |
|
360 #define Bndry_mask1 0xffffff |
|
361 #define LSB 1 |
|
362 #define Sign_bit 0x80000000 |
|
363 #define Log2P 4 |
|
364 #define Tiny0 0x100000 |
|
365 #define Tiny1 0 |
|
366 #define Quick_max 14 |
|
367 #define Int_max 15 |
|
368 #else /* VAX */ |
|
369 #undef Flt_Rounds |
|
370 #define Flt_Rounds 1 |
|
371 #define Exp_shift 23 |
|
372 #define Exp_shift1 7 |
|
373 #define Exp_msk1 0x80 |
|
374 #define Exp_msk11 0x800000 |
|
375 #define Exp_mask 0x7f80 |
|
376 #define P 56 |
|
377 #define Bias 129 |
|
378 #define Exp_1 0x40800000 |
|
379 #define Exp_11 0x4080 |
|
380 #define Ebits 8 |
|
381 #define Frac_mask 0x7fffff |
|
382 #define Frac_mask1 0xffff007f |
|
383 #define Ten_pmax 24 |
|
384 #define Bletch 2 |
|
385 #define Bndry_mask 0xffff007f |
|
386 #define Bndry_mask1 0xffff007f |
|
387 #define LSB 0x10000 |
|
388 #define Sign_bit 0x8000 |
|
389 #define Log2P 1 |
|
390 #define Tiny0 0x80 |
|
391 #define Tiny1 0 |
|
392 #define Quick_max 15 |
|
393 #define Int_max 15 |
|
394 #endif /* IBM, VAX */ |
|
395 #endif /* IEEE_Arith */ |
|
396 |
|
397 #ifndef IEEE_Arith |
|
398 #define ROUND_BIASED |
|
399 #endif |
|
400 |
|
401 #ifdef RND_PRODQUOT |
|
402 #define rounded_product(a,b) a = rnd_prod(a, b) |
|
403 #define rounded_quotient(a,b) a = rnd_quot(a, b) |
|
404 #ifdef KR_headers |
|
405 extern double rnd_prod(), rnd_quot(); |
|
406 #else |
|
407 extern double rnd_prod(double, double), rnd_quot(double, double); |
|
408 #endif |
|
409 #else |
|
410 #define rounded_product(a,b) a *= b |
|
411 #define rounded_quotient(a,b) a /= b |
|
412 #endif |
|
413 |
|
414 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
|
415 #define Big1 0xffffffff |
|
416 |
|
417 #ifndef Pack_32 |
|
418 #define Pack_32 |
|
419 #endif |
|
420 |
|
421 #ifdef KR_headers |
|
422 #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) |
|
423 #else |
|
424 #define FFFFFFFF 0xffffffffUL |
|
425 #endif |
|
426 |
|
427 #ifdef NO_LONG_LONG |
|
428 #undef ULLong |
|
429 #ifdef Just_16 |
|
430 #undef Pack_32 |
|
431 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. |
|
432 * This makes some inner loops simpler and sometimes saves work |
|
433 * during multiplications, but it often seems to make things slightly |
|
434 * slower. Hence the default is now to store 32 bits per Long. |
|
435 */ |
|
436 #endif |
|
437 #else /* long long available */ |
|
438 #ifndef Llong |
|
439 #define Llong long long |
|
440 #endif |
|
441 #ifndef ULLong |
|
442 #define ULLong unsigned Llong |
|
443 #endif |
|
444 #endif /* NO_LONG_LONG */ |
|
445 |
|
446 #ifndef MULTIPLE_THREADS |
|
447 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ |
|
448 #define FREE_DTOA_LOCK(n) /*nothing*/ |
|
449 #endif |
|
450 |
|
451 #define Kmax 7 |
|
452 |
|
453 struct |
|
454 Bigint { |
|
455 struct Bigint *next; |
|
456 int k, maxwds, sign, wds; |
|
457 ULong x[1]; |
|
458 }; |
|
459 |
|
460 typedef struct Bigint Bigint; |
|
461 |
|
462 #ifdef NO_GLOBAL_STATE |
|
463 #ifdef MULTIPLE_THREADS |
|
464 #error "cannot have both NO_GLOBAL_STATE and MULTIPLE_THREADS" |
|
465 #endif |
|
466 struct |
|
467 DtoaState { |
|
468 #define DECLARE_GLOBAL_STATE /* nothing */ |
|
469 #else |
|
470 #define DECLARE_GLOBAL_STATE static |
|
471 #endif |
|
472 |
|
473 DECLARE_GLOBAL_STATE Bigint *freelist[Kmax+1]; |
|
474 DECLARE_GLOBAL_STATE Bigint *p5s; |
|
475 #ifndef Omit_Private_Memory |
|
476 DECLARE_GLOBAL_STATE double private_mem[PRIVATE_mem]; |
|
477 DECLARE_GLOBAL_STATE double *pmem_next |
|
478 #ifndef NO_GLOBAL_STATE |
|
479 = private_mem |
|
480 #endif |
|
481 ; |
|
482 #endif |
|
483 #ifdef NO_GLOBAL_STATE |
|
484 }; |
|
485 typedef struct DtoaState DtoaState; |
|
486 #ifdef KR_headers |
|
487 #define STATE_PARAM state, |
|
488 #define STATE_PARAM_DECL DtoaState *state; |
|
489 #else |
|
490 #define STATE_PARAM DtoaState *state, |
|
491 #endif |
|
492 #define PASS_STATE state, |
|
493 #define GET_STATE(field) (state->field) |
|
494 |
|
495 static DtoaState * |
|
496 newdtoa(void) |
|
497 { |
|
498 DtoaState *state = (DtoaState *) MALLOC(sizeof(DtoaState)); |
|
499 if (state) { |
|
500 memset(state, 0, sizeof(DtoaState)); |
|
501 #ifndef Omit_Private_Memory |
|
502 state->pmem_next = state->private_mem; |
|
503 #endif |
|
504 } |
|
505 return state; |
|
506 } |
|
507 |
|
508 static void |
|
509 destroydtoa |
|
510 #ifdef KR_headers |
|
511 (state) STATE_PARAM_DECL |
|
512 #else |
|
513 (DtoaState *state) |
|
514 #endif |
|
515 { |
|
516 int i; |
|
517 Bigint *v, *next; |
|
518 |
|
519 for (i = 0; i <= Kmax; i++) { |
|
520 for (v = GET_STATE(freelist)[i]; v; v = next) { |
|
521 next = v->next; |
|
522 #ifndef Omit_Private_Memory |
|
523 if ((double*)v < GET_STATE(private_mem) || |
|
524 (double*)v >= GET_STATE(private_mem) + PRIVATE_mem) |
|
525 #endif |
|
526 FREE((void*)v); |
|
527 } |
|
528 } |
|
529 FREE((void *)state); |
|
530 } |
|
531 |
|
532 #else |
|
533 #define STATE_PARAM /* nothing */ |
|
534 #define STATE_PARAM_DECL /* nothing */ |
|
535 #define PASS_STATE /* nothing */ |
|
536 #define GET_STATE(name) name |
|
537 #endif |
|
538 |
|
539 static Bigint * |
|
540 Balloc |
|
541 #ifdef KR_headers |
|
542 (STATE_PARAM k) STATE_PARAM_DECL int k; |
|
543 #else |
|
544 (STATE_PARAM int k) |
|
545 #endif |
|
546 { |
|
547 int x; |
|
548 Bigint *rv; |
|
549 #ifndef Omit_Private_Memory |
|
550 size_t len; |
|
551 #endif |
|
552 |
|
553 ACQUIRE_DTOA_LOCK(0); |
|
554 /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ |
|
555 /* but this case seems very unlikely. */ |
|
556 if (k <= Kmax && (rv = GET_STATE(freelist)[k])) |
|
557 GET_STATE(freelist)[k] = rv->next; |
|
558 else { |
|
559 x = 1 << k; |
|
560 #ifdef Omit_Private_Memory |
|
561 rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); |
|
562 #else |
|
563 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
|
564 /sizeof(double); |
|
565 if (k <= Kmax && GET_STATE(pmem_next) - GET_STATE(private_mem) + len <= PRIVATE_mem) { |
|
566 rv = (Bigint*)GET_STATE(pmem_next); |
|
567 GET_STATE(pmem_next) += len; |
|
568 } |
|
569 else |
|
570 rv = (Bigint*)MALLOC(len*sizeof(double)); |
|
571 #endif |
|
572 rv->k = k; |
|
573 rv->maxwds = x; |
|
574 } |
|
575 FREE_DTOA_LOCK(0); |
|
576 rv->sign = rv->wds = 0; |
|
577 return rv; |
|
578 } |
|
579 |
|
580 static void |
|
581 Bfree |
|
582 #ifdef KR_headers |
|
583 (STATE_PARAM v) STATE_PARAM_DECL Bigint *v; |
|
584 #else |
|
585 (STATE_PARAM Bigint *v) |
|
586 #endif |
|
587 { |
|
588 if (v) { |
|
589 if (v->k > Kmax) |
|
590 FREE((void*)v); |
|
591 else { |
|
592 ACQUIRE_DTOA_LOCK(0); |
|
593 v->next = GET_STATE(freelist)[v->k]; |
|
594 GET_STATE(freelist)[v->k] = v; |
|
595 FREE_DTOA_LOCK(0); |
|
596 } |
|
597 } |
|
598 } |
|
599 |
|
600 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
|
601 y->wds*sizeof(Long) + 2*sizeof(int)) |
|
602 |
|
603 static Bigint * |
|
604 multadd |
|
605 #ifdef KR_headers |
|
606 (STATE_PARAM b, m, a) STATE_PARAM_DECL Bigint *b; int m, a; |
|
607 #else |
|
608 (STATE_PARAM Bigint *b, int m, int a) /* multiply by m and add a */ |
|
609 #endif |
|
610 { |
|
611 int i, wds; |
|
612 #ifdef ULLong |
|
613 ULong *x; |
|
614 ULLong carry, y; |
|
615 #else |
|
616 ULong carry, *x, y; |
|
617 #ifdef Pack_32 |
|
618 ULong xi, z; |
|
619 #endif |
|
620 #endif |
|
621 Bigint *b1; |
|
622 |
|
623 wds = b->wds; |
|
624 x = b->x; |
|
625 i = 0; |
|
626 carry = a; |
|
627 do { |
|
628 #ifdef ULLong |
|
629 y = *x * (ULLong)m + carry; |
|
630 carry = y >> 32; |
|
631 *x++ = (ULong) y & FFFFFFFF; |
|
632 #else |
|
633 #ifdef Pack_32 |
|
634 xi = *x; |
|
635 y = (xi & 0xffff) * m + carry; |
|
636 z = (xi >> 16) * m + (y >> 16); |
|
637 carry = z >> 16; |
|
638 *x++ = (z << 16) + (y & 0xffff); |
|
639 #else |
|
640 y = *x * m + carry; |
|
641 carry = y >> 16; |
|
642 *x++ = y & 0xffff; |
|
643 #endif |
|
644 #endif |
|
645 } |
|
646 while(++i < wds); |
|
647 if (carry) { |
|
648 if (wds >= b->maxwds) { |
|
649 b1 = Balloc(PASS_STATE b->k+1); |
|
650 Bcopy(b1, b); |
|
651 Bfree(PASS_STATE b); |
|
652 b = b1; |
|
653 } |
|
654 b->x[wds++] = (ULong) carry; |
|
655 b->wds = wds; |
|
656 } |
|
657 return b; |
|
658 } |
|
659 |
|
660 static Bigint * |
|
661 s2b |
|
662 #ifdef KR_headers |
|
663 (STATE_PARAM s, nd0, nd, y9) STATE_PARAM_DECL CONST char *s; int nd0, nd; ULong y9; |
|
664 #else |
|
665 (STATE_PARAM CONST char *s, int nd0, int nd, ULong y9) |
|
666 #endif |
|
667 { |
|
668 Bigint *b; |
|
669 int i, k; |
|
670 Long x, y; |
|
671 |
|
672 x = (nd + 8) / 9; |
|
673 for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
|
674 #ifdef Pack_32 |
|
675 b = Balloc(PASS_STATE k); |
|
676 b->x[0] = y9; |
|
677 b->wds = 1; |
|
678 #else |
|
679 b = Balloc(PASS_STATE k+1); |
|
680 b->x[0] = y9 & 0xffff; |
|
681 b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; |
|
682 #endif |
|
683 |
|
684 i = 9; |
|
685 if (9 < nd0) { |
|
686 s += 9; |
|
687 do b = multadd(PASS_STATE b, 10, *s++ - '0'); |
|
688 while(++i < nd0); |
|
689 s++; |
|
690 } |
|
691 else |
|
692 s += 10; |
|
693 for(; i < nd; i++) |
|
694 b = multadd(PASS_STATE b, 10, *s++ - '0'); |
|
695 return b; |
|
696 } |
|
697 |
|
698 static int |
|
699 hi0bits |
|
700 #ifdef KR_headers |
|
701 (x) ULong x; |
|
702 #else |
|
703 (ULong x) |
|
704 #endif |
|
705 { |
|
706 int k = 0; |
|
707 |
|
708 if (!(x & 0xffff0000)) { |
|
709 k = 16; |
|
710 x <<= 16; |
|
711 } |
|
712 if (!(x & 0xff000000)) { |
|
713 k += 8; |
|
714 x <<= 8; |
|
715 } |
|
716 if (!(x & 0xf0000000)) { |
|
717 k += 4; |
|
718 x <<= 4; |
|
719 } |
|
720 if (!(x & 0xc0000000)) { |
|
721 k += 2; |
|
722 x <<= 2; |
|
723 } |
|
724 if (!(x & 0x80000000)) { |
|
725 k++; |
|
726 if (!(x & 0x40000000)) |
|
727 return 32; |
|
728 } |
|
729 return k; |
|
730 } |
|
731 |
|
732 static int |
|
733 lo0bits |
|
734 #ifdef KR_headers |
|
735 (y) ULong *y; |
|
736 #else |
|
737 (ULong *y) |
|
738 #endif |
|
739 { |
|
740 int k; |
|
741 ULong x = *y; |
|
742 |
|
743 if (x & 7) { |
|
744 if (x & 1) |
|
745 return 0; |
|
746 if (x & 2) { |
|
747 *y = x >> 1; |
|
748 return 1; |
|
749 } |
|
750 *y = x >> 2; |
|
751 return 2; |
|
752 } |
|
753 k = 0; |
|
754 if (!(x & 0xffff)) { |
|
755 k = 16; |
|
756 x >>= 16; |
|
757 } |
|
758 if (!(x & 0xff)) { |
|
759 k += 8; |
|
760 x >>= 8; |
|
761 } |
|
762 if (!(x & 0xf)) { |
|
763 k += 4; |
|
764 x >>= 4; |
|
765 } |
|
766 if (!(x & 0x3)) { |
|
767 k += 2; |
|
768 x >>= 2; |
|
769 } |
|
770 if (!(x & 1)) { |
|
771 k++; |
|
772 x >>= 1; |
|
773 if (!x) |
|
774 return 32; |
|
775 } |
|
776 *y = x; |
|
777 return k; |
|
778 } |
|
779 |
|
780 static Bigint * |
|
781 i2b |
|
782 #ifdef KR_headers |
|
783 (STATE_PARAM i) STATE_PARAM_DECL int i; |
|
784 #else |
|
785 (STATE_PARAM int i) |
|
786 #endif |
|
787 { |
|
788 Bigint *b; |
|
789 |
|
790 b = Balloc(PASS_STATE 1); |
|
791 b->x[0] = i; |
|
792 b->wds = 1; |
|
793 return b; |
|
794 } |
|
795 |
|
796 static Bigint * |
|
797 mult |
|
798 #ifdef KR_headers |
|
799 (STATE_PARAM a, b) STATE_PARAM_DECL Bigint *a, *b; |
|
800 #else |
|
801 (STATE_PARAM Bigint *a, Bigint *b) |
|
802 #endif |
|
803 { |
|
804 Bigint *c; |
|
805 int k, wa, wb, wc; |
|
806 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
|
807 ULong y; |
|
808 #ifdef ULLong |
|
809 ULLong carry, z; |
|
810 #else |
|
811 ULong carry, z; |
|
812 #ifdef Pack_32 |
|
813 ULong z2; |
|
814 #endif |
|
815 #endif |
|
816 |
|
817 if (a->wds < b->wds) { |
|
818 c = a; |
|
819 a = b; |
|
820 b = c; |
|
821 } |
|
822 k = a->k; |
|
823 wa = a->wds; |
|
824 wb = b->wds; |
|
825 wc = wa + wb; |
|
826 if (wc > a->maxwds) |
|
827 k++; |
|
828 c = Balloc(PASS_STATE k); |
|
829 for(x = c->x, xa = x + wc; x < xa; x++) |
|
830 *x = 0; |
|
831 xa = a->x; |
|
832 xae = xa + wa; |
|
833 xb = b->x; |
|
834 xbe = xb + wb; |
|
835 xc0 = c->x; |
|
836 #ifdef ULLong |
|
837 for(; xb < xbe; xc0++) { |
|
838 if ((y = *xb++)) { |
|
839 x = xa; |
|
840 xc = xc0; |
|
841 carry = 0; |
|
842 do { |
|
843 z = *x++ * (ULLong)y + *xc + carry; |
|
844 carry = z >> 32; |
|
845 *xc++ = (ULong) z & FFFFFFFF; |
|
846 } |
|
847 while(x < xae); |
|
848 *xc = (ULong) carry; |
|
849 } |
|
850 } |
|
851 #else |
|
852 #ifdef Pack_32 |
|
853 for(; xb < xbe; xb++, xc0++) { |
|
854 if (y = *xb & 0xffff) { |
|
855 x = xa; |
|
856 xc = xc0; |
|
857 carry = 0; |
|
858 do { |
|
859 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
|
860 carry = z >> 16; |
|
861 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
|
862 carry = z2 >> 16; |
|
863 Storeinc(xc, z2, z); |
|
864 } |
|
865 while(x < xae); |
|
866 *xc = carry; |
|
867 } |
|
868 if (y = *xb >> 16) { |
|
869 x = xa; |
|
870 xc = xc0; |
|
871 carry = 0; |
|
872 z2 = *xc; |
|
873 do { |
|
874 z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
|
875 carry = z >> 16; |
|
876 Storeinc(xc, z, z2); |
|
877 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
|
878 carry = z2 >> 16; |
|
879 } |
|
880 while(x < xae); |
|
881 *xc = z2; |
|
882 } |
|
883 } |
|
884 #else |
|
885 for(; xb < xbe; xc0++) { |
|
886 if (y = *xb++) { |
|
887 x = xa; |
|
888 xc = xc0; |
|
889 carry = 0; |
|
890 do { |
|
891 z = *x++ * y + *xc + carry; |
|
892 carry = z >> 16; |
|
893 *xc++ = z & 0xffff; |
|
894 } |
|
895 while(x < xae); |
|
896 *xc = carry; |
|
897 } |
|
898 } |
|
899 #endif |
|
900 #endif |
|
901 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
|
902 c->wds = wc; |
|
903 return c; |
|
904 } |
|
905 |
|
906 static Bigint * |
|
907 pow5mult |
|
908 #ifdef KR_headers |
|
909 (STATE_PARAM b, k) STATE_PARAM_DECL Bigint *b; int k; |
|
910 #else |
|
911 (STATE_PARAM Bigint *b, int k) |
|
912 #endif |
|
913 { |
|
914 Bigint *b1, *p5, *p51; |
|
915 int i; |
|
916 static CONST int p05[3] = { 5, 25, 125 }; |
|
917 |
|
918 if ((i = k & 3)) |
|
919 b = multadd(PASS_STATE b, p05[i-1], 0); |
|
920 |
|
921 if (!(k >>= 2)) |
|
922 return b; |
|
923 if (!(p5 = GET_STATE(p5s))) { |
|
924 /* first time */ |
|
925 #ifdef MULTIPLE_THREADS |
|
926 ACQUIRE_DTOA_LOCK(1); |
|
927 if (!(p5 = p5s)) { |
|
928 p5 = p5s = i2b(625); |
|
929 p5->next = 0; |
|
930 } |
|
931 FREE_DTOA_LOCK(1); |
|
932 #else |
|
933 p5 = GET_STATE(p5s) = i2b(PASS_STATE 625); |
|
934 p5->next = 0; |
|
935 #endif |
|
936 } |
|
937 for(;;) { |
|
938 if (k & 1) { |
|
939 b1 = mult(PASS_STATE b, p5); |
|
940 Bfree(PASS_STATE b); |
|
941 b = b1; |
|
942 } |
|
943 if (!(k >>= 1)) |
|
944 break; |
|
945 if (!(p51 = p5->next)) { |
|
946 #ifdef MULTIPLE_THREADS |
|
947 ACQUIRE_DTOA_LOCK(1); |
|
948 if (!(p51 = p5->next)) { |
|
949 p51 = p5->next = mult(p5,p5); |
|
950 p51->next = 0; |
|
951 } |
|
952 FREE_DTOA_LOCK(1); |
|
953 #else |
|
954 p51 = p5->next = mult(PASS_STATE p5,p5); |
|
955 p51->next = 0; |
|
956 #endif |
|
957 } |
|
958 p5 = p51; |
|
959 } |
|
960 return b; |
|
961 } |
|
962 |
|
963 static Bigint * |
|
964 lshift |
|
965 #ifdef KR_headers |
|
966 (STATE_PARAM b, k) STATE_PARAM_DECL Bigint *b; int k; |
|
967 #else |
|
968 (STATE_PARAM Bigint *b, int k) |
|
969 #endif |
|
970 { |
|
971 int i, k1, n, n1; |
|
972 Bigint *b1; |
|
973 ULong *x, *x1, *xe, z; |
|
974 |
|
975 #ifdef Pack_32 |
|
976 n = k >> 5; |
|
977 #else |
|
978 n = k >> 4; |
|
979 #endif |
|
980 k1 = b->k; |
|
981 n1 = n + b->wds + 1; |
|
982 for(i = b->maxwds; n1 > i; i <<= 1) |
|
983 k1++; |
|
984 b1 = Balloc(PASS_STATE k1); |
|
985 x1 = b1->x; |
|
986 for(i = 0; i < n; i++) |
|
987 *x1++ = 0; |
|
988 x = b->x; |
|
989 xe = x + b->wds; |
|
990 #ifdef Pack_32 |
|
991 if (k &= 0x1f) { |
|
992 k1 = 32 - k; |
|
993 z = 0; |
|
994 do { |
|
995 *x1++ = *x << k | z; |
|
996 z = *x++ >> k1; |
|
997 } |
|
998 while(x < xe); |
|
999 if ((*x1 = z)) |
|
1000 ++n1; |
|
1001 } |
|
1002 #else |
|
1003 if (k &= 0xf) { |
|
1004 k1 = 16 - k; |
|
1005 z = 0; |
|
1006 do { |
|
1007 *x1++ = *x << k & 0xffff | z; |
|
1008 z = *x++ >> k1; |
|
1009 } |
|
1010 while(x < xe); |
|
1011 if (*x1 = z) |
|
1012 ++n1; |
|
1013 } |
|
1014 #endif |
|
1015 else do |
|
1016 *x1++ = *x++; |
|
1017 while(x < xe); |
|
1018 b1->wds = n1 - 1; |
|
1019 Bfree(PASS_STATE b); |
|
1020 return b1; |
|
1021 } |
|
1022 |
|
1023 static int |
|
1024 cmp |
|
1025 #ifdef KR_headers |
|
1026 (a, b) Bigint *a, *b; |
|
1027 #else |
|
1028 (Bigint *a, Bigint *b) |
|
1029 #endif |
|
1030 { |
|
1031 ULong *xa, *xa0, *xb, *xb0; |
|
1032 int i, j; |
|
1033 |
|
1034 i = a->wds; |
|
1035 j = b->wds; |
|
1036 #ifdef DEBUG |
|
1037 if (i > 1 && !a->x[i-1]) |
|
1038 Bug("cmp called with a->x[a->wds-1] == 0"); |
|
1039 if (j > 1 && !b->x[j-1]) |
|
1040 Bug("cmp called with b->x[b->wds-1] == 0"); |
|
1041 #endif |
|
1042 if (i -= j) |
|
1043 return i; |
|
1044 xa0 = a->x; |
|
1045 xa = xa0 + j; |
|
1046 xb0 = b->x; |
|
1047 xb = xb0 + j; |
|
1048 for(;;) { |
|
1049 if (*--xa != *--xb) |
|
1050 return *xa < *xb ? -1 : 1; |
|
1051 if (xa <= xa0) |
|
1052 break; |
|
1053 } |
|
1054 return 0; |
|
1055 } |
|
1056 |
|
1057 static Bigint * |
|
1058 diff |
|
1059 #ifdef KR_headers |
|
1060 (STATE_PARAM a, b) STATE_PARAM_DECL Bigint *a, *b; |
|
1061 #else |
|
1062 (STATE_PARAM Bigint *a, Bigint *b) |
|
1063 #endif |
|
1064 { |
|
1065 Bigint *c; |
|
1066 int i, wa, wb; |
|
1067 ULong *xa, *xae, *xb, *xbe, *xc; |
|
1068 #ifdef ULLong |
|
1069 ULLong borrow, y; |
|
1070 #else |
|
1071 ULong borrow, y; |
|
1072 #ifdef Pack_32 |
|
1073 ULong z; |
|
1074 #endif |
|
1075 #endif |
|
1076 |
|
1077 i = cmp(a,b); |
|
1078 if (!i) { |
|
1079 c = Balloc(PASS_STATE 0); |
|
1080 c->wds = 1; |
|
1081 c->x[0] = 0; |
|
1082 return c; |
|
1083 } |
|
1084 if (i < 0) { |
|
1085 c = a; |
|
1086 a = b; |
|
1087 b = c; |
|
1088 i = 1; |
|
1089 } |
|
1090 else |
|
1091 i = 0; |
|
1092 c = Balloc(PASS_STATE a->k); |
|
1093 c->sign = i; |
|
1094 wa = a->wds; |
|
1095 xa = a->x; |
|
1096 xae = xa + wa; |
|
1097 wb = b->wds; |
|
1098 xb = b->x; |
|
1099 xbe = xb + wb; |
|
1100 xc = c->x; |
|
1101 borrow = 0; |
|
1102 #ifdef ULLong |
|
1103 do { |
|
1104 y = (ULLong)*xa++ - *xb++ - borrow; |
|
1105 borrow = y >> 32 & (ULong)1; |
|
1106 *xc++ = (ULong) y & FFFFFFFF; |
|
1107 } |
|
1108 while(xb < xbe); |
|
1109 while(xa < xae) { |
|
1110 y = *xa++ - borrow; |
|
1111 borrow = y >> 32 & (ULong)1; |
|
1112 *xc++ = (ULong) y & FFFFFFFF; |
|
1113 } |
|
1114 #else |
|
1115 #ifdef Pack_32 |
|
1116 do { |
|
1117 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
|
1118 borrow = (y & 0x10000) >> 16; |
|
1119 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
|
1120 borrow = (z & 0x10000) >> 16; |
|
1121 Storeinc(xc, z, y); |
|
1122 } |
|
1123 while(xb < xbe); |
|
1124 while(xa < xae) { |
|
1125 y = (*xa & 0xffff) - borrow; |
|
1126 borrow = (y & 0x10000) >> 16; |
|
1127 z = (*xa++ >> 16) - borrow; |
|
1128 borrow = (z & 0x10000) >> 16; |
|
1129 Storeinc(xc, z, y); |
|
1130 } |
|
1131 #else |
|
1132 do { |
|
1133 y = *xa++ - *xb++ - borrow; |
|
1134 borrow = (y & 0x10000) >> 16; |
|
1135 *xc++ = y & 0xffff; |
|
1136 } |
|
1137 while(xb < xbe); |
|
1138 while(xa < xae) { |
|
1139 y = *xa++ - borrow; |
|
1140 borrow = (y & 0x10000) >> 16; |
|
1141 *xc++ = y & 0xffff; |
|
1142 } |
|
1143 #endif |
|
1144 #endif |
|
1145 while(!*--xc) |
|
1146 wa--; |
|
1147 c->wds = wa; |
|
1148 return c; |
|
1149 } |
|
1150 |
|
1151 static double |
|
1152 ulp |
|
1153 #ifdef KR_headers |
|
1154 (x) U x; |
|
1155 #else |
|
1156 (U x) |
|
1157 #endif |
|
1158 { |
|
1159 Long L; |
|
1160 U a; |
|
1161 |
|
1162 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
|
1163 #ifndef Avoid_Underflow |
|
1164 #ifndef Sudden_Underflow |
|
1165 if (L > 0) { |
|
1166 #endif |
|
1167 #endif |
|
1168 #ifdef IBM |
|
1169 L |= Exp_msk1 >> 4; |
|
1170 #endif |
|
1171 word0(a) = L; |
|
1172 word1(a) = 0; |
|
1173 #ifndef Avoid_Underflow |
|
1174 #ifndef Sudden_Underflow |
|
1175 } |
|
1176 else { |
|
1177 L = -L >> Exp_shift; |
|
1178 if (L < Exp_shift) { |
|
1179 word0(a) = 0x80000 >> L; |
|
1180 word1(a) = 0; |
|
1181 } |
|
1182 else { |
|
1183 word0(a) = 0; |
|
1184 L -= Exp_shift; |
|
1185 word1(a) = L >= 31 ? 1 : 1 << 31 - L; |
|
1186 } |
|
1187 } |
|
1188 #endif |
|
1189 #endif |
|
1190 return dval(a); |
|
1191 } |
|
1192 |
|
1193 static double |
|
1194 b2d |
|
1195 #ifdef KR_headers |
|
1196 (a, e) Bigint *a; int *e; |
|
1197 #else |
|
1198 (Bigint *a, int *e) |
|
1199 #endif |
|
1200 { |
|
1201 ULong *xa, *xa0, w, y, z; |
|
1202 int k; |
|
1203 U d; |
|
1204 #ifdef VAX |
|
1205 ULong d0, d1; |
|
1206 #else |
|
1207 #define d0 word0(d) |
|
1208 #define d1 word1(d) |
|
1209 #endif |
|
1210 |
|
1211 xa0 = a->x; |
|
1212 xa = xa0 + a->wds; |
|
1213 y = *--xa; |
|
1214 #ifdef DEBUG |
|
1215 if (!y) Bug("zero y in b2d"); |
|
1216 #endif |
|
1217 k = hi0bits(y); |
|
1218 *e = 32 - k; |
|
1219 #ifdef Pack_32 |
|
1220 if (k < Ebits) { |
|
1221 d0 = Exp_1 | y >> (Ebits - k); |
|
1222 w = xa > xa0 ? *--xa : 0; |
|
1223 d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); |
|
1224 goto ret_d; |
|
1225 } |
|
1226 z = xa > xa0 ? *--xa : 0; |
|
1227 if (k -= Ebits) { |
|
1228 d0 = Exp_1 | y << k | z >> (32 - k); |
|
1229 y = xa > xa0 ? *--xa : 0; |
|
1230 d1 = z << k | y >> (32 - k); |
|
1231 } |
|
1232 else { |
|
1233 d0 = Exp_1 | y; |
|
1234 d1 = z; |
|
1235 } |
|
1236 #else |
|
1237 if (k < Ebits + 16) { |
|
1238 z = xa > xa0 ? *--xa : 0; |
|
1239 d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
|
1240 w = xa > xa0 ? *--xa : 0; |
|
1241 y = xa > xa0 ? *--xa : 0; |
|
1242 d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
|
1243 goto ret_d; |
|
1244 } |
|
1245 z = xa > xa0 ? *--xa : 0; |
|
1246 w = xa > xa0 ? *--xa : 0; |
|
1247 k -= Ebits + 16; |
|
1248 d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
|
1249 y = xa > xa0 ? *--xa : 0; |
|
1250 d1 = w << k + 16 | y << k; |
|
1251 #endif |
|
1252 ret_d: |
|
1253 #ifdef VAX |
|
1254 word0(d) = d0 >> 16 | d0 << 16; |
|
1255 word1(d) = d1 >> 16 | d1 << 16; |
|
1256 #else |
|
1257 #undef d0 |
|
1258 #undef d1 |
|
1259 #endif |
|
1260 return dval(d); |
|
1261 } |
|
1262 |
|
1263 static Bigint * |
|
1264 d2b |
|
1265 #ifdef KR_headers |
|
1266 (STATE_PARAM d, e, bits) STATE_PARAM_DECL U d; int *e, *bits; |
|
1267 #else |
|
1268 (STATE_PARAM U d, int *e, int *bits) |
|
1269 #endif |
|
1270 { |
|
1271 Bigint *b; |
|
1272 int de, k; |
|
1273 ULong *x, y, z; |
|
1274 #ifndef Sudden_Underflow |
|
1275 int i; |
|
1276 #endif |
|
1277 #ifdef VAX |
|
1278 ULong d0, d1; |
|
1279 d0 = word0(d) >> 16 | word0(d) << 16; |
|
1280 d1 = word1(d) >> 16 | word1(d) << 16; |
|
1281 #else |
|
1282 #define d0 word0(d) |
|
1283 #define d1 word1(d) |
|
1284 #endif |
|
1285 |
|
1286 #ifdef Pack_32 |
|
1287 b = Balloc(PASS_STATE 1); |
|
1288 #else |
|
1289 b = Balloc(PASS_STATE 2); |
|
1290 #endif |
|
1291 x = b->x; |
|
1292 |
|
1293 z = d0 & Frac_mask; |
|
1294 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
|
1295 #ifdef Sudden_Underflow |
|
1296 de = (int)(d0 >> Exp_shift); |
|
1297 #ifndef IBM |
|
1298 z |= Exp_msk11; |
|
1299 #endif |
|
1300 #else |
|
1301 if ((de = (int)(d0 >> Exp_shift))) |
|
1302 z |= Exp_msk1; |
|
1303 #endif |
|
1304 #ifdef Pack_32 |
|
1305 if ((y = d1)) { |
|
1306 if ((k = lo0bits(&y))) { |
|
1307 x[0] = y | z << (32 - k); |
|
1308 z >>= k; |
|
1309 } |
|
1310 else |
|
1311 x[0] = y; |
|
1312 #ifndef Sudden_Underflow |
|
1313 i = |
|
1314 #endif |
|
1315 b->wds = (x[1] = z) ? 2 : 1; |
|
1316 } |
|
1317 else { |
|
1318 k = lo0bits(&z); |
|
1319 x[0] = z; |
|
1320 #ifndef Sudden_Underflow |
|
1321 i = |
|
1322 #endif |
|
1323 b->wds = 1; |
|
1324 k += 32; |
|
1325 } |
|
1326 #else |
|
1327 if (y = d1) { |
|
1328 if (k = lo0bits(&y)) |
|
1329 if (k >= 16) { |
|
1330 x[0] = y | z << 32 - k & 0xffff; |
|
1331 x[1] = z >> k - 16 & 0xffff; |
|
1332 x[2] = z >> k; |
|
1333 i = 2; |
|
1334 } |
|
1335 else { |
|
1336 x[0] = y & 0xffff; |
|
1337 x[1] = y >> 16 | z << 16 - k & 0xffff; |
|
1338 x[2] = z >> k & 0xffff; |
|
1339 x[3] = z >> k+16; |
|
1340 i = 3; |
|
1341 } |
|
1342 else { |
|
1343 x[0] = y & 0xffff; |
|
1344 x[1] = y >> 16; |
|
1345 x[2] = z & 0xffff; |
|
1346 x[3] = z >> 16; |
|
1347 i = 3; |
|
1348 } |
|
1349 } |
|
1350 else { |
|
1351 #ifdef DEBUG |
|
1352 if (!z) |
|
1353 Bug("Zero passed to d2b"); |
|
1354 #endif |
|
1355 k = lo0bits(&z); |
|
1356 if (k >= 16) { |
|
1357 x[0] = z; |
|
1358 i = 0; |
|
1359 } |
|
1360 else { |
|
1361 x[0] = z & 0xffff; |
|
1362 x[1] = z >> 16; |
|
1363 i = 1; |
|
1364 } |
|
1365 k += 32; |
|
1366 } |
|
1367 while(!x[i]) |
|
1368 --i; |
|
1369 b->wds = i + 1; |
|
1370 #endif |
|
1371 #ifndef Sudden_Underflow |
|
1372 if (de) { |
|
1373 #endif |
|
1374 #ifdef IBM |
|
1375 *e = (de - Bias - (P-1) << 2) + k; |
|
1376 *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); |
|
1377 #else |
|
1378 *e = de - Bias - (P-1) + k; |
|
1379 *bits = P - k; |
|
1380 #endif |
|
1381 #ifndef Sudden_Underflow |
|
1382 } |
|
1383 else { |
|
1384 *e = de - Bias - (P-1) + 1 + k; |
|
1385 #ifdef Pack_32 |
|
1386 *bits = 32*i - hi0bits(x[i-1]); |
|
1387 #else |
|
1388 *bits = (i+2)*16 - hi0bits(x[i]); |
|
1389 #endif |
|
1390 } |
|
1391 #endif |
|
1392 return b; |
|
1393 } |
|
1394 #undef d0 |
|
1395 #undef d1 |
|
1396 |
|
1397 static double |
|
1398 ratio |
|
1399 #ifdef KR_headers |
|
1400 (a, b) Bigint *a, *b; |
|
1401 #else |
|
1402 (Bigint *a, Bigint *b) |
|
1403 #endif |
|
1404 { |
|
1405 U da, db; |
|
1406 int k, ka, kb; |
|
1407 |
|
1408 dval(da) = b2d(a, &ka); |
|
1409 dval(db) = b2d(b, &kb); |
|
1410 #ifdef Pack_32 |
|
1411 k = ka - kb + 32*(a->wds - b->wds); |
|
1412 #else |
|
1413 k = ka - kb + 16*(a->wds - b->wds); |
|
1414 #endif |
|
1415 #ifdef IBM |
|
1416 if (k > 0) { |
|
1417 word0(da) += (k >> 2)*Exp_msk1; |
|
1418 if (k &= 3) |
|
1419 dval(da) *= 1 << k; |
|
1420 } |
|
1421 else { |
|
1422 k = -k; |
|
1423 word0(db) += (k >> 2)*Exp_msk1; |
|
1424 if (k &= 3) |
|
1425 dval(db) *= 1 << k; |
|
1426 } |
|
1427 #else |
|
1428 if (k > 0) |
|
1429 word0(da) += k*Exp_msk1; |
|
1430 else { |
|
1431 k = -k; |
|
1432 word0(db) += k*Exp_msk1; |
|
1433 } |
|
1434 #endif |
|
1435 return dval(da) / dval(db); |
|
1436 } |
|
1437 |
|
1438 static CONST double |
|
1439 tens[] = { |
|
1440 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
|
1441 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
|
1442 1e20, 1e21, 1e22 |
|
1443 #ifdef VAX |
|
1444 , 1e23, 1e24 |
|
1445 #endif |
|
1446 }; |
|
1447 |
|
1448 static CONST double |
|
1449 #ifdef IEEE_Arith |
|
1450 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
|
1451 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
|
1452 #ifdef Avoid_Underflow |
|
1453 9007199254740992.*9007199254740992.e-256 |
|
1454 /* = 2^106 * 1e-53 */ |
|
1455 #else |
|
1456 1e-256 |
|
1457 #endif |
|
1458 }; |
|
1459 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
|
1460 /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
|
1461 #define Scale_Bit 0x10 |
|
1462 #define n_bigtens 5 |
|
1463 #else |
|
1464 #ifdef IBM |
|
1465 bigtens[] = { 1e16, 1e32, 1e64 }; |
|
1466 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; |
|
1467 #define n_bigtens 3 |
|
1468 #else |
|
1469 bigtens[] = { 1e16, 1e32 }; |
|
1470 static CONST double tinytens[] = { 1e-16, 1e-32 }; |
|
1471 #define n_bigtens 2 |
|
1472 #endif |
|
1473 #endif |
|
1474 |
|
1475 static double |
|
1476 _strtod |
|
1477 #ifdef KR_headers |
|
1478 (STATE_PARAM s00, se) STATE_PARAM_DECL CONST char *s00; char **se; |
|
1479 #else |
|
1480 (STATE_PARAM CONST char *s00, char **se) |
|
1481 #endif |
|
1482 { |
|
1483 #ifdef Avoid_Underflow |
|
1484 int scale; |
|
1485 #endif |
|
1486 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
|
1487 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
|
1488 CONST char *s, *s0, *s1; |
|
1489 double aadj, adj; |
|
1490 U aadj1, rv, rv0; |
|
1491 Long L; |
|
1492 ULong y, z; |
|
1493 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
|
1494 #ifdef SET_INEXACT |
|
1495 int inexact, oldinexact; |
|
1496 #endif |
|
1497 #ifdef Honor_FLT_ROUNDS |
|
1498 int rounding; |
|
1499 #endif |
|
1500 #ifdef USE_LOCALE |
|
1501 CONST char *s2; |
|
1502 #endif |
|
1503 |
|
1504 #ifdef __GNUC__ |
|
1505 delta = bb = bd = bs = 0; |
|
1506 #endif |
|
1507 |
|
1508 sign = nz0 = nz = 0; |
|
1509 dval(rv) = 0.; |
|
1510 for(s = s00;;s++) switch(*s) { |
|
1511 case '-': |
|
1512 sign = 1; |
|
1513 /* no break */ |
|
1514 case '+': |
|
1515 if (*++s) |
|
1516 goto break2; |
|
1517 /* no break */ |
|
1518 case 0: |
|
1519 goto ret0; |
|
1520 case '\t': |
|
1521 case '\n': |
|
1522 case '\v': |
|
1523 case '\f': |
|
1524 case '\r': |
|
1525 case ' ': |
|
1526 continue; |
|
1527 default: |
|
1528 goto break2; |
|
1529 } |
|
1530 break2: |
|
1531 if (*s == '0') { |
|
1532 nz0 = 1; |
|
1533 while(*++s == '0') ; |
|
1534 if (!*s) |
|
1535 goto ret; |
|
1536 } |
|
1537 s0 = s; |
|
1538 y = z = 0; |
|
1539 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
|
1540 if (nd < 9) |
|
1541 y = 10*y + c - '0'; |
|
1542 else if (nd < 16) |
|
1543 z = 10*z + c - '0'; |
|
1544 nd0 = nd; |
|
1545 #ifdef USE_LOCALE |
|
1546 s1 = localeconv()->decimal_point; |
|
1547 if (c == *s1) { |
|
1548 c = '.'; |
|
1549 if (*++s1) { |
|
1550 s2 = s; |
|
1551 for(;;) { |
|
1552 if (*++s2 != *s1) { |
|
1553 c = 0; |
|
1554 break; |
|
1555 } |
|
1556 if (!*++s1) { |
|
1557 s = s2; |
|
1558 break; |
|
1559 } |
|
1560 } |
|
1561 } |
|
1562 } |
|
1563 #endif |
|
1564 if (c == '.') { |
|
1565 c = *++s; |
|
1566 if (!nd) { |
|
1567 for(; c == '0'; c = *++s) |
|
1568 nz++; |
|
1569 if (c > '0' && c <= '9') { |
|
1570 s0 = s; |
|
1571 nf += nz; |
|
1572 nz = 0; |
|
1573 goto have_dig; |
|
1574 } |
|
1575 goto dig_done; |
|
1576 } |
|
1577 for(; c >= '0' && c <= '9'; c = *++s) { |
|
1578 have_dig: |
|
1579 nz++; |
|
1580 if (c -= '0') { |
|
1581 nf += nz; |
|
1582 for(i = 1; i < nz; i++) |
|
1583 if (nd++ < 9) |
|
1584 y *= 10; |
|
1585 else if (nd <= DBL_DIG + 1) |
|
1586 z *= 10; |
|
1587 if (nd++ < 9) |
|
1588 y = 10*y + c; |
|
1589 else if (nd <= DBL_DIG + 1) |
|
1590 z = 10*z + c; |
|
1591 nz = 0; |
|
1592 } |
|
1593 } |
|
1594 } |
|
1595 dig_done: |
|
1596 e = 0; |
|
1597 if (c == 'e' || c == 'E') { |
|
1598 if (!nd && !nz && !nz0) { |
|
1599 goto ret0; |
|
1600 } |
|
1601 s00 = s; |
|
1602 esign = 0; |
|
1603 switch(c = *++s) { |
|
1604 case '-': |
|
1605 esign = 1; |
|
1606 case '+': |
|
1607 c = *++s; |
|
1608 } |
|
1609 if (c >= '0' && c <= '9') { |
|
1610 while(c == '0') |
|
1611 c = *++s; |
|
1612 if (c > '0' && c <= '9') { |
|
1613 L = c - '0'; |
|
1614 s1 = s; |
|
1615 while((c = *++s) >= '0' && c <= '9') |
|
1616 L = 10*L + c - '0'; |
|
1617 if (s - s1 > 8 || L > 19999) |
|
1618 /* Avoid confusion from exponents |
|
1619 * so large that e might overflow. |
|
1620 */ |
|
1621 e = 19999; /* safe for 16 bit ints */ |
|
1622 else |
|
1623 e = (int)L; |
|
1624 if (esign) |
|
1625 e = -e; |
|
1626 } |
|
1627 else |
|
1628 e = 0; |
|
1629 } |
|
1630 else |
|
1631 s = s00; |
|
1632 } |
|
1633 if (!nd) { |
|
1634 if (!nz && !nz0) { |
|
1635 ret0: |
|
1636 s = s00; |
|
1637 sign = 0; |
|
1638 } |
|
1639 goto ret; |
|
1640 } |
|
1641 e1 = e -= nf; |
|
1642 |
|
1643 /* Now we have nd0 digits, starting at s0, followed by a |
|
1644 * decimal point, followed by nd-nd0 digits. The number we're |
|
1645 * after is the integer represented by those digits times |
|
1646 * 10**e */ |
|
1647 |
|
1648 if (!nd0) |
|
1649 nd0 = nd; |
|
1650 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
|
1651 dval(rv) = y; |
|
1652 if (k > 9) { |
|
1653 #ifdef SET_INEXACT |
|
1654 if (k > DBL_DIG) |
|
1655 oldinexact = get_inexact(); |
|
1656 #endif |
|
1657 dval(rv) = tens[k - 9] * dval(rv) + z; |
|
1658 } |
|
1659 bd0 = 0; |
|
1660 if (nd <= DBL_DIG |
|
1661 #ifndef RND_PRODQUOT |
|
1662 #ifndef Honor_FLT_ROUNDS |
|
1663 && Flt_Rounds == 1 |
|
1664 #endif |
|
1665 #endif |
|
1666 ) { |
|
1667 if (!e) |
|
1668 goto ret; |
|
1669 if (e > 0) { |
|
1670 if (e <= Ten_pmax) { |
|
1671 #ifdef VAX |
|
1672 goto vax_ovfl_check; |
|
1673 #else |
|
1674 #ifdef Honor_FLT_ROUNDS |
|
1675 /* round correctly FLT_ROUNDS = 2 or 3 */ |
|
1676 if (sign) { |
|
1677 rv = -rv; |
|
1678 sign = 0; |
|
1679 } |
|
1680 #endif |
|
1681 /* rv = */ rounded_product(dval(rv), tens[e]); |
|
1682 goto ret; |
|
1683 #endif |
|
1684 } |
|
1685 i = DBL_DIG - nd; |
|
1686 if (e <= Ten_pmax + i) { |
|
1687 /* A fancier test would sometimes let us do |
|
1688 * this for larger i values. |
|
1689 */ |
|
1690 #ifdef Honor_FLT_ROUNDS |
|
1691 /* round correctly FLT_ROUNDS = 2 or 3 */ |
|
1692 if (sign) { |
|
1693 rv = -rv; |
|
1694 sign = 0; |
|
1695 } |
|
1696 #endif |
|
1697 e -= i; |
|
1698 dval(rv) *= tens[i]; |
|
1699 #ifdef VAX |
|
1700 /* VAX exponent range is so narrow we must |
|
1701 * worry about overflow here... |
|
1702 */ |
|
1703 vax_ovfl_check: |
|
1704 word0(rv) -= P*Exp_msk1; |
|
1705 /* rv = */ rounded_product(dval(rv), tens[e]); |
|
1706 if ((word0(rv) & Exp_mask) |
|
1707 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) |
|
1708 goto ovfl; |
|
1709 word0(rv) += P*Exp_msk1; |
|
1710 #else |
|
1711 /* rv = */ rounded_product(dval(rv), tens[e]); |
|
1712 #endif |
|
1713 goto ret; |
|
1714 } |
|
1715 } |
|
1716 #ifndef Inaccurate_Divide |
|
1717 else if (e >= -Ten_pmax) { |
|
1718 #ifdef Honor_FLT_ROUNDS |
|
1719 /* round correctly FLT_ROUNDS = 2 or 3 */ |
|
1720 if (sign) { |
|
1721 rv = -rv; |
|
1722 sign = 0; |
|
1723 } |
|
1724 #endif |
|
1725 /* rv = */ rounded_quotient(dval(rv), tens[-e]); |
|
1726 goto ret; |
|
1727 } |
|
1728 #endif |
|
1729 } |
|
1730 e1 += nd - k; |
|
1731 |
|
1732 #ifdef IEEE_Arith |
|
1733 #ifdef SET_INEXACT |
|
1734 inexact = 1; |
|
1735 if (k <= DBL_DIG) |
|
1736 oldinexact = get_inexact(); |
|
1737 #endif |
|
1738 #ifdef Avoid_Underflow |
|
1739 scale = 0; |
|
1740 #endif |
|
1741 #ifdef Honor_FLT_ROUNDS |
|
1742 if ((rounding = Flt_Rounds) >= 2) { |
|
1743 if (sign) |
|
1744 rounding = rounding == 2 ? 0 : 2; |
|
1745 else |
|
1746 if (rounding != 2) |
|
1747 rounding = 0; |
|
1748 } |
|
1749 #endif |
|
1750 #endif /*IEEE_Arith*/ |
|
1751 |
|
1752 /* Get starting approximation = rv * 10**e1 */ |
|
1753 |
|
1754 if (e1 > 0) { |
|
1755 if ((i = e1 & 15)) |
|
1756 dval(rv) *= tens[i]; |
|
1757 if (e1 &= ~15) { |
|
1758 if (e1 > DBL_MAX_10_EXP) { |
|
1759 ovfl: |
|
1760 #ifndef NO_ERRNO |
|
1761 errno = ERANGE; |
|
1762 #endif |
|
1763 /* Can't trust HUGE_VAL */ |
|
1764 #ifdef IEEE_Arith |
|
1765 #ifdef Honor_FLT_ROUNDS |
|
1766 switch(rounding) { |
|
1767 case 0: /* toward 0 */ |
|
1768 case 3: /* toward -infinity */ |
|
1769 word0(rv) = Big0; |
|
1770 word1(rv) = Big1; |
|
1771 break; |
|
1772 default: |
|
1773 word0(rv) = Exp_mask; |
|
1774 word1(rv) = 0; |
|
1775 } |
|
1776 #else /*Honor_FLT_ROUNDS*/ |
|
1777 word0(rv) = Exp_mask; |
|
1778 word1(rv) = 0; |
|
1779 #endif /*Honor_FLT_ROUNDS*/ |
|
1780 #ifdef SET_INEXACT |
|
1781 /* set overflow bit */ |
|
1782 dval(rv0) = 1e300; |
|
1783 dval(rv0) *= dval(rv0); |
|
1784 #endif |
|
1785 #else /*IEEE_Arith*/ |
|
1786 word0(rv) = Big0; |
|
1787 word1(rv) = Big1; |
|
1788 #endif /*IEEE_Arith*/ |
|
1789 if (bd0) |
|
1790 goto retfree; |
|
1791 goto ret; |
|
1792 } |
|
1793 e1 >>= 4; |
|
1794 for(j = 0; e1 > 1; j++, e1 >>= 1) |
|
1795 if (e1 & 1) |
|
1796 dval(rv) *= bigtens[j]; |
|
1797 /* The last multiplication could overflow. */ |
|
1798 word0(rv) -= P*Exp_msk1; |
|
1799 dval(rv) *= bigtens[j]; |
|
1800 if ((z = word0(rv) & Exp_mask) |
|
1801 > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
|
1802 goto ovfl; |
|
1803 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
|
1804 /* set to largest number */ |
|
1805 /* (Can't trust DBL_MAX) */ |
|
1806 word0(rv) = Big0; |
|
1807 word1(rv) = Big1; |
|
1808 } |
|
1809 else |
|
1810 word0(rv) += P*Exp_msk1; |
|
1811 } |
|
1812 } |
|
1813 else if (e1 < 0) { |
|
1814 e1 = -e1; |
|
1815 if ((i = e1 & 15)) |
|
1816 dval(rv) /= tens[i]; |
|
1817 if (e1 >>= 4) { |
|
1818 if (e1 >= 1 << n_bigtens) |
|
1819 goto undfl; |
|
1820 #ifdef Avoid_Underflow |
|
1821 if (e1 & Scale_Bit) |
|
1822 scale = 2*P; |
|
1823 for(j = 0; e1 > 0; j++, e1 >>= 1) |
|
1824 if (e1 & 1) |
|
1825 dval(rv) *= tinytens[j]; |
|
1826 if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask) |
|
1827 >> Exp_shift)) > 0) { |
|
1828 /* scaled rv is denormal; zap j low bits */ |
|
1829 if (j >= 32) { |
|
1830 word1(rv) = 0; |
|
1831 if (j >= 53) |
|
1832 word0(rv) = (P+2)*Exp_msk1; |
|
1833 else |
|
1834 word0(rv) &= 0xffffffff << (j-32); |
|
1835 } |
|
1836 else |
|
1837 word1(rv) &= 0xffffffff << j; |
|
1838 } |
|
1839 #else |
|
1840 for(j = 0; e1 > 1; j++, e1 >>= 1) |
|
1841 if (e1 & 1) |
|
1842 dval(rv) *= tinytens[j]; |
|
1843 /* The last multiplication could underflow. */ |
|
1844 dval(rv0) = dval(rv); |
|
1845 dval(rv) *= tinytens[j]; |
|
1846 if (!dval(rv)) { |
|
1847 dval(rv) = 2.*dval(rv0); |
|
1848 dval(rv) *= tinytens[j]; |
|
1849 #endif |
|
1850 if (!dval(rv)) { |
|
1851 undfl: |
|
1852 dval(rv) = 0.; |
|
1853 #ifndef NO_ERRNO |
|
1854 errno = ERANGE; |
|
1855 #endif |
|
1856 if (bd0) |
|
1857 goto retfree; |
|
1858 goto ret; |
|
1859 } |
|
1860 #ifndef Avoid_Underflow |
|
1861 word0(rv) = Tiny0; |
|
1862 word1(rv) = Tiny1; |
|
1863 /* The refinement below will clean |
|
1864 * this approximation up. |
|
1865 */ |
|
1866 } |
|
1867 #endif |
|
1868 } |
|
1869 } |
|
1870 |
|
1871 /* Now the hard part -- adjusting rv to the correct value.*/ |
|
1872 |
|
1873 /* Put digits into bd: true value = bd * 10^e */ |
|
1874 |
|
1875 bd0 = s2b(PASS_STATE s0, nd0, nd, y); |
|
1876 |
|
1877 for(;;) { |
|
1878 bd = Balloc(PASS_STATE bd0->k); |
|
1879 Bcopy(bd, bd0); |
|
1880 bb = d2b(PASS_STATE rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ |
|
1881 bs = i2b(PASS_STATE 1); |
|
1882 |
|
1883 if (e >= 0) { |
|
1884 bb2 = bb5 = 0; |
|
1885 bd2 = bd5 = e; |
|
1886 } |
|
1887 else { |
|
1888 bb2 = bb5 = -e; |
|
1889 bd2 = bd5 = 0; |
|
1890 } |
|
1891 if (bbe >= 0) |
|
1892 bb2 += bbe; |
|
1893 else |
|
1894 bd2 -= bbe; |
|
1895 bs2 = bb2; |
|
1896 #ifdef Honor_FLT_ROUNDS |
|
1897 if (rounding != 1) |
|
1898 bs2++; |
|
1899 #endif |
|
1900 #ifdef Avoid_Underflow |
|
1901 j = bbe - scale; |
|
1902 i = j + bbbits - 1; /* logb(rv) */ |
|
1903 if (i < Emin) /* denormal */ |
|
1904 j += P - Emin; |
|
1905 else |
|
1906 j = P + 1 - bbbits; |
|
1907 #else /*Avoid_Underflow*/ |
|
1908 #ifdef Sudden_Underflow |
|
1909 #ifdef IBM |
|
1910 j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); |
|
1911 #else |
|
1912 j = P + 1 - bbbits; |
|
1913 #endif |
|
1914 #else /*Sudden_Underflow*/ |
|
1915 j = bbe; |
|
1916 i = j + bbbits - 1; /* logb(rv) */ |
|
1917 if (i < Emin) /* denormal */ |
|
1918 j += P - Emin; |
|
1919 else |
|
1920 j = P + 1 - bbbits; |
|
1921 #endif /*Sudden_Underflow*/ |
|
1922 #endif /*Avoid_Underflow*/ |
|
1923 bb2 += j; |
|
1924 bd2 += j; |
|
1925 #ifdef Avoid_Underflow |
|
1926 bd2 += scale; |
|
1927 #endif |
|
1928 i = bb2 < bd2 ? bb2 : bd2; |
|
1929 if (i > bs2) |
|
1930 i = bs2; |
|
1931 if (i > 0) { |
|
1932 bb2 -= i; |
|
1933 bd2 -= i; |
|
1934 bs2 -= i; |
|
1935 } |
|
1936 if (bb5 > 0) { |
|
1937 bs = pow5mult(PASS_STATE bs, bb5); |
|
1938 bb1 = mult(PASS_STATE bs, bb); |
|
1939 Bfree(PASS_STATE bb); |
|
1940 bb = bb1; |
|
1941 } |
|
1942 if (bb2 > 0) |
|
1943 bb = lshift(PASS_STATE bb, bb2); |
|
1944 if (bd5 > 0) |
|
1945 bd = pow5mult(PASS_STATE bd, bd5); |
|
1946 if (bd2 > 0) |
|
1947 bd = lshift(PASS_STATE bd, bd2); |
|
1948 if (bs2 > 0) |
|
1949 bs = lshift(PASS_STATE bs, bs2); |
|
1950 delta = diff(PASS_STATE bb, bd); |
|
1951 dsign = delta->sign; |
|
1952 delta->sign = 0; |
|
1953 i = cmp(delta, bs); |
|
1954 #ifdef Honor_FLT_ROUNDS |
|
1955 if (rounding != 1) { |
|
1956 if (i < 0) { |
|
1957 /* Error is less than an ulp */ |
|
1958 if (!delta->x[0] && delta->wds <= 1) { |
|
1959 /* exact */ |
|
1960 #ifdef SET_INEXACT |
|
1961 inexact = 0; |
|
1962 #endif |
|
1963 break; |
|
1964 } |
|
1965 if (rounding) { |
|
1966 if (dsign) { |
|
1967 adj = 1.; |
|
1968 goto apply_adj; |
|
1969 } |
|
1970 } |
|
1971 else if (!dsign) { |
|
1972 adj = -1.; |
|
1973 if (!word1(rv) |
|
1974 && !(word0(rv) & Frac_mask)) { |
|
1975 y = word0(rv) & Exp_mask; |
|
1976 #ifdef Avoid_Underflow |
|
1977 if (!scale || y > 2*P*Exp_msk1) |
|
1978 #else |
|
1979 if (y) |
|
1980 #endif |
|
1981 { |
|
1982 delta = lshift(PASS_STATE delta,Log2P); |
|
1983 if (cmp(delta, bs) <= 0) |
|
1984 adj = -0.5; |
|
1985 } |
|
1986 } |
|
1987 apply_adj: |
|
1988 #ifdef Avoid_Underflow |
|
1989 if (scale && (y = word0(rv) & Exp_mask) |
|
1990 <= 2*P*Exp_msk1) |
|
1991 word0(adj) += (2*P+1)*Exp_msk1 - y; |
|
1992 #else |
|
1993 #ifdef Sudden_Underflow |
|
1994 if ((word0(rv) & Exp_mask) <= |
|
1995 P*Exp_msk1) { |
|
1996 word0(rv) += P*Exp_msk1; |
|
1997 dval(rv) += adj*ulp(rv); |
|
1998 word0(rv) -= P*Exp_msk1; |
|
1999 } |
|
2000 else |
|
2001 #endif /*Sudden_Underflow*/ |
|
2002 #endif /*Avoid_Underflow*/ |
|
2003 dval(rv) += adj*ulp(rv); |
|
2004 } |
|
2005 break; |
|
2006 } |
|
2007 adj = ratio(delta, bs); |
|
2008 if (adj < 1.) |
|
2009 adj = 1.; |
|
2010 if (adj <= 0x7ffffffe) { |
|
2011 /* adj = rounding ? ceil(adj) : floor(adj); */ |
|
2012 y = adj; |
|
2013 if (y != adj) { |
|
2014 if (!((rounding>>1) ^ dsign)) |
|
2015 y++; |
|
2016 adj = y; |
|
2017 } |
|
2018 } |
|
2019 #ifdef Avoid_Underflow |
|
2020 if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) |
|
2021 word0(adj) += (2*P+1)*Exp_msk1 - y; |
|
2022 #else |
|
2023 #ifdef Sudden_Underflow |
|
2024 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { |
|
2025 word0(rv) += P*Exp_msk1; |
|
2026 adj *= ulp(rv); |
|
2027 if (dsign) |
|
2028 dval(rv) += adj; |
|
2029 else |
|
2030 dval(rv) -= adj; |
|
2031 word0(rv) -= P*Exp_msk1; |
|
2032 goto cont; |
|
2033 } |
|
2034 #endif /*Sudden_Underflow*/ |
|
2035 #endif /*Avoid_Underflow*/ |
|
2036 adj *= ulp(rv); |
|
2037 if (dsign) |
|
2038 dval(rv) += adj; |
|
2039 else |
|
2040 dval(rv) -= adj; |
|
2041 goto cont; |
|
2042 } |
|
2043 #endif /*Honor_FLT_ROUNDS*/ |
|
2044 |
|
2045 if (i < 0) { |
|
2046 /* Error is less than half an ulp -- check for |
|
2047 * special case of mantissa a power of two. |
|
2048 */ |
|
2049 if (dsign || word1(rv) || word0(rv) & Bndry_mask |
|
2050 #ifdef IEEE_Arith |
|
2051 #ifdef Avoid_Underflow |
|
2052 || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
|
2053 #else |
|
2054 || (word0(rv) & Exp_mask) <= Exp_msk1 |
|
2055 #endif |
|
2056 #endif |
|
2057 ) { |
|
2058 #ifdef SET_INEXACT |
|
2059 if (!delta->x[0] && delta->wds <= 1) |
|
2060 inexact = 0; |
|
2061 #endif |
|
2062 break; |
|
2063 } |
|
2064 if (!delta->x[0] && delta->wds <= 1) { |
|
2065 /* exact result */ |
|
2066 #ifdef SET_INEXACT |
|
2067 inexact = 0; |
|
2068 #endif |
|
2069 break; |
|
2070 } |
|
2071 delta = lshift(PASS_STATE delta,Log2P); |
|
2072 if (cmp(delta, bs) > 0) |
|
2073 goto drop_down; |
|
2074 break; |
|
2075 } |
|
2076 if (i == 0) { |
|
2077 /* exactly half-way between */ |
|
2078 if (dsign) { |
|
2079 if ((word0(rv) & Bndry_mask1) == Bndry_mask1 |
|
2080 && word1(rv) == ( |
|
2081 #ifdef Avoid_Underflow |
|
2082 (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) |
|
2083 ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
|
2084 #endif |
|
2085 0xffffffff)) { |
|
2086 /*boundary case -- increment exponent*/ |
|
2087 word0(rv) = (word0(rv) & Exp_mask) |
|
2088 + Exp_msk1 |
|
2089 #ifdef IBM |
|
2090 | Exp_msk1 >> 4 |
|
2091 #endif |
|
2092 ; |
|
2093 word1(rv) = 0; |
|
2094 #ifdef Avoid_Underflow |
|
2095 dsign = 0; |
|
2096 #endif |
|
2097 break; |
|
2098 } |
|
2099 } |
|
2100 else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { |
|
2101 drop_down: |
|
2102 /* boundary case -- decrement exponent */ |
|
2103 #ifdef Sudden_Underflow /*{{*/ |
|
2104 L = word0(rv) & Exp_mask; |
|
2105 #ifdef IBM |
|
2106 if (L < Exp_msk1) |
|
2107 #else |
|
2108 #ifdef Avoid_Underflow |
|
2109 if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) |
|
2110 #else |
|
2111 if (L <= Exp_msk1) |
|
2112 #endif /*Avoid_Underflow*/ |
|
2113 #endif /*IBM*/ |
|
2114 goto undfl; |
|
2115 L -= Exp_msk1; |
|
2116 #else /*Sudden_Underflow}{*/ |
|
2117 #ifdef Avoid_Underflow |
|
2118 if (scale) { |
|
2119 L = word0(rv) & Exp_mask; |
|
2120 if (L <= (2*P+1)*Exp_msk1) { |
|
2121 if (L > (P+2)*Exp_msk1) |
|
2122 /* round even ==> */ |
|
2123 /* accept rv */ |
|
2124 break; |
|
2125 /* rv = smallest denormal */ |
|
2126 goto undfl; |
|
2127 } |
|
2128 } |
|
2129 #endif /*Avoid_Underflow*/ |
|
2130 L = (word0(rv) & Exp_mask) - Exp_msk1; |
|
2131 #endif /*Sudden_Underflow}}*/ |
|
2132 word0(rv) = L | Bndry_mask1; |
|
2133 word1(rv) = 0xffffffff; |
|
2134 #ifdef IBM |
|
2135 goto cont; |
|
2136 #else |
|
2137 break; |
|
2138 #endif |
|
2139 } |
|
2140 #ifndef ROUND_BIASED |
|
2141 if (!(word1(rv) & LSB)) |
|
2142 break; |
|
2143 #endif |
|
2144 if (dsign) |
|
2145 dval(rv) += ulp(rv); |
|
2146 #ifndef ROUND_BIASED |
|
2147 else { |
|
2148 dval(rv) -= ulp(rv); |
|
2149 #ifndef Sudden_Underflow |
|
2150 if (!dval(rv)) |
|
2151 goto undfl; |
|
2152 #endif |
|
2153 } |
|
2154 #ifdef Avoid_Underflow |
|
2155 dsign = 1 - dsign; |
|
2156 #endif |
|
2157 #endif |
|
2158 break; |
|
2159 } |
|
2160 if ((aadj = ratio(delta, bs)) <= 2.) { |
|
2161 if (dsign) |
|
2162 aadj = dval(aadj1) = 1.; |
|
2163 else if (word1(rv) || word0(rv) & Bndry_mask) { |
|
2164 #ifndef Sudden_Underflow |
|
2165 if (word1(rv) == Tiny1 && !word0(rv)) |
|
2166 goto undfl; |
|
2167 #endif |
|
2168 aadj = 1.; |
|
2169 dval(aadj1) = -1.; |
|
2170 } |
|
2171 else { |
|
2172 /* special case -- power of FLT_RADIX to be */ |
|
2173 /* rounded down... */ |
|
2174 |
|
2175 if (aadj < 2./FLT_RADIX) |
|
2176 aadj = 1./FLT_RADIX; |
|
2177 else |
|
2178 aadj *= 0.5; |
|
2179 dval(aadj1) = -aadj; |
|
2180 } |
|
2181 } |
|
2182 else { |
|
2183 aadj *= 0.5; |
|
2184 dval(aadj1) = dsign ? aadj : -aadj; |
|
2185 #ifdef Check_FLT_ROUNDS |
|
2186 switch(Rounding) { |
|
2187 case 2: /* towards +infinity */ |
|
2188 dval(aadj1) -= 0.5; |
|
2189 break; |
|
2190 case 0: /* towards 0 */ |
|
2191 case 3: /* towards -infinity */ |
|
2192 dval(aadj1) += 0.5; |
|
2193 } |
|
2194 #else |
|
2195 if (Flt_Rounds == 0) |
|
2196 dval(aadj1) += 0.5; |
|
2197 #endif /*Check_FLT_ROUNDS*/ |
|
2198 } |
|
2199 y = word0(rv) & Exp_mask; |
|
2200 |
|
2201 /* Check for overflow */ |
|
2202 |
|
2203 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
|
2204 dval(rv0) = dval(rv); |
|
2205 word0(rv) -= P*Exp_msk1; |
|
2206 adj = dval(aadj1) * ulp(rv); |
|
2207 dval(rv) += adj; |
|
2208 if ((word0(rv) & Exp_mask) >= |
|
2209 Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
|
2210 if (word0(rv0) == Big0 && word1(rv0) == Big1) |
|
2211 goto ovfl; |
|
2212 word0(rv) = Big0; |
|
2213 word1(rv) = Big1; |
|
2214 goto cont; |
|
2215 } |
|
2216 else |
|
2217 word0(rv) += P*Exp_msk1; |
|
2218 } |
|
2219 else { |
|
2220 #ifdef Avoid_Underflow |
|
2221 if (scale && y <= 2*P*Exp_msk1) { |
|
2222 if (aadj <= 0x7fffffff) { |
|
2223 if ((z = (ULong) aadj) <= 0) |
|
2224 z = 1; |
|
2225 aadj = z; |
|
2226 dval(aadj1) = dsign ? aadj : -aadj; |
|
2227 } |
|
2228 word0(aadj1) += (2*P+1)*Exp_msk1 - y; |
|
2229 } |
|
2230 adj = dval(aadj1) * ulp(rv); |
|
2231 dval(rv) += adj; |
|
2232 #else |
|
2233 #ifdef Sudden_Underflow |
|
2234 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { |
|
2235 dval(rv0) = dval(rv); |
|
2236 word0(rv) += P*Exp_msk1; |
|
2237 adj = dval(aadj1) * ulp(rv); |
|
2238 dval(rv) += adj; |
|
2239 #ifdef IBM |
|
2240 if ((word0(rv) & Exp_mask) < P*Exp_msk1) |
|
2241 #else |
|
2242 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) |
|
2243 #endif |
|
2244 { |
|
2245 if (word0(rv0) == Tiny0 |
|
2246 && word1(rv0) == Tiny1) |
|
2247 goto undfl; |
|
2248 word0(rv) = Tiny0; |
|
2249 word1(rv) = Tiny1; |
|
2250 goto cont; |
|
2251 } |
|
2252 else |
|
2253 word0(rv) -= P*Exp_msk1; |
|
2254 } |
|
2255 else { |
|
2256 adj = dval(aadj1) * ulp(rv); |
|
2257 dval(rv) += adj; |
|
2258 } |
|
2259 #else /*Sudden_Underflow*/ |
|
2260 /* Compute adj so that the IEEE rounding rules will |
|
2261 * correctly round rv + adj in some half-way cases. |
|
2262 * If rv * ulp(rv) is denormalized (i.e., |
|
2263 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid |
|
2264 * trouble from bits lost to denormalization; |
|
2265 * example: 1.2e-307 . |
|
2266 */ |
|
2267 if (y <= (P-1)*Exp_msk1 && aadj > 1.) { |
|
2268 dval(aadj1) = (double)(int)(aadj + 0.5); |
|
2269 if (!dsign) |
|
2270 dval(aadj1) = -dval(aadj1); |
|
2271 } |
|
2272 adj = dval(aadj1) * ulp(rv); |
|
2273 dval(rv) += adj; |
|
2274 #endif /*Sudden_Underflow*/ |
|
2275 #endif /*Avoid_Underflow*/ |
|
2276 } |
|
2277 z = word0(rv) & Exp_mask; |
|
2278 #ifndef SET_INEXACT |
|
2279 #ifdef Avoid_Underflow |
|
2280 if (!scale) |
|
2281 #endif |
|
2282 if (y == z) { |
|
2283 /* Can we stop now? */ |
|
2284 L = (Long)aadj; |
|
2285 aadj -= L; |
|
2286 /* The tolerances below are conservative. */ |
|
2287 if (dsign || word1(rv) || word0(rv) & Bndry_mask) { |
|
2288 if (aadj < .4999999 || aadj > .5000001) |
|
2289 break; |
|
2290 } |
|
2291 else if (aadj < .4999999/FLT_RADIX) |
|
2292 break; |
|
2293 } |
|
2294 #endif |
|
2295 cont: |
|
2296 Bfree(PASS_STATE bb); |
|
2297 Bfree(PASS_STATE bd); |
|
2298 Bfree(PASS_STATE bs); |
|
2299 Bfree(PASS_STATE delta); |
|
2300 } |
|
2301 #ifdef SET_INEXACT |
|
2302 if (inexact) { |
|
2303 if (!oldinexact) { |
|
2304 word0(rv0) = Exp_1 + (70 << Exp_shift); |
|
2305 word1(rv0) = 0; |
|
2306 dval(rv0) += 1.; |
|
2307 } |
|
2308 } |
|
2309 else if (!oldinexact) |
|
2310 clear_inexact(); |
|
2311 #endif |
|
2312 #ifdef Avoid_Underflow |
|
2313 if (scale) { |
|
2314 word0(rv0) = Exp_1 - 2*P*Exp_msk1; |
|
2315 word1(rv0) = 0; |
|
2316 dval(rv) *= dval(rv0); |
|
2317 #ifndef NO_ERRNO |
|
2318 /* try to avoid the bug of testing an 8087 register value */ |
|
2319 if (word0(rv) == 0 && word1(rv) == 0) |
|
2320 errno = ERANGE; |
|
2321 #endif |
|
2322 } |
|
2323 #endif /* Avoid_Underflow */ |
|
2324 #ifdef SET_INEXACT |
|
2325 if (inexact && !(word0(rv) & Exp_mask)) { |
|
2326 /* set underflow bit */ |
|
2327 dval(rv0) = 1e-300; |
|
2328 dval(rv0) *= dval(rv0); |
|
2329 } |
|
2330 #endif |
|
2331 retfree: |
|
2332 Bfree(PASS_STATE bb); |
|
2333 Bfree(PASS_STATE bd); |
|
2334 Bfree(PASS_STATE bs); |
|
2335 Bfree(PASS_STATE bd0); |
|
2336 Bfree(PASS_STATE delta); |
|
2337 ret: |
|
2338 if (se) |
|
2339 *se = (char *)s; |
|
2340 return sign ? -dval(rv) : dval(rv); |
|
2341 } |
|
2342 |
|
2343 static int |
|
2344 quorem |
|
2345 #ifdef KR_headers |
|
2346 (b, S) Bigint *b, *S; |
|
2347 #else |
|
2348 (Bigint *b, Bigint *S) |
|
2349 #endif |
|
2350 { |
|
2351 int n; |
|
2352 ULong *bx, *bxe, q, *sx, *sxe; |
|
2353 #ifdef ULLong |
|
2354 ULLong borrow, carry, y, ys; |
|
2355 #else |
|
2356 ULong borrow, carry, y, ys; |
|
2357 #ifdef Pack_32 |
|
2358 ULong si, z, zs; |
|
2359 #endif |
|
2360 #endif |
|
2361 |
|
2362 n = S->wds; |
|
2363 #ifdef DEBUG |
|
2364 /*debug*/ if (b->wds > n) |
|
2365 /*debug*/ Bug("oversize b in quorem"); |
|
2366 #endif |
|
2367 if (b->wds < n) |
|
2368 return 0; |
|
2369 sx = S->x; |
|
2370 sxe = sx + --n; |
|
2371 bx = b->x; |
|
2372 bxe = bx + n; |
|
2373 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
|
2374 #ifdef DEBUG |
|
2375 /*debug*/ if (q > 9) |
|
2376 /*debug*/ Bug("oversized quotient in quorem"); |
|
2377 #endif |
|
2378 if (q) { |
|
2379 borrow = 0; |
|
2380 carry = 0; |
|
2381 do { |
|
2382 #ifdef ULLong |
|
2383 ys = *sx++ * (ULLong)q + carry; |
|
2384 carry = ys >> 32; |
|
2385 y = *bx - (ys & FFFFFFFF) - borrow; |
|
2386 borrow = y >> 32 & (ULong)1; |
|
2387 *bx++ = (ULong) y & FFFFFFFF; |
|
2388 #else |
|
2389 #ifdef Pack_32 |
|
2390 si = *sx++; |
|
2391 ys = (si & 0xffff) * q + carry; |
|
2392 zs = (si >> 16) * q + (ys >> 16); |
|
2393 carry = zs >> 16; |
|
2394 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
|
2395 borrow = (y & 0x10000) >> 16; |
|
2396 z = (*bx >> 16) - (zs & 0xffff) - borrow; |
|
2397 borrow = (z & 0x10000) >> 16; |
|
2398 Storeinc(bx, z, y); |
|
2399 #else |
|
2400 ys = *sx++ * q + carry; |
|
2401 carry = ys >> 16; |
|
2402 y = *bx - (ys & 0xffff) - borrow; |
|
2403 borrow = (y & 0x10000) >> 16; |
|
2404 *bx++ = y & 0xffff; |
|
2405 #endif |
|
2406 #endif |
|
2407 } |
|
2408 while(sx <= sxe); |
|
2409 if (!*bxe) { |
|
2410 bx = b->x; |
|
2411 while(--bxe > bx && !*bxe) |
|
2412 --n; |
|
2413 b->wds = n; |
|
2414 } |
|
2415 } |
|
2416 if (cmp(b, S) >= 0) { |
|
2417 q++; |
|
2418 borrow = 0; |
|
2419 carry = 0; |
|
2420 bx = b->x; |
|
2421 sx = S->x; |
|
2422 do { |
|
2423 #ifdef ULLong |
|
2424 ys = *sx++ + carry; |
|
2425 carry = ys >> 32; |
|
2426 y = *bx - (ys & FFFFFFFF) - borrow; |
|
2427 borrow = y >> 32 & (ULong)1; |
|
2428 *bx++ = (ULong) y & FFFFFFFF; |
|
2429 #else |
|
2430 #ifdef Pack_32 |
|
2431 si = *sx++; |
|
2432 ys = (si & 0xffff) + carry; |
|
2433 zs = (si >> 16) + (ys >> 16); |
|
2434 carry = zs >> 16; |
|
2435 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
|
2436 borrow = (y & 0x10000) >> 16; |
|
2437 z = (*bx >> 16) - (zs & 0xffff) - borrow; |
|
2438 borrow = (z & 0x10000) >> 16; |
|
2439 Storeinc(bx, z, y); |
|
2440 #else |
|
2441 ys = *sx++ + carry; |
|
2442 carry = ys >> 16; |
|
2443 y = *bx - (ys & 0xffff) - borrow; |
|
2444 borrow = (y & 0x10000) >> 16; |
|
2445 *bx++ = y & 0xffff; |
|
2446 #endif |
|
2447 #endif |
|
2448 } |
|
2449 while(sx <= sxe); |
|
2450 bx = b->x; |
|
2451 bxe = bx + n; |
|
2452 if (!*bxe) { |
|
2453 while(--bxe > bx && !*bxe) |
|
2454 --n; |
|
2455 b->wds = n; |
|
2456 } |
|
2457 } |
|
2458 return q; |
|
2459 } |
|
2460 |
|
2461 #if !defined(MULTIPLE_THREADS) && !defined(NO_GLOBAL_STATE) |
|
2462 #define USE_DTOA_RESULT 1 |
|
2463 static char *dtoa_result; |
|
2464 #endif |
|
2465 |
|
2466 static char * |
|
2467 #ifdef KR_headers |
|
2468 rv_alloc(STATE_PARAM i) STATE_PARAM_DECL int i; |
|
2469 #else |
|
2470 rv_alloc(STATE_PARAM int i) |
|
2471 #endif |
|
2472 { |
|
2473 int j, k, *r; |
|
2474 |
|
2475 j = sizeof(ULong); |
|
2476 for(k = 0; |
|
2477 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned) i; |
|
2478 j <<= 1) |
|
2479 k++; |
|
2480 r = (int*)Balloc(PASS_STATE k); |
|
2481 *r = k; |
|
2482 return |
|
2483 #ifdef USE_DTOA_RESULT |
|
2484 dtoa_result = |
|
2485 #endif |
|
2486 (char *)(r+1); |
|
2487 } |
|
2488 |
|
2489 static char * |
|
2490 #ifdef KR_headers |
|
2491 nrv_alloc(STATE_PARAM s, rve, n) STATE_PARAM_DECL char *s, **rve; int n; |
|
2492 #else |
|
2493 nrv_alloc(STATE_PARAM CONST char *s, char **rve, int n) |
|
2494 #endif |
|
2495 { |
|
2496 char *rv, *t; |
|
2497 |
|
2498 t = rv = rv_alloc(PASS_STATE n); |
|
2499 while((*t = *s++)) t++; |
|
2500 if (rve) |
|
2501 *rve = t; |
|
2502 return rv; |
|
2503 } |
|
2504 |
|
2505 /* freedtoa(s) must be used to free values s returned by dtoa |
|
2506 * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
|
2507 * but for consistency with earlier versions of dtoa, it is optional |
|
2508 * when MULTIPLE_THREADS is not defined. |
|
2509 */ |
|
2510 |
|
2511 static void |
|
2512 #ifdef KR_headers |
|
2513 freedtoa(STATE_PARAM s) STATE_PARAM_DECL char *s; |
|
2514 #else |
|
2515 freedtoa(STATE_PARAM char *s) |
|
2516 #endif |
|
2517 { |
|
2518 Bigint *b = (Bigint *)((int *)s - 1); |
|
2519 b->maxwds = 1 << (b->k = *(int*)b); |
|
2520 Bfree(PASS_STATE b); |
|
2521 #ifdef USE_DTOA_RESULT |
|
2522 if (s == dtoa_result) |
|
2523 dtoa_result = 0; |
|
2524 #endif |
|
2525 } |
|
2526 |
|
2527 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
|
2528 * |
|
2529 * Inspired by "How to Print Floating-Point Numbers Accurately" by |
|
2530 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
|
2531 * |
|
2532 * Modifications: |
|
2533 * 1. Rather than iterating, we use a simple numeric overestimate |
|
2534 * to determine k = floor(log10(d)). We scale relevant |
|
2535 * quantities using O(log2(k)) rather than O(k) multiplications. |
|
2536 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
|
2537 * try to generate digits strictly left to right. Instead, we |
|
2538 * compute with fewer bits and propagate the carry if necessary |
|
2539 * when rounding the final digit up. This is often faster. |
|
2540 * 3. Under the assumption that input will be rounded nearest, |
|
2541 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
|
2542 * That is, we allow equality in stopping tests when the |
|
2543 * round-nearest rule will give the same floating-point value |
|
2544 * as would satisfaction of the stopping test with strict |
|
2545 * inequality. |
|
2546 * 4. We remove common factors of powers of 2 from relevant |
|
2547 * quantities. |
|
2548 * 5. When converting floating-point integers less than 1e16, |
|
2549 * we use floating-point arithmetic rather than resorting |
|
2550 * to multiple-precision integers. |
|
2551 * 6. When asked to produce fewer than 15 digits, we first try |
|
2552 * to get by with floating-point arithmetic; we resort to |
|
2553 * multiple-precision integer arithmetic only if we cannot |
|
2554 * guarantee that the floating-point calculation has given |
|
2555 * the correctly rounded result. For k requested digits and |
|
2556 * "uniformly" distributed input, the probability is |
|
2557 * something like 10^(k-15) that we must resort to the Long |
|
2558 * calculation. |
|
2559 */ |
|
2560 |
|
2561 static char * |
|
2562 dtoa |
|
2563 #ifdef KR_headers |
|
2564 (STATE_PARAM d, mode, ndigits, decpt, sign, rve) |
|
2565 STATE_PARAM_DECL U d; int mode, ndigits, *decpt, *sign; char **rve; |
|
2566 #else |
|
2567 (STATE_PARAM U d, int mode, int ndigits, int *decpt, int *sign, char **rve) |
|
2568 #endif |
|
2569 { |
|
2570 /* Arguments ndigits, decpt, sign are similar to those |
|
2571 of ecvt and fcvt; trailing zeros are suppressed from |
|
2572 the returned string. If not null, *rve is set to point |
|
2573 to the end of the return value. If d is +-Infinity or NaN, |
|
2574 then *decpt is set to 9999. |
|
2575 |
|
2576 mode: |
|
2577 0 ==> shortest string that yields d when read in |
|
2578 and rounded to nearest. |
|
2579 1 ==> like 0, but with Steele & White stopping rule; |
|
2580 e.g. with IEEE P754 arithmetic , mode 0 gives |
|
2581 1e23 whereas mode 1 gives 9.999999999999999e22. |
|
2582 2 ==> max(1,ndigits) significant digits. This gives a |
|
2583 return value similar to that of ecvt, except |
|
2584 that trailing zeros are suppressed. |
|
2585 3 ==> through ndigits past the decimal point. This |
|
2586 gives a return value similar to that from fcvt, |
|
2587 except that trailing zeros are suppressed, and |
|
2588 ndigits can be negative. |
|
2589 4,5 ==> similar to 2 and 3, respectively, but (in |
|
2590 round-nearest mode) with the tests of mode 0 to |
|
2591 possibly return a shorter string that rounds to d. |
|
2592 With IEEE arithmetic and compilation with |
|
2593 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
|
2594 as modes 2 and 3 when FLT_ROUNDS != 1. |
|
2595 6-9 ==> Debugging modes similar to mode - 4: don't try |
|
2596 fast floating-point estimate (if applicable). |
|
2597 |
|
2598 Values of mode other than 0-9 are treated as mode 0. |
|
2599 |
|
2600 Sufficient space is allocated to the return value |
|
2601 to hold the suppressed trailing zeros. |
|
2602 */ |
|
2603 |
|
2604 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
|
2605 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
|
2606 spec_case, try_quick; |
|
2607 Long L; |
|
2608 #ifndef Sudden_Underflow |
|
2609 int denorm; |
|
2610 ULong x; |
|
2611 #endif |
|
2612 Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
|
2613 U d2, eps; |
|
2614 double ds; |
|
2615 char *s, *s0; |
|
2616 #ifdef Honor_FLT_ROUNDS |
|
2617 int rounding; |
|
2618 #endif |
|
2619 #ifdef SET_INEXACT |
|
2620 int inexact, oldinexact; |
|
2621 #endif |
|
2622 |
|
2623 #ifdef __GNUC__ |
|
2624 ilim = ilim1 = 0; |
|
2625 mlo = NULL; |
|
2626 #endif |
|
2627 |
|
2628 #ifdef USE_DTOA_RESULT |
|
2629 if (dtoa_result) { |
|
2630 freedtoa(PASS_STATE dtoa_result); |
|
2631 dtoa_result = 0; |
|
2632 } |
|
2633 #endif |
|
2634 |
|
2635 if (word0(d) & Sign_bit) { |
|
2636 /* set sign for everything, including 0's and NaNs */ |
|
2637 *sign = 1; |
|
2638 word0(d) &= ~Sign_bit; /* clear sign bit */ |
|
2639 } |
|
2640 else |
|
2641 *sign = 0; |
|
2642 |
|
2643 #if defined(IEEE_Arith) + defined(VAX) |
|
2644 #ifdef IEEE_Arith |
|
2645 if ((word0(d) & Exp_mask) == Exp_mask) |
|
2646 #else |
|
2647 if (word0(d) == 0x8000) |
|
2648 #endif |
|
2649 { |
|
2650 /* Infinity or NaN */ |
|
2651 *decpt = 9999; |
|
2652 #ifdef IEEE_Arith |
|
2653 if (!word1(d) && !(word0(d) & 0xfffff)) |
|
2654 return nrv_alloc(PASS_STATE "Infinity", rve, 8); |
|
2655 #endif |
|
2656 return nrv_alloc(PASS_STATE "NaN", rve, 3); |
|
2657 } |
|
2658 #endif |
|
2659 #ifdef IBM |
|
2660 dval(d) += 0; /* normalize */ |
|
2661 #endif |
|
2662 if (!dval(d)) { |
|
2663 *decpt = 1; |
|
2664 return nrv_alloc(PASS_STATE "0", rve, 1); |
|
2665 } |
|
2666 |
|
2667 #ifdef SET_INEXACT |
|
2668 try_quick = oldinexact = get_inexact(); |
|
2669 inexact = 1; |
|
2670 #endif |
|
2671 #ifdef Honor_FLT_ROUNDS |
|
2672 if ((rounding = Flt_Rounds) >= 2) { |
|
2673 if (*sign) |
|
2674 rounding = rounding == 2 ? 0 : 2; |
|
2675 else |
|
2676 if (rounding != 2) |
|
2677 rounding = 0; |
|
2678 } |
|
2679 #endif |
|
2680 |
|
2681 b = d2b(PASS_STATE d, &be, &bbits); |
|
2682 #ifdef Sudden_Underflow |
|
2683 i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); |
|
2684 #else |
|
2685 if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
|
2686 #endif |
|
2687 dval(d2) = dval(d); |
|
2688 word0(d2) &= Frac_mask1; |
|
2689 word0(d2) |= Exp_11; |
|
2690 #ifdef IBM |
|
2691 if (j = 11 - hi0bits(word0(d2) & Frac_mask)) |
|
2692 dval(d2) /= 1 << j; |
|
2693 #endif |
|
2694 |
|
2695 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
|
2696 * log10(x) = log(x) / log(10) |
|
2697 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
|
2698 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
|
2699 * |
|
2700 * This suggests computing an approximation k to log10(d) by |
|
2701 * |
|
2702 * k = (i - Bias)*0.301029995663981 |
|
2703 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
|
2704 * |
|
2705 * We want k to be too large rather than too small. |
|
2706 * The error in the first-order Taylor series approximation |
|
2707 * is in our favor, so we just round up the constant enough |
|
2708 * to compensate for any error in the multiplication of |
|
2709 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
|
2710 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
|
2711 * adding 1e-13 to the constant term more than suffices. |
|
2712 * Hence we adjust the constant term to 0.1760912590558. |
|
2713 * (We could get a more accurate k by invoking log10, |
|
2714 * but this is probably not worthwhile.) |
|
2715 */ |
|
2716 |
|
2717 i -= Bias; |
|
2718 #ifdef IBM |
|
2719 i <<= 2; |
|
2720 i += j; |
|
2721 #endif |
|
2722 #ifndef Sudden_Underflow |
|
2723 denorm = 0; |
|
2724 } |
|
2725 else { |
|
2726 /* d is denormalized */ |
|
2727 |
|
2728 i = bbits + be + (Bias + (P-1) - 1); |
|
2729 x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) |
|
2730 : word1(d) << (32 - i); |
|
2731 dval(d2) = x; |
|
2732 word0(d2) -= 31*Exp_msk1; /* adjust exponent */ |
|
2733 i -= (Bias + (P-1) - 1) + 1; |
|
2734 denorm = 1; |
|
2735 } |
|
2736 #endif |
|
2737 ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
|
2738 k = (int)ds; |
|
2739 if (ds < 0. && ds != k) |
|
2740 k--; /* want k = floor(ds) */ |
|
2741 k_check = 1; |
|
2742 if (k >= 0 && k <= Ten_pmax) { |
|
2743 if (dval(d) < tens[k]) |
|
2744 k--; |
|
2745 k_check = 0; |
|
2746 } |
|
2747 j = bbits - i - 1; |
|
2748 if (j >= 0) { |
|
2749 b2 = 0; |
|
2750 s2 = j; |
|
2751 } |
|
2752 else { |
|
2753 b2 = -j; |
|
2754 s2 = 0; |
|
2755 } |
|
2756 if (k >= 0) { |
|
2757 b5 = 0; |
|
2758 s5 = k; |
|
2759 s2 += k; |
|
2760 } |
|
2761 else { |
|
2762 b2 -= k; |
|
2763 b5 = -k; |
|
2764 s5 = 0; |
|
2765 } |
|
2766 if (mode < 0 || mode > 9) |
|
2767 mode = 0; |
|
2768 |
|
2769 #ifndef SET_INEXACT |
|
2770 #ifdef Check_FLT_ROUNDS |
|
2771 try_quick = Rounding == 1; |
|
2772 #else |
|
2773 try_quick = 1; |
|
2774 #endif |
|
2775 #endif /*SET_INEXACT*/ |
|
2776 |
|
2777 if (mode > 5) { |
|
2778 mode -= 4; |
|
2779 try_quick = 0; |
|
2780 } |
|
2781 leftright = 1; |
|
2782 switch(mode) { |
|
2783 case 0: |
|
2784 case 1: |
|
2785 ilim = ilim1 = -1; |
|
2786 i = 18; |
|
2787 ndigits = 0; |
|
2788 break; |
|
2789 case 2: |
|
2790 leftright = 0; |
|
2791 /* no break */ |
|
2792 case 4: |
|
2793 if (ndigits <= 0) |
|
2794 ndigits = 1; |
|
2795 ilim = ilim1 = i = ndigits; |
|
2796 break; |
|
2797 case 3: |
|
2798 leftright = 0; |
|
2799 /* no break */ |
|
2800 case 5: |
|
2801 i = ndigits + k + 1; |
|
2802 ilim = i; |
|
2803 ilim1 = i - 1; |
|
2804 if (i <= 0) |
|
2805 i = 1; |
|
2806 } |
|
2807 s = s0 = rv_alloc(PASS_STATE i); |
|
2808 |
|
2809 #ifdef Honor_FLT_ROUNDS |
|
2810 if (mode > 1 && rounding != 1) |
|
2811 leftright = 0; |
|
2812 #endif |
|
2813 |
|
2814 if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
|
2815 |
|
2816 /* Try to get by with floating-point arithmetic. */ |
|
2817 |
|
2818 i = 0; |
|
2819 dval(d2) = dval(d); |
|
2820 k0 = k; |
|
2821 ilim0 = ilim; |
|
2822 ieps = 2; /* conservative */ |
|
2823 if (k > 0) { |
|
2824 ds = tens[k&0xf]; |
|
2825 j = k >> 4; |
|
2826 if (j & Bletch) { |
|
2827 /* prevent overflows */ |
|
2828 j &= Bletch - 1; |
|
2829 dval(d) /= bigtens[n_bigtens-1]; |
|
2830 ieps++; |
|
2831 } |
|
2832 for(; j; j >>= 1, i++) |
|
2833 if (j & 1) { |
|
2834 ieps++; |
|
2835 ds *= bigtens[i]; |
|
2836 } |
|
2837 dval(d) /= ds; |
|
2838 } |
|
2839 else if ((j1 = -k)) { |
|
2840 dval(d) *= tens[j1 & 0xf]; |
|
2841 for(j = j1 >> 4; j; j >>= 1, i++) |
|
2842 if (j & 1) { |
|
2843 ieps++; |
|
2844 dval(d) *= bigtens[i]; |
|
2845 } |
|
2846 } |
|
2847 if (k_check && dval(d) < 1. && ilim > 0) { |
|
2848 if (ilim1 <= 0) |
|
2849 goto fast_failed; |
|
2850 ilim = ilim1; |
|
2851 k--; |
|
2852 dval(d) *= 10.; |
|
2853 ieps++; |
|
2854 } |
|
2855 dval(eps) = ieps*dval(d) + 7.; |
|
2856 word0(eps) -= (P-1)*Exp_msk1; |
|
2857 if (ilim == 0) { |
|
2858 S = mhi = 0; |
|
2859 dval(d) -= 5.; |
|
2860 if (dval(d) > dval(eps)) |
|
2861 goto one_digit; |
|
2862 if (dval(d) < -dval(eps)) |
|
2863 goto no_digits; |
|
2864 goto fast_failed; |
|
2865 } |
|
2866 #ifndef No_leftright |
|
2867 if (leftright) { |
|
2868 /* Use Steele & White method of only |
|
2869 * generating digits needed. |
|
2870 */ |
|
2871 dval(eps) = 0.5/tens[ilim-1] - dval(eps); |
|
2872 for(i = 0;;) { |
|
2873 L = (ULong) dval(d); |
|
2874 dval(d) -= L; |
|
2875 *s++ = '0' + (int)L; |
|
2876 if (dval(d) < dval(eps)) |
|
2877 goto ret1; |
|
2878 if (1. - dval(d) < dval(eps)) |
|
2879 goto bump_up; |
|
2880 if (++i >= ilim) |
|
2881 break; |
|
2882 dval(eps) *= 10.; |
|
2883 dval(d) *= 10.; |
|
2884 } |
|
2885 } |
|
2886 else { |
|
2887 #endif |
|
2888 /* Generate ilim digits, then fix them up. */ |
|
2889 dval(eps) *= tens[ilim-1]; |
|
2890 for(i = 1;; i++, dval(d) *= 10.) { |
|
2891 L = (Long)(dval(d)); |
|
2892 if (!(dval(d) -= L)) |
|
2893 ilim = i; |
|
2894 *s++ = '0' + (int)L; |
|
2895 if (i == ilim) { |
|
2896 if (dval(d) > 0.5 + dval(eps)) |
|
2897 goto bump_up; |
|
2898 else if (dval(d) < 0.5 - dval(eps)) { |
|
2899 while(*--s == '0'); |
|
2900 s++; |
|
2901 goto ret1; |
|
2902 } |
|
2903 break; |
|
2904 } |
|
2905 } |
|
2906 #ifndef No_leftright |
|
2907 } |
|
2908 #endif |
|
2909 fast_failed: |
|
2910 s = s0; |
|
2911 dval(d) = dval(d2); |
|
2912 k = k0; |
|
2913 ilim = ilim0; |
|
2914 } |
|
2915 |
|
2916 /* Do we have a "small" integer? */ |
|
2917 |
|
2918 if (be >= 0 && k <= Int_max) { |
|
2919 /* Yes. */ |
|
2920 ds = tens[k]; |
|
2921 if (ndigits < 0 && ilim <= 0) { |
|
2922 S = mhi = 0; |
|
2923 if (ilim < 0 || dval(d) < 5*ds) |
|
2924 goto no_digits; |
|
2925 goto one_digit; |
|
2926 } |
|
2927 for(i = 1;; i++, dval(d) *= 10.) { |
|
2928 L = (Long)(dval(d) / ds); |
|
2929 dval(d) -= L*ds; |
|
2930 #ifdef Check_FLT_ROUNDS |
|
2931 /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
|
2932 if (dval(d) < 0) { |
|
2933 L--; |
|
2934 dval(d) += ds; |
|
2935 } |
|
2936 #endif |
|
2937 *s++ = '0' + (int)L; |
|
2938 if (!dval(d)) { |
|
2939 #ifdef SET_INEXACT |
|
2940 inexact = 0; |
|
2941 #endif |
|
2942 break; |
|
2943 } |
|
2944 if (i == ilim) { |
|
2945 #ifdef Honor_FLT_ROUNDS |
|
2946 if (mode > 1) |
|
2947 switch(rounding) { |
|
2948 case 0: goto ret1; |
|
2949 case 2: goto bump_up; |
|
2950 } |
|
2951 #endif |
|
2952 dval(d) += dval(d); |
|
2953 if (dval(d) > ds || (dval(d) == ds && L & 1)) { |
|
2954 bump_up: |
|
2955 while(*--s == '9') |
|
2956 if (s == s0) { |
|
2957 k++; |
|
2958 *s = '0'; |
|
2959 break; |
|
2960 } |
|
2961 ++*s++; |
|
2962 } |
|
2963 break; |
|
2964 } |
|
2965 } |
|
2966 goto ret1; |
|
2967 } |
|
2968 |
|
2969 m2 = b2; |
|
2970 m5 = b5; |
|
2971 mhi = mlo = 0; |
|
2972 if (leftright) { |
|
2973 i = |
|
2974 #ifndef Sudden_Underflow |
|
2975 denorm ? be + (Bias + (P-1) - 1 + 1) : |
|
2976 #endif |
|
2977 #ifdef IBM |
|
2978 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); |
|
2979 #else |
|
2980 1 + P - bbits; |
|
2981 #endif |
|
2982 b2 += i; |
|
2983 s2 += i; |
|
2984 mhi = i2b(PASS_STATE 1); |
|
2985 } |
|
2986 if (m2 > 0 && s2 > 0) { |
|
2987 i = m2 < s2 ? m2 : s2; |
|
2988 b2 -= i; |
|
2989 m2 -= i; |
|
2990 s2 -= i; |
|
2991 } |
|
2992 if (b5 > 0) { |
|
2993 if (leftright) { |
|
2994 if (m5 > 0) { |
|
2995 mhi = pow5mult(PASS_STATE mhi, m5); |
|
2996 b1 = mult(PASS_STATE mhi, b); |
|
2997 Bfree(PASS_STATE b); |
|
2998 b = b1; |
|
2999 } |
|
3000 if ((j = b5 - m5)) |
|
3001 b = pow5mult(PASS_STATE b, j); |
|
3002 } |
|
3003 else |
|
3004 b = pow5mult(PASS_STATE b, b5); |
|
3005 } |
|
3006 S = i2b(PASS_STATE 1); |
|
3007 if (s5 > 0) |
|
3008 S = pow5mult(PASS_STATE S, s5); |
|
3009 |
|
3010 /* Check for special case that d is a normalized power of 2. */ |
|
3011 |
|
3012 spec_case = 0; |
|
3013 if ((mode < 2 || leftright) |
|
3014 #ifdef Honor_FLT_ROUNDS |
|
3015 && rounding == 1 |
|
3016 #endif |
|
3017 ) { |
|
3018 if (!word1(d) && !(word0(d) & Bndry_mask) |
|
3019 #ifndef Sudden_Underflow |
|
3020 && word0(d) & (Exp_mask & ~Exp_msk1) |
|
3021 #endif |
|
3022 ) { |
|
3023 /* The special case */ |
|
3024 b2 += Log2P; |
|
3025 s2 += Log2P; |
|
3026 spec_case = 1; |
|
3027 } |
|
3028 } |
|
3029 |
|
3030 /* Arrange for convenient computation of quotients: |
|
3031 * shift left if necessary so divisor has 4 leading 0 bits. |
|
3032 * |
|
3033 * Perhaps we should just compute leading 28 bits of S once |
|
3034 * and for all and pass them and a shift to quorem, so it |
|
3035 * can do shifts and ors to compute the numerator for q. |
|
3036 */ |
|
3037 #ifdef Pack_32 |
|
3038 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) |
|
3039 i = 32 - i; |
|
3040 #else |
|
3041 if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) |
|
3042 i = 16 - i; |
|
3043 #endif |
|
3044 if (i > 4) { |
|
3045 i -= 4; |
|
3046 b2 += i; |
|
3047 m2 += i; |
|
3048 s2 += i; |
|
3049 } |
|
3050 else if (i < 4) { |
|
3051 i += 28; |
|
3052 b2 += i; |
|
3053 m2 += i; |
|
3054 s2 += i; |
|
3055 } |
|
3056 if (b2 > 0) |
|
3057 b = lshift(PASS_STATE b, b2); |
|
3058 if (s2 > 0) |
|
3059 S = lshift(PASS_STATE S, s2); |
|
3060 if (k_check) { |
|
3061 if (cmp(b,S) < 0) { |
|
3062 k--; |
|
3063 b = multadd(PASS_STATE b, 10, 0); /* we botched the k estimate */ |
|
3064 if (leftright) |
|
3065 mhi = multadd(PASS_STATE mhi, 10, 0); |
|
3066 ilim = ilim1; |
|
3067 } |
|
3068 } |
|
3069 if (ilim <= 0 && (mode == 3 || mode == 5)) { |
|
3070 if (ilim < 0 || cmp(b,S = multadd(PASS_STATE S,5,0)) < 0) { |
|
3071 /* no digits, fcvt style */ |
|
3072 no_digits: |
|
3073 /* MOZILLA CHANGE: Always return a non-empty string. */ |
|
3074 *s++ = '0'; |
|
3075 k = 0; |
|
3076 goto ret; |
|
3077 } |
|
3078 one_digit: |
|
3079 *s++ = '1'; |
|
3080 k++; |
|
3081 goto ret; |
|
3082 } |
|
3083 if (leftright) { |
|
3084 if (m2 > 0) |
|
3085 mhi = lshift(PASS_STATE mhi, m2); |
|
3086 |
|
3087 /* Compute mlo -- check for special case |
|
3088 * that d is a normalized power of 2. |
|
3089 */ |
|
3090 |
|
3091 mlo = mhi; |
|
3092 if (spec_case) { |
|
3093 mhi = Balloc(PASS_STATE mhi->k); |
|
3094 Bcopy(mhi, mlo); |
|
3095 mhi = lshift(PASS_STATE mhi, Log2P); |
|
3096 } |
|
3097 |
|
3098 for(i = 1;;i++) { |
|
3099 dig = quorem(b,S) + '0'; |
|
3100 /* Do we yet have the shortest decimal string |
|
3101 * that will round to d? |
|
3102 */ |
|
3103 j = cmp(b, mlo); |
|
3104 delta = diff(PASS_STATE S, mhi); |
|
3105 j1 = delta->sign ? 1 : cmp(b, delta); |
|
3106 Bfree(PASS_STATE delta); |
|
3107 #ifndef ROUND_BIASED |
|
3108 if (j1 == 0 && mode != 1 && !(word1(d) & 1) |
|
3109 #ifdef Honor_FLT_ROUNDS |
|
3110 && rounding >= 1 |
|
3111 #endif |
|
3112 ) { |
|
3113 if (dig == '9') |
|
3114 goto round_9_up; |
|
3115 if (j > 0) |
|
3116 dig++; |
|
3117 #ifdef SET_INEXACT |
|
3118 else if (!b->x[0] && b->wds <= 1) |
|
3119 inexact = 0; |
|
3120 #endif |
|
3121 *s++ = dig; |
|
3122 goto ret; |
|
3123 } |
|
3124 #endif |
|
3125 if (j < 0 || (j == 0 && mode != 1 |
|
3126 #ifndef ROUND_BIASED |
|
3127 && !(word1(d) & 1) |
|
3128 #endif |
|
3129 )) { |
|
3130 if (!b->x[0] && b->wds <= 1) { |
|
3131 #ifdef SET_INEXACT |
|
3132 inexact = 0; |
|
3133 #endif |
|
3134 goto accept_dig; |
|
3135 } |
|
3136 #ifdef Honor_FLT_ROUNDS |
|
3137 if (mode > 1) |
|
3138 switch(rounding) { |
|
3139 case 0: goto accept_dig; |
|
3140 case 2: goto keep_dig; |
|
3141 } |
|
3142 #endif /*Honor_FLT_ROUNDS*/ |
|
3143 if (j1 > 0) { |
|
3144 b = lshift(PASS_STATE b, 1); |
|
3145 j1 = cmp(b, S); |
|
3146 if ((j1 > 0 || (j1 == 0 && dig & 1)) |
|
3147 && dig++ == '9') |
|
3148 goto round_9_up; |
|
3149 } |
|
3150 accept_dig: |
|
3151 *s++ = dig; |
|
3152 goto ret; |
|
3153 } |
|
3154 if (j1 > 0) { |
|
3155 #ifdef Honor_FLT_ROUNDS |
|
3156 if (!rounding) |
|
3157 goto accept_dig; |
|
3158 #endif |
|
3159 if (dig == '9') { /* possible if i == 1 */ |
|
3160 round_9_up: |
|
3161 *s++ = '9'; |
|
3162 goto roundoff; |
|
3163 } |
|
3164 *s++ = dig + 1; |
|
3165 goto ret; |
|
3166 } |
|
3167 #ifdef Honor_FLT_ROUNDS |
|
3168 keep_dig: |
|
3169 #endif |
|
3170 *s++ = dig; |
|
3171 if (i == ilim) |
|
3172 break; |
|
3173 b = multadd(PASS_STATE b, 10, 0); |
|
3174 if (mlo == mhi) |
|
3175 mlo = mhi = multadd(PASS_STATE mhi, 10, 0); |
|
3176 else { |
|
3177 mlo = multadd(PASS_STATE mlo, 10, 0); |
|
3178 mhi = multadd(PASS_STATE mhi, 10, 0); |
|
3179 } |
|
3180 } |
|
3181 } |
|
3182 else |
|
3183 for(i = 1;; i++) { |
|
3184 *s++ = dig = quorem(b,S) + '0'; |
|
3185 if (!b->x[0] && b->wds <= 1) { |
|
3186 #ifdef SET_INEXACT |
|
3187 inexact = 0; |
|
3188 #endif |
|
3189 goto ret; |
|
3190 } |
|
3191 if (i >= ilim) |
|
3192 break; |
|
3193 b = multadd(PASS_STATE b, 10, 0); |
|
3194 } |
|
3195 |
|
3196 /* Round off last digit */ |
|
3197 |
|
3198 #ifdef Honor_FLT_ROUNDS |
|
3199 switch(rounding) { |
|
3200 case 0: goto trimzeros; |
|
3201 case 2: goto roundoff; |
|
3202 } |
|
3203 #endif |
|
3204 b = lshift(PASS_STATE b, 1); |
|
3205 j = cmp(b, S); |
|
3206 if (j >= 0) { /* ECMA compatible rounding needed by Spidermonkey */ |
|
3207 roundoff: |
|
3208 while(*--s == '9') |
|
3209 if (s == s0) { |
|
3210 k++; |
|
3211 *s++ = '1'; |
|
3212 goto ret; |
|
3213 } |
|
3214 ++*s++; |
|
3215 } |
|
3216 else { |
|
3217 #ifdef Honor_FLT_ROUNDS |
|
3218 trimzeros: |
|
3219 #endif |
|
3220 while(*--s == '0'); |
|
3221 s++; |
|
3222 } |
|
3223 ret: |
|
3224 Bfree(PASS_STATE S); |
|
3225 if (mhi) { |
|
3226 if (mlo && mlo != mhi) |
|
3227 Bfree(PASS_STATE mlo); |
|
3228 Bfree(PASS_STATE mhi); |
|
3229 } |
|
3230 ret1: |
|
3231 #ifdef SET_INEXACT |
|
3232 if (inexact) { |
|
3233 if (!oldinexact) { |
|
3234 word0(d) = Exp_1 + (70 << Exp_shift); |
|
3235 word1(d) = 0; |
|
3236 dval(d) += 1.; |
|
3237 } |
|
3238 } |
|
3239 else if (!oldinexact) |
|
3240 clear_inexact(); |
|
3241 #endif |
|
3242 Bfree(PASS_STATE b); |
|
3243 *s = 0; |
|
3244 *decpt = k + 1; |
|
3245 if (rve) |
|
3246 *rve = s; |
|
3247 return s0; |
|
3248 } |