|
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
|
2 * vim: set ts=8 sts=4 et sw=4 tw=99: |
|
3 * This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #include "mozilla/MathAlgorithms.h" |
|
8 |
|
9 |
|
10 #include "jit/Lowering.h" |
|
11 #include "jit/mips/Assembler-mips.h" |
|
12 #include "jit/MIR.h" |
|
13 |
|
14 #include "jit/shared/Lowering-shared-inl.h" |
|
15 |
|
16 using namespace js; |
|
17 using namespace js::jit; |
|
18 |
|
19 using mozilla::FloorLog2; |
|
20 |
|
21 bool |
|
22 LIRGeneratorMIPS::useBox(LInstruction *lir, size_t n, MDefinition *mir, |
|
23 LUse::Policy policy, bool useAtStart) |
|
24 { |
|
25 MOZ_ASSERT(mir->type() == MIRType_Value); |
|
26 |
|
27 if (!ensureDefined(mir)) |
|
28 return false; |
|
29 lir->setOperand(n, LUse(mir->virtualRegister(), policy, useAtStart)); |
|
30 lir->setOperand(n + 1, LUse(VirtualRegisterOfPayload(mir), policy, useAtStart)); |
|
31 return true; |
|
32 } |
|
33 |
|
34 bool |
|
35 LIRGeneratorMIPS::useBoxFixed(LInstruction *lir, size_t n, MDefinition *mir, Register reg1, |
|
36 Register reg2) |
|
37 { |
|
38 MOZ_ASSERT(mir->type() == MIRType_Value); |
|
39 MOZ_ASSERT(reg1 != reg2); |
|
40 |
|
41 if (!ensureDefined(mir)) |
|
42 return false; |
|
43 lir->setOperand(n, LUse(reg1, mir->virtualRegister())); |
|
44 lir->setOperand(n + 1, LUse(reg2, VirtualRegisterOfPayload(mir))); |
|
45 return true; |
|
46 } |
|
47 |
|
48 LAllocation |
|
49 LIRGeneratorMIPS::useByteOpRegister(MDefinition *mir) |
|
50 { |
|
51 return useRegister(mir); |
|
52 } |
|
53 |
|
54 LAllocation |
|
55 LIRGeneratorMIPS::useByteOpRegisterOrNonDoubleConstant(MDefinition *mir) |
|
56 { |
|
57 return useRegisterOrNonDoubleConstant(mir); |
|
58 } |
|
59 |
|
60 bool |
|
61 LIRGeneratorMIPS::lowerConstantDouble(double d, MInstruction *mir) |
|
62 { |
|
63 return define(new(alloc()) LDouble(d), mir); |
|
64 } |
|
65 |
|
66 bool |
|
67 LIRGeneratorMIPS::lowerConstantFloat32(float d, MInstruction *mir) |
|
68 { |
|
69 return define(new(alloc()) LFloat32(d), mir); |
|
70 } |
|
71 |
|
72 bool |
|
73 LIRGeneratorMIPS::visitConstant(MConstant *ins) |
|
74 { |
|
75 if (ins->type() == MIRType_Double) |
|
76 return lowerConstantDouble(ins->value().toDouble(), ins); |
|
77 |
|
78 if (ins->type() == MIRType_Float32) |
|
79 return lowerConstantFloat32(ins->value().toDouble(), ins); |
|
80 |
|
81 // Emit non-double constants at their uses. |
|
82 if (ins->canEmitAtUses()) |
|
83 return emitAtUses(ins); |
|
84 |
|
85 return LIRGeneratorShared::visitConstant(ins); |
|
86 } |
|
87 |
|
88 bool |
|
89 LIRGeneratorMIPS::visitBox(MBox *box) |
|
90 { |
|
91 MDefinition *inner = box->getOperand(0); |
|
92 |
|
93 // If the box wrapped a double, it needs a new register. |
|
94 if (IsFloatingPointType(inner->type())) |
|
95 return defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), |
|
96 tempCopy(inner, 0), inner->type()), box); |
|
97 |
|
98 if (box->canEmitAtUses()) |
|
99 return emitAtUses(box); |
|
100 |
|
101 if (inner->isConstant()) |
|
102 return defineBox(new(alloc()) LValue(inner->toConstant()->value()), box); |
|
103 |
|
104 LBox *lir = new(alloc()) LBox(use(inner), inner->type()); |
|
105 |
|
106 // Otherwise, we should not define a new register for the payload portion |
|
107 // of the output, so bypass defineBox(). |
|
108 uint32_t vreg = getVirtualRegister(); |
|
109 if (vreg >= MAX_VIRTUAL_REGISTERS) |
|
110 return false; |
|
111 |
|
112 // Note that because we're using PASSTHROUGH, we do not change the type of |
|
113 // the definition. We also do not define the first output as "TYPE", |
|
114 // because it has no corresponding payload at (vreg + 1). Also note that |
|
115 // although we copy the input's original type for the payload half of the |
|
116 // definition, this is only for clarity. PASSTHROUGH definitions are |
|
117 // ignored. |
|
118 lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); |
|
119 lir->setDef(1, LDefinition(inner->virtualRegister(), LDefinition::TypeFrom(inner->type()), |
|
120 LDefinition::PASSTHROUGH)); |
|
121 box->setVirtualRegister(vreg); |
|
122 return add(lir); |
|
123 } |
|
124 |
|
125 bool |
|
126 LIRGeneratorMIPS::visitUnbox(MUnbox *unbox) |
|
127 { |
|
128 // An unbox on mips reads in a type tag (either in memory or a register) and |
|
129 // a payload. Unlike most instructions consuming a box, we ask for the type |
|
130 // second, so that the result can re-use the first input. |
|
131 MDefinition *inner = unbox->getOperand(0); |
|
132 |
|
133 if (!ensureDefined(inner)) |
|
134 return false; |
|
135 |
|
136 if (IsFloatingPointType(unbox->type())) { |
|
137 LUnboxFloatingPoint *lir = new(alloc()) LUnboxFloatingPoint(unbox->type()); |
|
138 if (unbox->fallible() && !assignSnapshot(lir, unbox->bailoutKind())) |
|
139 return false; |
|
140 if (!useBox(lir, LUnboxFloatingPoint::Input, inner)) |
|
141 return false; |
|
142 return define(lir, unbox); |
|
143 } |
|
144 |
|
145 // Swap the order we use the box pieces so we can re-use the payload |
|
146 // register. |
|
147 LUnbox *lir = new(alloc()) LUnbox; |
|
148 lir->setOperand(0, usePayloadInRegisterAtStart(inner)); |
|
149 lir->setOperand(1, useType(inner, LUse::REGISTER)); |
|
150 |
|
151 if (unbox->fallible() && !assignSnapshot(lir, unbox->bailoutKind())) |
|
152 return false; |
|
153 |
|
154 // Note that PASSTHROUGH here is illegal, since types and payloads form two |
|
155 // separate intervals. If the type becomes dead before the payload, it |
|
156 // could be used as a Value without the type being recoverable. Unbox's |
|
157 // purpose is to eagerly kill the definition of a type tag, so keeping both |
|
158 // alive (for the purpose of gcmaps) is unappealing. Instead, we create a |
|
159 // new virtual register. |
|
160 return defineReuseInput(lir, unbox, 0); |
|
161 } |
|
162 |
|
163 bool |
|
164 LIRGeneratorMIPS::visitReturn(MReturn *ret) |
|
165 { |
|
166 MDefinition *opd = ret->getOperand(0); |
|
167 MOZ_ASSERT(opd->type() == MIRType_Value); |
|
168 |
|
169 LReturn *ins = new(alloc()) LReturn; |
|
170 ins->setOperand(0, LUse(JSReturnReg_Type)); |
|
171 ins->setOperand(1, LUse(JSReturnReg_Data)); |
|
172 return fillBoxUses(ins, 0, opd) && add(ins); |
|
173 } |
|
174 |
|
175 // x = !y |
|
176 bool |
|
177 LIRGeneratorMIPS::lowerForALU(LInstructionHelper<1, 1, 0> *ins, |
|
178 MDefinition *mir, MDefinition *input) |
|
179 { |
|
180 ins->setOperand(0, useRegister(input)); |
|
181 return define(ins, mir, |
|
182 LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); |
|
183 } |
|
184 |
|
185 // z = x+y |
|
186 bool |
|
187 LIRGeneratorMIPS::lowerForALU(LInstructionHelper<1, 2, 0> *ins, MDefinition *mir, |
|
188 MDefinition *lhs, MDefinition *rhs) |
|
189 { |
|
190 ins->setOperand(0, useRegister(lhs)); |
|
191 ins->setOperand(1, useRegisterOrConstant(rhs)); |
|
192 return define(ins, mir, |
|
193 LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); |
|
194 } |
|
195 |
|
196 bool |
|
197 LIRGeneratorMIPS::lowerForFPU(LInstructionHelper<1, 1, 0> *ins, MDefinition *mir, |
|
198 MDefinition *input) |
|
199 { |
|
200 ins->setOperand(0, useRegister(input)); |
|
201 return define(ins, mir, |
|
202 LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); |
|
203 } |
|
204 |
|
205 bool |
|
206 LIRGeneratorMIPS::lowerForFPU(LInstructionHelper<1, 2, 0> *ins, MDefinition *mir, |
|
207 MDefinition *lhs, MDefinition *rhs) |
|
208 { |
|
209 ins->setOperand(0, useRegister(lhs)); |
|
210 ins->setOperand(1, useRegister(rhs)); |
|
211 return define(ins, mir, |
|
212 LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::DEFAULT)); |
|
213 } |
|
214 |
|
215 bool |
|
216 LIRGeneratorMIPS::lowerForBitAndAndBranch(LBitAndAndBranch *baab, MInstruction *mir, |
|
217 MDefinition *lhs, MDefinition *rhs) |
|
218 { |
|
219 baab->setOperand(0, useRegisterAtStart(lhs)); |
|
220 baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); |
|
221 return add(baab, mir); |
|
222 } |
|
223 |
|
224 bool |
|
225 LIRGeneratorMIPS::defineUntypedPhi(MPhi *phi, size_t lirIndex) |
|
226 { |
|
227 LPhi *type = current->getPhi(lirIndex + VREG_TYPE_OFFSET); |
|
228 LPhi *payload = current->getPhi(lirIndex + VREG_DATA_OFFSET); |
|
229 |
|
230 uint32_t typeVreg = getVirtualRegister(); |
|
231 if (typeVreg >= MAX_VIRTUAL_REGISTERS) |
|
232 return false; |
|
233 |
|
234 phi->setVirtualRegister(typeVreg); |
|
235 |
|
236 uint32_t payloadVreg = getVirtualRegister(); |
|
237 if (payloadVreg >= MAX_VIRTUAL_REGISTERS) |
|
238 return false; |
|
239 MOZ_ASSERT(typeVreg + 1 == payloadVreg); |
|
240 |
|
241 type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE)); |
|
242 payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD)); |
|
243 annotate(type); |
|
244 annotate(payload); |
|
245 return true; |
|
246 } |
|
247 |
|
248 void |
|
249 LIRGeneratorMIPS::lowerUntypedPhiInput(MPhi *phi, uint32_t inputPosition, |
|
250 LBlock *block, size_t lirIndex) |
|
251 { |
|
252 MDefinition *operand = phi->getOperand(inputPosition); |
|
253 LPhi *type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); |
|
254 LPhi *payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); |
|
255 type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, |
|
256 LUse::ANY)); |
|
257 payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); |
|
258 } |
|
259 |
|
260 bool |
|
261 LIRGeneratorMIPS::lowerForShift(LInstructionHelper<1, 2, 0> *ins, MDefinition *mir, |
|
262 MDefinition *lhs, MDefinition *rhs) |
|
263 { |
|
264 ins->setOperand(0, useRegister(lhs)); |
|
265 ins->setOperand(1, useRegisterOrConstant(rhs)); |
|
266 return define(ins, mir); |
|
267 } |
|
268 |
|
269 bool |
|
270 LIRGeneratorMIPS::lowerDivI(MDiv *div) |
|
271 { |
|
272 if (div->isUnsigned()) |
|
273 return lowerUDiv(div); |
|
274 |
|
275 // Division instructions are slow. Division by constant denominators can be |
|
276 // rewritten to use other instructions. |
|
277 if (div->rhs()->isConstant()) { |
|
278 int32_t rhs = div->rhs()->toConstant()->value().toInt32(); |
|
279 // Check for division by a positive power of two, which is an easy and |
|
280 // important case to optimize. Note that other optimizations are also |
|
281 // possible; division by negative powers of two can be optimized in a |
|
282 // similar manner as positive powers of two, and division by other |
|
283 // constants can be optimized by a reciprocal multiplication technique. |
|
284 int32_t shift = FloorLog2(rhs); |
|
285 if (rhs > 0 && 1 << shift == rhs) { |
|
286 LDivPowTwoI *lir = new(alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp()); |
|
287 if (div->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
288 return false; |
|
289 return define(lir, div); |
|
290 } |
|
291 } |
|
292 |
|
293 LDivI *lir = new(alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); |
|
294 if (div->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
295 return false; |
|
296 return define(lir, div); |
|
297 } |
|
298 |
|
299 bool |
|
300 LIRGeneratorMIPS::lowerMulI(MMul *mul, MDefinition *lhs, MDefinition *rhs) |
|
301 { |
|
302 LMulI *lir = new(alloc()) LMulI; |
|
303 if (mul->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
304 return false; |
|
305 |
|
306 return lowerForALU(lir, mul, lhs, rhs); |
|
307 } |
|
308 |
|
309 bool |
|
310 LIRGeneratorMIPS::lowerModI(MMod *mod) |
|
311 { |
|
312 if (mod->isUnsigned()) |
|
313 return lowerUMod(mod); |
|
314 |
|
315 if (mod->rhs()->isConstant()) { |
|
316 int32_t rhs = mod->rhs()->toConstant()->value().toInt32(); |
|
317 int32_t shift = FloorLog2(rhs); |
|
318 if (rhs > 0 && 1 << shift == rhs) { |
|
319 LModPowTwoI *lir = new(alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); |
|
320 if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
321 return false; |
|
322 return define(lir, mod); |
|
323 } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { |
|
324 LModMaskI *lir = new(alloc()) LModMaskI(useRegister(mod->lhs()), |
|
325 temp(LDefinition::GENERAL), shift + 1); |
|
326 if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
327 return false; |
|
328 return define(lir, mod); |
|
329 } |
|
330 } |
|
331 LModI *lir = new(alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()), |
|
332 temp(LDefinition::GENERAL)); |
|
333 |
|
334 if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
335 return false; |
|
336 return define(lir, mod); |
|
337 } |
|
338 |
|
339 bool |
|
340 LIRGeneratorMIPS::visitPowHalf(MPowHalf *ins) |
|
341 { |
|
342 MDefinition *input = ins->input(); |
|
343 MOZ_ASSERT(input->type() == MIRType_Double); |
|
344 LPowHalfD *lir = new(alloc()) LPowHalfD(useRegisterAtStart(input)); |
|
345 return defineReuseInput(lir, ins, 0); |
|
346 } |
|
347 |
|
348 LTableSwitch * |
|
349 LIRGeneratorMIPS::newLTableSwitch(const LAllocation &in, const LDefinition &inputCopy, |
|
350 MTableSwitch *tableswitch) |
|
351 { |
|
352 return new(alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch); |
|
353 } |
|
354 |
|
355 LTableSwitchV * |
|
356 LIRGeneratorMIPS::newLTableSwitchV(MTableSwitch *tableswitch) |
|
357 { |
|
358 return new(alloc()) LTableSwitchV(temp(), tempFloat32(), temp(), tableswitch); |
|
359 } |
|
360 |
|
361 bool |
|
362 LIRGeneratorMIPS::visitGuardShape(MGuardShape *ins) |
|
363 { |
|
364 MOZ_ASSERT(ins->obj()->type() == MIRType_Object); |
|
365 |
|
366 LDefinition tempObj = temp(LDefinition::OBJECT); |
|
367 LGuardShape *guard = new(alloc()) LGuardShape(useRegister(ins->obj()), tempObj); |
|
368 if (!assignSnapshot(guard, ins->bailoutKind())) |
|
369 return false; |
|
370 if (!add(guard, ins)) |
|
371 return false; |
|
372 return redefine(ins, ins->obj()); |
|
373 } |
|
374 |
|
375 bool |
|
376 LIRGeneratorMIPS::visitGuardObjectType(MGuardObjectType *ins) |
|
377 { |
|
378 MOZ_ASSERT(ins->obj()->type() == MIRType_Object); |
|
379 |
|
380 LDefinition tempObj = temp(LDefinition::OBJECT); |
|
381 LGuardObjectType *guard = new(alloc()) LGuardObjectType(useRegister(ins->obj()), tempObj); |
|
382 if (!assignSnapshot(guard)) |
|
383 return false; |
|
384 if (!add(guard, ins)) |
|
385 return false; |
|
386 return redefine(ins, ins->obj()); |
|
387 } |
|
388 |
|
389 bool |
|
390 LIRGeneratorMIPS::lowerUrshD(MUrsh *mir) |
|
391 { |
|
392 MDefinition *lhs = mir->lhs(); |
|
393 MDefinition *rhs = mir->rhs(); |
|
394 |
|
395 MOZ_ASSERT(lhs->type() == MIRType_Int32); |
|
396 MOZ_ASSERT(rhs->type() == MIRType_Int32); |
|
397 |
|
398 LUrshD *lir = new(alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); |
|
399 return define(lir, mir); |
|
400 } |
|
401 |
|
402 bool |
|
403 LIRGeneratorMIPS::visitAsmJSNeg(MAsmJSNeg *ins) |
|
404 { |
|
405 if (ins->type() == MIRType_Int32) |
|
406 return define(new(alloc()) LNegI(useRegisterAtStart(ins->input())), ins); |
|
407 |
|
408 if (ins->type() == MIRType_Float32) |
|
409 return define(new(alloc()) LNegF(useRegisterAtStart(ins->input())), ins); |
|
410 |
|
411 MOZ_ASSERT(ins->type() == MIRType_Double); |
|
412 return define(new(alloc()) LNegD(useRegisterAtStart(ins->input())), ins); |
|
413 } |
|
414 |
|
415 bool |
|
416 LIRGeneratorMIPS::lowerUDiv(MDiv *div) |
|
417 { |
|
418 MDefinition *lhs = div->getOperand(0); |
|
419 MDefinition *rhs = div->getOperand(1); |
|
420 |
|
421 LUDiv *lir = new(alloc()) LUDiv; |
|
422 lir->setOperand(0, useRegister(lhs)); |
|
423 lir->setOperand(1, useRegister(rhs)); |
|
424 if (div->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
425 return false; |
|
426 |
|
427 return define(lir, div); |
|
428 } |
|
429 |
|
430 bool |
|
431 LIRGeneratorMIPS::lowerUMod(MMod *mod) |
|
432 { |
|
433 MDefinition *lhs = mod->getOperand(0); |
|
434 MDefinition *rhs = mod->getOperand(1); |
|
435 |
|
436 LUMod *lir = new(alloc()) LUMod; |
|
437 lir->setOperand(0, useRegister(lhs)); |
|
438 lir->setOperand(1, useRegister(rhs)); |
|
439 if (mod->fallible() && !assignSnapshot(lir, Bailout_BaselineInfo)) |
|
440 return false; |
|
441 |
|
442 return define(lir, mod); |
|
443 } |
|
444 |
|
445 bool |
|
446 LIRGeneratorMIPS::visitAsmJSUnsignedToDouble(MAsmJSUnsignedToDouble *ins) |
|
447 { |
|
448 MOZ_ASSERT(ins->input()->type() == MIRType_Int32); |
|
449 LAsmJSUInt32ToDouble *lir = new(alloc()) LAsmJSUInt32ToDouble(useRegisterAtStart(ins->input())); |
|
450 return define(lir, ins); |
|
451 } |
|
452 |
|
453 bool |
|
454 LIRGeneratorMIPS::visitAsmJSUnsignedToFloat32(MAsmJSUnsignedToFloat32 *ins) |
|
455 { |
|
456 MOZ_ASSERT(ins->input()->type() == MIRType_Int32); |
|
457 LAsmJSUInt32ToFloat32 *lir = new(alloc()) LAsmJSUInt32ToFloat32(useRegisterAtStart(ins->input())); |
|
458 return define(lir, ins); |
|
459 } |
|
460 |
|
461 bool |
|
462 LIRGeneratorMIPS::visitAsmJSLoadHeap(MAsmJSLoadHeap *ins) |
|
463 { |
|
464 MDefinition *ptr = ins->ptr(); |
|
465 MOZ_ASSERT(ptr->type() == MIRType_Int32); |
|
466 LAllocation ptrAlloc; |
|
467 |
|
468 // For MIPS it is best to keep the 'ptr' in a register if a bounds check |
|
469 // is needed. |
|
470 if (ptr->isConstant() && ins->skipBoundsCheck()) { |
|
471 int32_t ptrValue = ptr->toConstant()->value().toInt32(); |
|
472 // A bounds check is only skipped for a positive index. |
|
473 MOZ_ASSERT(ptrValue >= 0); |
|
474 ptrAlloc = LAllocation(ptr->toConstant()->vp()); |
|
475 } else |
|
476 ptrAlloc = useRegisterAtStart(ptr); |
|
477 |
|
478 return define(new(alloc()) LAsmJSLoadHeap(ptrAlloc), ins); |
|
479 } |
|
480 |
|
481 bool |
|
482 LIRGeneratorMIPS::visitAsmJSStoreHeap(MAsmJSStoreHeap *ins) |
|
483 { |
|
484 MDefinition *ptr = ins->ptr(); |
|
485 MOZ_ASSERT(ptr->type() == MIRType_Int32); |
|
486 LAllocation ptrAlloc; |
|
487 |
|
488 if (ptr->isConstant() && ins->skipBoundsCheck()) { |
|
489 MOZ_ASSERT(ptr->toConstant()->value().toInt32() >= 0); |
|
490 ptrAlloc = LAllocation(ptr->toConstant()->vp()); |
|
491 } else |
|
492 ptrAlloc = useRegisterAtStart(ptr); |
|
493 |
|
494 return add(new(alloc()) LAsmJSStoreHeap(ptrAlloc, useRegisterAtStart(ins->value())), ins); |
|
495 } |
|
496 |
|
497 bool |
|
498 LIRGeneratorMIPS::visitAsmJSLoadFuncPtr(MAsmJSLoadFuncPtr *ins) |
|
499 { |
|
500 return define(new(alloc()) LAsmJSLoadFuncPtr(useRegister(ins->index()), temp()), ins); |
|
501 } |
|
502 |
|
503 bool |
|
504 LIRGeneratorMIPS::lowerTruncateDToInt32(MTruncateToInt32 *ins) |
|
505 { |
|
506 MDefinition *opd = ins->input(); |
|
507 MOZ_ASSERT(opd->type() == MIRType_Double); |
|
508 |
|
509 return define(new(alloc()) LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); |
|
510 } |
|
511 |
|
512 bool |
|
513 LIRGeneratorMIPS::lowerTruncateFToInt32(MTruncateToInt32 *ins) |
|
514 { |
|
515 MDefinition *opd = ins->input(); |
|
516 MOZ_ASSERT(opd->type() == MIRType_Float32); |
|
517 |
|
518 return define(new(alloc()) LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); |
|
519 } |
|
520 |
|
521 bool |
|
522 LIRGeneratorMIPS::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic *ins) |
|
523 { |
|
524 MOZ_ASSUME_UNREACHABLE("NYI"); |
|
525 } |
|
526 |
|
527 bool |
|
528 LIRGeneratorMIPS::visitForkJoinGetSlice(MForkJoinGetSlice *ins) |
|
529 { |
|
530 MOZ_ASSUME_UNREACHABLE("NYI"); |
|
531 } |