|
1 |
|
2 /*-------------------------------------------------------------*/ |
|
3 /*--- Block sorting machinery ---*/ |
|
4 /*--- blocksort.c ---*/ |
|
5 /*-------------------------------------------------------------*/ |
|
6 |
|
7 /* ------------------------------------------------------------------ |
|
8 This file is part of bzip2/libbzip2, a program and library for |
|
9 lossless, block-sorting data compression. |
|
10 |
|
11 bzip2/libbzip2 version 1.0.4 of 20 December 2006 |
|
12 Copyright (C) 1996-2006 Julian Seward <jseward@bzip.org> |
|
13 |
|
14 Please read the WARNING, DISCLAIMER and PATENTS sections in the |
|
15 README file. |
|
16 |
|
17 This program is released under the terms of the license contained |
|
18 in the file LICENSE. |
|
19 ------------------------------------------------------------------ */ |
|
20 |
|
21 |
|
22 #include "bzlib_private.h" |
|
23 |
|
24 /*---------------------------------------------*/ |
|
25 /*--- Fallback O(N log(N)^2) sorting ---*/ |
|
26 /*--- algorithm, for repetitive blocks ---*/ |
|
27 /*---------------------------------------------*/ |
|
28 |
|
29 /*---------------------------------------------*/ |
|
30 static |
|
31 __inline__ |
|
32 void fallbackSimpleSort ( UInt32* fmap, |
|
33 UInt32* eclass, |
|
34 Int32 lo, |
|
35 Int32 hi ) |
|
36 { |
|
37 Int32 i, j, tmp; |
|
38 UInt32 ec_tmp; |
|
39 |
|
40 if (lo == hi) return; |
|
41 |
|
42 if (hi - lo > 3) { |
|
43 for ( i = hi-4; i >= lo; i-- ) { |
|
44 tmp = fmap[i]; |
|
45 ec_tmp = eclass[tmp]; |
|
46 for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) |
|
47 fmap[j-4] = fmap[j]; |
|
48 fmap[j-4] = tmp; |
|
49 } |
|
50 } |
|
51 |
|
52 for ( i = hi-1; i >= lo; i-- ) { |
|
53 tmp = fmap[i]; |
|
54 ec_tmp = eclass[tmp]; |
|
55 for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) |
|
56 fmap[j-1] = fmap[j]; |
|
57 fmap[j-1] = tmp; |
|
58 } |
|
59 } |
|
60 |
|
61 |
|
62 /*---------------------------------------------*/ |
|
63 #define fswap(zz1, zz2) \ |
|
64 { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } |
|
65 |
|
66 #define fvswap(zzp1, zzp2, zzn) \ |
|
67 { \ |
|
68 Int32 yyp1 = (zzp1); \ |
|
69 Int32 yyp2 = (zzp2); \ |
|
70 Int32 yyn = (zzn); \ |
|
71 while (yyn > 0) { \ |
|
72 fswap(fmap[yyp1], fmap[yyp2]); \ |
|
73 yyp1++; yyp2++; yyn--; \ |
|
74 } \ |
|
75 } |
|
76 |
|
77 |
|
78 #define fmin(a,b) ((a) < (b)) ? (a) : (b) |
|
79 |
|
80 #define fpush(lz,hz) { stackLo[sp] = lz; \ |
|
81 stackHi[sp] = hz; \ |
|
82 sp++; } |
|
83 |
|
84 #define fpop(lz,hz) { sp--; \ |
|
85 lz = stackLo[sp]; \ |
|
86 hz = stackHi[sp]; } |
|
87 |
|
88 #define FALLBACK_QSORT_SMALL_THRESH 10 |
|
89 #define FALLBACK_QSORT_STACK_SIZE 100 |
|
90 |
|
91 |
|
92 static |
|
93 void fallbackQSort3 ( UInt32* fmap, |
|
94 UInt32* eclass, |
|
95 Int32 loSt, |
|
96 Int32 hiSt ) |
|
97 { |
|
98 Int32 unLo, unHi, ltLo, gtHi, n, m; |
|
99 Int32 sp, lo, hi; |
|
100 UInt32 med, r, r3; |
|
101 Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; |
|
102 Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; |
|
103 |
|
104 r = 0; |
|
105 |
|
106 sp = 0; |
|
107 fpush ( loSt, hiSt ); |
|
108 |
|
109 while (sp > 0) { |
|
110 |
|
111 AssertH ( sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004 ); |
|
112 |
|
113 fpop ( lo, hi ); |
|
114 if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { |
|
115 fallbackSimpleSort ( fmap, eclass, lo, hi ); |
|
116 continue; |
|
117 } |
|
118 |
|
119 /* Random partitioning. Median of 3 sometimes fails to |
|
120 avoid bad cases. Median of 9 seems to help but |
|
121 looks rather expensive. This too seems to work but |
|
122 is cheaper. Guidance for the magic constants |
|
123 7621 and 32768 is taken from Sedgewick's algorithms |
|
124 book, chapter 35. |
|
125 */ |
|
126 r = ((r * 7621) + 1) % 32768; |
|
127 r3 = r % 3; |
|
128 if (r3 == 0) med = eclass[fmap[lo]]; else |
|
129 if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else |
|
130 med = eclass[fmap[hi]]; |
|
131 |
|
132 unLo = ltLo = lo; |
|
133 unHi = gtHi = hi; |
|
134 |
|
135 while (1) { |
|
136 while (1) { |
|
137 if (unLo > unHi) break; |
|
138 n = (Int32)eclass[fmap[unLo]] - (Int32)med; |
|
139 if (n == 0) { |
|
140 fswap(fmap[unLo], fmap[ltLo]); |
|
141 ltLo++; unLo++; |
|
142 continue; |
|
143 }; |
|
144 if (n > 0) break; |
|
145 unLo++; |
|
146 } |
|
147 while (1) { |
|
148 if (unLo > unHi) break; |
|
149 n = (Int32)eclass[fmap[unHi]] - (Int32)med; |
|
150 if (n == 0) { |
|
151 fswap(fmap[unHi], fmap[gtHi]); |
|
152 gtHi--; unHi--; |
|
153 continue; |
|
154 }; |
|
155 if (n < 0) break; |
|
156 unHi--; |
|
157 } |
|
158 if (unLo > unHi) break; |
|
159 fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; |
|
160 } |
|
161 |
|
162 AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); |
|
163 |
|
164 if (gtHi < ltLo) continue; |
|
165 |
|
166 n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); |
|
167 m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); |
|
168 |
|
169 n = lo + unLo - ltLo - 1; |
|
170 m = hi - (gtHi - unHi) + 1; |
|
171 |
|
172 if (n - lo > hi - m) { |
|
173 fpush ( lo, n ); |
|
174 fpush ( m, hi ); |
|
175 } else { |
|
176 fpush ( m, hi ); |
|
177 fpush ( lo, n ); |
|
178 } |
|
179 } |
|
180 } |
|
181 |
|
182 #undef fmin |
|
183 #undef fpush |
|
184 #undef fpop |
|
185 #undef fswap |
|
186 #undef fvswap |
|
187 #undef FALLBACK_QSORT_SMALL_THRESH |
|
188 #undef FALLBACK_QSORT_STACK_SIZE |
|
189 |
|
190 |
|
191 /*---------------------------------------------*/ |
|
192 /* Pre: |
|
193 nblock > 0 |
|
194 eclass exists for [0 .. nblock-1] |
|
195 ((UChar*)eclass) [0 .. nblock-1] holds block |
|
196 ptr exists for [0 .. nblock-1] |
|
197 |
|
198 Post: |
|
199 ((UChar*)eclass) [0 .. nblock-1] holds block |
|
200 All other areas of eclass destroyed |
|
201 fmap [0 .. nblock-1] holds sorted order |
|
202 bhtab [ 0 .. 2+(nblock/32) ] destroyed |
|
203 */ |
|
204 |
|
205 #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) |
|
206 #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) |
|
207 #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) |
|
208 #define WORD_BH(zz) bhtab[(zz) >> 5] |
|
209 #define UNALIGNED_BH(zz) ((zz) & 0x01f) |
|
210 |
|
211 static |
|
212 void fallbackSort ( UInt32* fmap, |
|
213 UInt32* eclass, |
|
214 UInt32* bhtab, |
|
215 Int32 nblock, |
|
216 Int32 verb ) |
|
217 { |
|
218 Int32 ftab[257]; |
|
219 Int32 ftabCopy[256]; |
|
220 Int32 H, i, j, k, l, r, cc, cc1; |
|
221 Int32 nNotDone; |
|
222 Int32 nBhtab; |
|
223 UChar* eclass8 = (UChar*)eclass; |
|
224 |
|
225 /*-- |
|
226 Initial 1-char radix sort to generate |
|
227 initial fmap and initial BH bits. |
|
228 --*/ |
|
229 if (verb >= 4) |
|
230 VPrintf0 ( " bucket sorting ...\n" ); |
|
231 for (i = 0; i < 257; i++) ftab[i] = 0; |
|
232 for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; |
|
233 for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; |
|
234 for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; |
|
235 |
|
236 for (i = 0; i < nblock; i++) { |
|
237 j = eclass8[i]; |
|
238 k = ftab[j] - 1; |
|
239 ftab[j] = k; |
|
240 fmap[k] = i; |
|
241 } |
|
242 |
|
243 nBhtab = 2 + (nblock / 32); |
|
244 for (i = 0; i < nBhtab; i++) bhtab[i] = 0; |
|
245 for (i = 0; i < 256; i++) SET_BH(ftab[i]); |
|
246 |
|
247 /*-- |
|
248 Inductively refine the buckets. Kind-of an |
|
249 "exponential radix sort" (!), inspired by the |
|
250 Manber-Myers suffix array construction algorithm. |
|
251 --*/ |
|
252 |
|
253 /*-- set sentinel bits for block-end detection --*/ |
|
254 for (i = 0; i < 32; i++) { |
|
255 SET_BH(nblock + 2*i); |
|
256 CLEAR_BH(nblock + 2*i + 1); |
|
257 } |
|
258 |
|
259 /*-- the log(N) loop --*/ |
|
260 H = 1; |
|
261 while (1) { |
|
262 |
|
263 if (verb >= 4) |
|
264 VPrintf1 ( " depth %6d has ", H ); |
|
265 |
|
266 j = 0; |
|
267 for (i = 0; i < nblock; i++) { |
|
268 if (ISSET_BH(i)) j = i; |
|
269 k = fmap[i] - H; if (k < 0) k += nblock; |
|
270 eclass[k] = j; |
|
271 } |
|
272 |
|
273 nNotDone = 0; |
|
274 r = -1; |
|
275 while (1) { |
|
276 |
|
277 /*-- find the next non-singleton bucket --*/ |
|
278 k = r + 1; |
|
279 while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; |
|
280 if (ISSET_BH(k)) { |
|
281 while (WORD_BH(k) == 0xffffffff) k += 32; |
|
282 while (ISSET_BH(k)) k++; |
|
283 } |
|
284 l = k - 1; |
|
285 if (l >= nblock) break; |
|
286 while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; |
|
287 if (!ISSET_BH(k)) { |
|
288 while (WORD_BH(k) == 0x00000000) k += 32; |
|
289 while (!ISSET_BH(k)) k++; |
|
290 } |
|
291 r = k - 1; |
|
292 if (r >= nblock) break; |
|
293 |
|
294 /*-- now [l, r] bracket current bucket --*/ |
|
295 if (r > l) { |
|
296 nNotDone += (r - l + 1); |
|
297 fallbackQSort3 ( fmap, eclass, l, r ); |
|
298 |
|
299 /*-- scan bucket and generate header bits-- */ |
|
300 cc = -1; |
|
301 for (i = l; i <= r; i++) { |
|
302 cc1 = eclass[fmap[i]]; |
|
303 if (cc != cc1) { SET_BH(i); cc = cc1; }; |
|
304 } |
|
305 } |
|
306 } |
|
307 |
|
308 if (verb >= 4) |
|
309 VPrintf1 ( "%6d unresolved strings\n", nNotDone ); |
|
310 |
|
311 H *= 2; |
|
312 if (H > nblock || nNotDone == 0) break; |
|
313 } |
|
314 |
|
315 /*-- |
|
316 Reconstruct the original block in |
|
317 eclass8 [0 .. nblock-1], since the |
|
318 previous phase destroyed it. |
|
319 --*/ |
|
320 if (verb >= 4) |
|
321 VPrintf0 ( " reconstructing block ...\n" ); |
|
322 j = 0; |
|
323 for (i = 0; i < nblock; i++) { |
|
324 while (ftabCopy[j] == 0) j++; |
|
325 ftabCopy[j]--; |
|
326 eclass8[fmap[i]] = (UChar)j; |
|
327 } |
|
328 AssertH ( j < 256, 1005 ); |
|
329 } |
|
330 |
|
331 #undef SET_BH |
|
332 #undef CLEAR_BH |
|
333 #undef ISSET_BH |
|
334 #undef WORD_BH |
|
335 #undef UNALIGNED_BH |
|
336 |
|
337 |
|
338 /*---------------------------------------------*/ |
|
339 /*--- The main, O(N^2 log(N)) sorting ---*/ |
|
340 /*--- algorithm. Faster for "normal" ---*/ |
|
341 /*--- non-repetitive blocks. ---*/ |
|
342 /*---------------------------------------------*/ |
|
343 |
|
344 /*---------------------------------------------*/ |
|
345 static |
|
346 __inline__ |
|
347 Bool mainGtU ( UInt32 i1, |
|
348 UInt32 i2, |
|
349 UChar* block, |
|
350 UInt16* quadrant, |
|
351 UInt32 nblock, |
|
352 Int32* budget ) |
|
353 { |
|
354 Int32 k; |
|
355 UChar c1, c2; |
|
356 UInt16 s1, s2; |
|
357 |
|
358 AssertD ( i1 != i2, "mainGtU" ); |
|
359 /* 1 */ |
|
360 c1 = block[i1]; c2 = block[i2]; |
|
361 if (c1 != c2) return (c1 > c2); |
|
362 i1++; i2++; |
|
363 /* 2 */ |
|
364 c1 = block[i1]; c2 = block[i2]; |
|
365 if (c1 != c2) return (c1 > c2); |
|
366 i1++; i2++; |
|
367 /* 3 */ |
|
368 c1 = block[i1]; c2 = block[i2]; |
|
369 if (c1 != c2) return (c1 > c2); |
|
370 i1++; i2++; |
|
371 /* 4 */ |
|
372 c1 = block[i1]; c2 = block[i2]; |
|
373 if (c1 != c2) return (c1 > c2); |
|
374 i1++; i2++; |
|
375 /* 5 */ |
|
376 c1 = block[i1]; c2 = block[i2]; |
|
377 if (c1 != c2) return (c1 > c2); |
|
378 i1++; i2++; |
|
379 /* 6 */ |
|
380 c1 = block[i1]; c2 = block[i2]; |
|
381 if (c1 != c2) return (c1 > c2); |
|
382 i1++; i2++; |
|
383 /* 7 */ |
|
384 c1 = block[i1]; c2 = block[i2]; |
|
385 if (c1 != c2) return (c1 > c2); |
|
386 i1++; i2++; |
|
387 /* 8 */ |
|
388 c1 = block[i1]; c2 = block[i2]; |
|
389 if (c1 != c2) return (c1 > c2); |
|
390 i1++; i2++; |
|
391 /* 9 */ |
|
392 c1 = block[i1]; c2 = block[i2]; |
|
393 if (c1 != c2) return (c1 > c2); |
|
394 i1++; i2++; |
|
395 /* 10 */ |
|
396 c1 = block[i1]; c2 = block[i2]; |
|
397 if (c1 != c2) return (c1 > c2); |
|
398 i1++; i2++; |
|
399 /* 11 */ |
|
400 c1 = block[i1]; c2 = block[i2]; |
|
401 if (c1 != c2) return (c1 > c2); |
|
402 i1++; i2++; |
|
403 /* 12 */ |
|
404 c1 = block[i1]; c2 = block[i2]; |
|
405 if (c1 != c2) return (c1 > c2); |
|
406 i1++; i2++; |
|
407 |
|
408 k = nblock + 8; |
|
409 |
|
410 do { |
|
411 /* 1 */ |
|
412 c1 = block[i1]; c2 = block[i2]; |
|
413 if (c1 != c2) return (c1 > c2); |
|
414 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
415 if (s1 != s2) return (s1 > s2); |
|
416 i1++; i2++; |
|
417 /* 2 */ |
|
418 c1 = block[i1]; c2 = block[i2]; |
|
419 if (c1 != c2) return (c1 > c2); |
|
420 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
421 if (s1 != s2) return (s1 > s2); |
|
422 i1++; i2++; |
|
423 /* 3 */ |
|
424 c1 = block[i1]; c2 = block[i2]; |
|
425 if (c1 != c2) return (c1 > c2); |
|
426 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
427 if (s1 != s2) return (s1 > s2); |
|
428 i1++; i2++; |
|
429 /* 4 */ |
|
430 c1 = block[i1]; c2 = block[i2]; |
|
431 if (c1 != c2) return (c1 > c2); |
|
432 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
433 if (s1 != s2) return (s1 > s2); |
|
434 i1++; i2++; |
|
435 /* 5 */ |
|
436 c1 = block[i1]; c2 = block[i2]; |
|
437 if (c1 != c2) return (c1 > c2); |
|
438 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
439 if (s1 != s2) return (s1 > s2); |
|
440 i1++; i2++; |
|
441 /* 6 */ |
|
442 c1 = block[i1]; c2 = block[i2]; |
|
443 if (c1 != c2) return (c1 > c2); |
|
444 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
445 if (s1 != s2) return (s1 > s2); |
|
446 i1++; i2++; |
|
447 /* 7 */ |
|
448 c1 = block[i1]; c2 = block[i2]; |
|
449 if (c1 != c2) return (c1 > c2); |
|
450 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
451 if (s1 != s2) return (s1 > s2); |
|
452 i1++; i2++; |
|
453 /* 8 */ |
|
454 c1 = block[i1]; c2 = block[i2]; |
|
455 if (c1 != c2) return (c1 > c2); |
|
456 s1 = quadrant[i1]; s2 = quadrant[i2]; |
|
457 if (s1 != s2) return (s1 > s2); |
|
458 i1++; i2++; |
|
459 |
|
460 if (i1 >= nblock) i1 -= nblock; |
|
461 if (i2 >= nblock) i2 -= nblock; |
|
462 |
|
463 k -= 8; |
|
464 (*budget)--; |
|
465 } |
|
466 while (k >= 0); |
|
467 |
|
468 return False; |
|
469 } |
|
470 |
|
471 |
|
472 /*---------------------------------------------*/ |
|
473 /*-- |
|
474 Knuth's increments seem to work better |
|
475 than Incerpi-Sedgewick here. Possibly |
|
476 because the number of elems to sort is |
|
477 usually small, typically <= 20. |
|
478 --*/ |
|
479 static |
|
480 Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, |
|
481 9841, 29524, 88573, 265720, |
|
482 797161, 2391484 }; |
|
483 |
|
484 static |
|
485 void mainSimpleSort ( UInt32* ptr, |
|
486 UChar* block, |
|
487 UInt16* quadrant, |
|
488 Int32 nblock, |
|
489 Int32 lo, |
|
490 Int32 hi, |
|
491 Int32 d, |
|
492 Int32* budget ) |
|
493 { |
|
494 Int32 i, j, h, bigN, hp; |
|
495 UInt32 v; |
|
496 |
|
497 bigN = hi - lo + 1; |
|
498 if (bigN < 2) return; |
|
499 |
|
500 hp = 0; |
|
501 while (incs[hp] < bigN) hp++; |
|
502 hp--; |
|
503 |
|
504 for (; hp >= 0; hp--) { |
|
505 h = incs[hp]; |
|
506 |
|
507 i = lo + h; |
|
508 while (True) { |
|
509 |
|
510 /*-- copy 1 --*/ |
|
511 if (i > hi) break; |
|
512 v = ptr[i]; |
|
513 j = i; |
|
514 while ( mainGtU ( |
|
515 ptr[j-h]+d, v+d, block, quadrant, nblock, budget |
|
516 ) ) { |
|
517 ptr[j] = ptr[j-h]; |
|
518 j = j - h; |
|
519 if (j <= (lo + h - 1)) break; |
|
520 } |
|
521 ptr[j] = v; |
|
522 i++; |
|
523 |
|
524 /*-- copy 2 --*/ |
|
525 if (i > hi) break; |
|
526 v = ptr[i]; |
|
527 j = i; |
|
528 while ( mainGtU ( |
|
529 ptr[j-h]+d, v+d, block, quadrant, nblock, budget |
|
530 ) ) { |
|
531 ptr[j] = ptr[j-h]; |
|
532 j = j - h; |
|
533 if (j <= (lo + h - 1)) break; |
|
534 } |
|
535 ptr[j] = v; |
|
536 i++; |
|
537 |
|
538 /*-- copy 3 --*/ |
|
539 if (i > hi) break; |
|
540 v = ptr[i]; |
|
541 j = i; |
|
542 while ( mainGtU ( |
|
543 ptr[j-h]+d, v+d, block, quadrant, nblock, budget |
|
544 ) ) { |
|
545 ptr[j] = ptr[j-h]; |
|
546 j = j - h; |
|
547 if (j <= (lo + h - 1)) break; |
|
548 } |
|
549 ptr[j] = v; |
|
550 i++; |
|
551 |
|
552 if (*budget < 0) return; |
|
553 } |
|
554 } |
|
555 } |
|
556 |
|
557 |
|
558 /*---------------------------------------------*/ |
|
559 /*-- |
|
560 The following is an implementation of |
|
561 an elegant 3-way quicksort for strings, |
|
562 described in a paper "Fast Algorithms for |
|
563 Sorting and Searching Strings", by Robert |
|
564 Sedgewick and Jon L. Bentley. |
|
565 --*/ |
|
566 |
|
567 #define mswap(zz1, zz2) \ |
|
568 { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } |
|
569 |
|
570 #define mvswap(zzp1, zzp2, zzn) \ |
|
571 { \ |
|
572 Int32 yyp1 = (zzp1); \ |
|
573 Int32 yyp2 = (zzp2); \ |
|
574 Int32 yyn = (zzn); \ |
|
575 while (yyn > 0) { \ |
|
576 mswap(ptr[yyp1], ptr[yyp2]); \ |
|
577 yyp1++; yyp2++; yyn--; \ |
|
578 } \ |
|
579 } |
|
580 |
|
581 static |
|
582 __inline__ |
|
583 UChar mmed3 ( UChar a, UChar b, UChar c ) |
|
584 { |
|
585 UChar t; |
|
586 if (a > b) { t = a; a = b; b = t; }; |
|
587 if (b > c) { |
|
588 b = c; |
|
589 if (a > b) b = a; |
|
590 } |
|
591 return b; |
|
592 } |
|
593 |
|
594 #define mmin(a,b) ((a) < (b)) ? (a) : (b) |
|
595 |
|
596 #define mpush(lz,hz,dz) { stackLo[sp] = lz; \ |
|
597 stackHi[sp] = hz; \ |
|
598 stackD [sp] = dz; \ |
|
599 sp++; } |
|
600 |
|
601 #define mpop(lz,hz,dz) { sp--; \ |
|
602 lz = stackLo[sp]; \ |
|
603 hz = stackHi[sp]; \ |
|
604 dz = stackD [sp]; } |
|
605 |
|
606 |
|
607 #define mnextsize(az) (nextHi[az]-nextLo[az]) |
|
608 |
|
609 #define mnextswap(az,bz) \ |
|
610 { Int32 tz; \ |
|
611 tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ |
|
612 tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ |
|
613 tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } |
|
614 |
|
615 |
|
616 #define MAIN_QSORT_SMALL_THRESH 20 |
|
617 #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) |
|
618 #define MAIN_QSORT_STACK_SIZE 100 |
|
619 |
|
620 static |
|
621 void mainQSort3 ( UInt32* ptr, |
|
622 UChar* block, |
|
623 UInt16* quadrant, |
|
624 Int32 nblock, |
|
625 Int32 loSt, |
|
626 Int32 hiSt, |
|
627 Int32 dSt, |
|
628 Int32* budget ) |
|
629 { |
|
630 Int32 unLo, unHi, ltLo, gtHi, n, m, med; |
|
631 Int32 sp, lo, hi, d; |
|
632 |
|
633 Int32 stackLo[MAIN_QSORT_STACK_SIZE]; |
|
634 Int32 stackHi[MAIN_QSORT_STACK_SIZE]; |
|
635 Int32 stackD [MAIN_QSORT_STACK_SIZE]; |
|
636 |
|
637 Int32 nextLo[3]; |
|
638 Int32 nextHi[3]; |
|
639 Int32 nextD [3]; |
|
640 |
|
641 sp = 0; |
|
642 mpush ( loSt, hiSt, dSt ); |
|
643 |
|
644 while (sp > 0) { |
|
645 |
|
646 AssertH ( sp < MAIN_QSORT_STACK_SIZE - 2, 1001 ); |
|
647 |
|
648 mpop ( lo, hi, d ); |
|
649 if (hi - lo < MAIN_QSORT_SMALL_THRESH || |
|
650 d > MAIN_QSORT_DEPTH_THRESH) { |
|
651 mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); |
|
652 if (*budget < 0) return; |
|
653 continue; |
|
654 } |
|
655 |
|
656 med = (Int32) |
|
657 mmed3 ( block[ptr[ lo ]+d], |
|
658 block[ptr[ hi ]+d], |
|
659 block[ptr[ (lo+hi)>>1 ]+d] ); |
|
660 |
|
661 unLo = ltLo = lo; |
|
662 unHi = gtHi = hi; |
|
663 |
|
664 while (True) { |
|
665 while (True) { |
|
666 if (unLo > unHi) break; |
|
667 n = ((Int32)block[ptr[unLo]+d]) - med; |
|
668 if (n == 0) { |
|
669 mswap(ptr[unLo], ptr[ltLo]); |
|
670 ltLo++; unLo++; continue; |
|
671 }; |
|
672 if (n > 0) break; |
|
673 unLo++; |
|
674 } |
|
675 while (True) { |
|
676 if (unLo > unHi) break; |
|
677 n = ((Int32)block[ptr[unHi]+d]) - med; |
|
678 if (n == 0) { |
|
679 mswap(ptr[unHi], ptr[gtHi]); |
|
680 gtHi--; unHi--; continue; |
|
681 }; |
|
682 if (n < 0) break; |
|
683 unHi--; |
|
684 } |
|
685 if (unLo > unHi) break; |
|
686 mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; |
|
687 } |
|
688 |
|
689 AssertD ( unHi == unLo-1, "mainQSort3(2)" ); |
|
690 |
|
691 if (gtHi < ltLo) { |
|
692 mpush(lo, hi, d+1 ); |
|
693 continue; |
|
694 } |
|
695 |
|
696 n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); |
|
697 m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); |
|
698 |
|
699 n = lo + unLo - ltLo - 1; |
|
700 m = hi - (gtHi - unHi) + 1; |
|
701 |
|
702 nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; |
|
703 nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; |
|
704 nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; |
|
705 |
|
706 if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); |
|
707 if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); |
|
708 if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); |
|
709 |
|
710 AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); |
|
711 AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); |
|
712 |
|
713 mpush (nextLo[0], nextHi[0], nextD[0]); |
|
714 mpush (nextLo[1], nextHi[1], nextD[1]); |
|
715 mpush (nextLo[2], nextHi[2], nextD[2]); |
|
716 } |
|
717 } |
|
718 |
|
719 #undef mswap |
|
720 #undef mvswap |
|
721 #undef mpush |
|
722 #undef mpop |
|
723 #undef mmin |
|
724 #undef mnextsize |
|
725 #undef mnextswap |
|
726 #undef MAIN_QSORT_SMALL_THRESH |
|
727 #undef MAIN_QSORT_DEPTH_THRESH |
|
728 #undef MAIN_QSORT_STACK_SIZE |
|
729 |
|
730 |
|
731 /*---------------------------------------------*/ |
|
732 /* Pre: |
|
733 nblock > N_OVERSHOOT |
|
734 block32 exists for [0 .. nblock-1 +N_OVERSHOOT] |
|
735 ((UChar*)block32) [0 .. nblock-1] holds block |
|
736 ptr exists for [0 .. nblock-1] |
|
737 |
|
738 Post: |
|
739 ((UChar*)block32) [0 .. nblock-1] holds block |
|
740 All other areas of block32 destroyed |
|
741 ftab [0 .. 65536 ] destroyed |
|
742 ptr [0 .. nblock-1] holds sorted order |
|
743 if (*budget < 0), sorting was abandoned |
|
744 */ |
|
745 |
|
746 #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) |
|
747 #define SETMASK (1 << 21) |
|
748 #define CLEARMASK (~(SETMASK)) |
|
749 |
|
750 static |
|
751 void mainSort ( UInt32* ptr, |
|
752 UChar* block, |
|
753 UInt16* quadrant, |
|
754 UInt32* ftab, |
|
755 Int32 nblock, |
|
756 Int32 verb, |
|
757 Int32* budget ) |
|
758 { |
|
759 Int32 i, j, k, ss, sb; |
|
760 Int32 runningOrder[256]; |
|
761 Bool bigDone[256]; |
|
762 Int32 copyStart[256]; |
|
763 Int32 copyEnd [256]; |
|
764 UChar c1; |
|
765 Int32 numQSorted; |
|
766 UInt16 s; |
|
767 if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); |
|
768 |
|
769 /*-- set up the 2-byte frequency table --*/ |
|
770 for (i = 65536; i >= 0; i--) ftab[i] = 0; |
|
771 |
|
772 j = block[0] << 8; |
|
773 i = nblock-1; |
|
774 for (; i >= 3; i -= 4) { |
|
775 quadrant[i] = 0; |
|
776 j = (j >> 8) | ( ((UInt16)block[i]) << 8); |
|
777 ftab[j]++; |
|
778 quadrant[i-1] = 0; |
|
779 j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); |
|
780 ftab[j]++; |
|
781 quadrant[i-2] = 0; |
|
782 j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); |
|
783 ftab[j]++; |
|
784 quadrant[i-3] = 0; |
|
785 j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); |
|
786 ftab[j]++; |
|
787 } |
|
788 for (; i >= 0; i--) { |
|
789 quadrant[i] = 0; |
|
790 j = (j >> 8) | ( ((UInt16)block[i]) << 8); |
|
791 ftab[j]++; |
|
792 } |
|
793 |
|
794 /*-- (emphasises close relationship of block & quadrant) --*/ |
|
795 for (i = 0; i < BZ_N_OVERSHOOT; i++) { |
|
796 block [nblock+i] = block[i]; |
|
797 quadrant[nblock+i] = 0; |
|
798 } |
|
799 |
|
800 if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); |
|
801 |
|
802 /*-- Complete the initial radix sort --*/ |
|
803 for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; |
|
804 |
|
805 s = block[0] << 8; |
|
806 i = nblock-1; |
|
807 for (; i >= 3; i -= 4) { |
|
808 s = (s >> 8) | (block[i] << 8); |
|
809 j = ftab[s] -1; |
|
810 ftab[s] = j; |
|
811 ptr[j] = i; |
|
812 s = (s >> 8) | (block[i-1] << 8); |
|
813 j = ftab[s] -1; |
|
814 ftab[s] = j; |
|
815 ptr[j] = i-1; |
|
816 s = (s >> 8) | (block[i-2] << 8); |
|
817 j = ftab[s] -1; |
|
818 ftab[s] = j; |
|
819 ptr[j] = i-2; |
|
820 s = (s >> 8) | (block[i-3] << 8); |
|
821 j = ftab[s] -1; |
|
822 ftab[s] = j; |
|
823 ptr[j] = i-3; |
|
824 } |
|
825 for (; i >= 0; i--) { |
|
826 s = (s >> 8) | (block[i] << 8); |
|
827 j = ftab[s] -1; |
|
828 ftab[s] = j; |
|
829 ptr[j] = i; |
|
830 } |
|
831 |
|
832 /*-- |
|
833 Now ftab contains the first loc of every small bucket. |
|
834 Calculate the running order, from smallest to largest |
|
835 big bucket. |
|
836 --*/ |
|
837 for (i = 0; i <= 255; i++) { |
|
838 bigDone [i] = False; |
|
839 runningOrder[i] = i; |
|
840 } |
|
841 |
|
842 { |
|
843 Int32 vv; |
|
844 Int32 h = 1; |
|
845 do h = 3 * h + 1; while (h <= 256); |
|
846 do { |
|
847 h = h / 3; |
|
848 for (i = h; i <= 255; i++) { |
|
849 vv = runningOrder[i]; |
|
850 j = i; |
|
851 while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { |
|
852 runningOrder[j] = runningOrder[j-h]; |
|
853 j = j - h; |
|
854 if (j <= (h - 1)) goto zero; |
|
855 } |
|
856 zero: |
|
857 runningOrder[j] = vv; |
|
858 } |
|
859 } while (h != 1); |
|
860 } |
|
861 |
|
862 /*-- |
|
863 The main sorting loop. |
|
864 --*/ |
|
865 |
|
866 numQSorted = 0; |
|
867 |
|
868 for (i = 0; i <= 255; i++) { |
|
869 |
|
870 /*-- |
|
871 Process big buckets, starting with the least full. |
|
872 Basically this is a 3-step process in which we call |
|
873 mainQSort3 to sort the small buckets [ss, j], but |
|
874 also make a big effort to avoid the calls if we can. |
|
875 --*/ |
|
876 ss = runningOrder[i]; |
|
877 |
|
878 /*-- |
|
879 Step 1: |
|
880 Complete the big bucket [ss] by quicksorting |
|
881 any unsorted small buckets [ss, j], for j != ss. |
|
882 Hopefully previous pointer-scanning phases have already |
|
883 completed many of the small buckets [ss, j], so |
|
884 we don't have to sort them at all. |
|
885 --*/ |
|
886 for (j = 0; j <= 255; j++) { |
|
887 if (j != ss) { |
|
888 sb = (ss << 8) + j; |
|
889 if ( ! (ftab[sb] & SETMASK) ) { |
|
890 Int32 lo = ftab[sb] & CLEARMASK; |
|
891 Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; |
|
892 if (hi > lo) { |
|
893 if (verb >= 4) |
|
894 VPrintf4 ( " qsort [0x%x, 0x%x] " |
|
895 "done %d this %d\n", |
|
896 ss, j, numQSorted, hi - lo + 1 ); |
|
897 mainQSort3 ( |
|
898 ptr, block, quadrant, nblock, |
|
899 lo, hi, BZ_N_RADIX, budget |
|
900 ); |
|
901 numQSorted += (hi - lo + 1); |
|
902 if (*budget < 0) return; |
|
903 } |
|
904 } |
|
905 ftab[sb] |= SETMASK; |
|
906 } |
|
907 } |
|
908 |
|
909 AssertH ( !bigDone[ss], 1006 ); |
|
910 |
|
911 /*-- |
|
912 Step 2: |
|
913 Now scan this big bucket [ss] so as to synthesise the |
|
914 sorted order for small buckets [t, ss] for all t, |
|
915 including, magically, the bucket [ss,ss] too. |
|
916 This will avoid doing Real Work in subsequent Step 1's. |
|
917 --*/ |
|
918 { |
|
919 for (j = 0; j <= 255; j++) { |
|
920 copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; |
|
921 copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; |
|
922 } |
|
923 for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { |
|
924 k = ptr[j]-1; if (k < 0) k += nblock; |
|
925 c1 = block[k]; |
|
926 if (!bigDone[c1]) |
|
927 ptr[ copyStart[c1]++ ] = k; |
|
928 } |
|
929 for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { |
|
930 k = ptr[j]-1; if (k < 0) k += nblock; |
|
931 c1 = block[k]; |
|
932 if (!bigDone[c1]) |
|
933 ptr[ copyEnd[c1]-- ] = k; |
|
934 } |
|
935 } |
|
936 |
|
937 AssertH ( (copyStart[ss]-1 == copyEnd[ss]) |
|
938 || |
|
939 /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. |
|
940 Necessity for this case is demonstrated by compressing |
|
941 a sequence of approximately 48.5 million of character |
|
942 251; 1.0.0/1.0.1 will then die here. */ |
|
943 (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), |
|
944 1007 ) |
|
945 |
|
946 for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; |
|
947 |
|
948 /*-- |
|
949 Step 3: |
|
950 The [ss] big bucket is now done. Record this fact, |
|
951 and update the quadrant descriptors. Remember to |
|
952 update quadrants in the overshoot area too, if |
|
953 necessary. The "if (i < 255)" test merely skips |
|
954 this updating for the last bucket processed, since |
|
955 updating for the last bucket is pointless. |
|
956 |
|
957 The quadrant array provides a way to incrementally |
|
958 cache sort orderings, as they appear, so as to |
|
959 make subsequent comparisons in fullGtU() complete |
|
960 faster. For repetitive blocks this makes a big |
|
961 difference (but not big enough to be able to avoid |
|
962 the fallback sorting mechanism, exponential radix sort). |
|
963 |
|
964 The precise meaning is: at all times: |
|
965 |
|
966 for 0 <= i < nblock and 0 <= j <= nblock |
|
967 |
|
968 if block[i] != block[j], |
|
969 |
|
970 then the relative values of quadrant[i] and |
|
971 quadrant[j] are meaningless. |
|
972 |
|
973 else { |
|
974 if quadrant[i] < quadrant[j] |
|
975 then the string starting at i lexicographically |
|
976 precedes the string starting at j |
|
977 |
|
978 else if quadrant[i] > quadrant[j] |
|
979 then the string starting at j lexicographically |
|
980 precedes the string starting at i |
|
981 |
|
982 else |
|
983 the relative ordering of the strings starting |
|
984 at i and j has not yet been determined. |
|
985 } |
|
986 --*/ |
|
987 bigDone[ss] = True; |
|
988 |
|
989 if (i < 255) { |
|
990 Int32 bbStart = ftab[ss << 8] & CLEARMASK; |
|
991 Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; |
|
992 Int32 shifts = 0; |
|
993 |
|
994 while ((bbSize >> shifts) > 65534) shifts++; |
|
995 |
|
996 for (j = bbSize-1; j >= 0; j--) { |
|
997 Int32 a2update = ptr[bbStart + j]; |
|
998 UInt16 qVal = (UInt16)(j >> shifts); |
|
999 quadrant[a2update] = qVal; |
|
1000 if (a2update < BZ_N_OVERSHOOT) |
|
1001 quadrant[a2update + nblock] = qVal; |
|
1002 } |
|
1003 AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); |
|
1004 } |
|
1005 |
|
1006 } |
|
1007 |
|
1008 if (verb >= 4) |
|
1009 VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", |
|
1010 nblock, numQSorted, nblock - numQSorted ); |
|
1011 } |
|
1012 |
|
1013 #undef BIGFREQ |
|
1014 #undef SETMASK |
|
1015 #undef CLEARMASK |
|
1016 |
|
1017 |
|
1018 /*---------------------------------------------*/ |
|
1019 /* Pre: |
|
1020 nblock > 0 |
|
1021 arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] |
|
1022 ((UChar*)arr2) [0 .. nblock-1] holds block |
|
1023 arr1 exists for [0 .. nblock-1] |
|
1024 |
|
1025 Post: |
|
1026 ((UChar*)arr2) [0 .. nblock-1] holds block |
|
1027 All other areas of block destroyed |
|
1028 ftab [ 0 .. 65536 ] destroyed |
|
1029 arr1 [0 .. nblock-1] holds sorted order |
|
1030 */ |
|
1031 void BZ2_blockSort ( EState* s ) |
|
1032 { |
|
1033 UInt32* ptr = s->ptr; |
|
1034 UChar* block = s->block; |
|
1035 UInt32* ftab = s->ftab; |
|
1036 Int32 nblock = s->nblock; |
|
1037 Int32 verb = s->verbosity; |
|
1038 Int32 wfact = s->workFactor; |
|
1039 UInt16* quadrant; |
|
1040 Int32 budget; |
|
1041 Int32 budgetInit; |
|
1042 Int32 i; |
|
1043 |
|
1044 if (nblock < 10000) { |
|
1045 fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); |
|
1046 } else { |
|
1047 /* Calculate the location for quadrant, remembering to get |
|
1048 the alignment right. Assumes that &(block[0]) is at least |
|
1049 2-byte aligned -- this should be ok since block is really |
|
1050 the first section of arr2. |
|
1051 */ |
|
1052 i = nblock+BZ_N_OVERSHOOT; |
|
1053 if (i & 1) i++; |
|
1054 quadrant = (UInt16*)(&(block[i])); |
|
1055 |
|
1056 /* (wfact-1) / 3 puts the default-factor-30 |
|
1057 transition point at very roughly the same place as |
|
1058 with v0.1 and v0.9.0. |
|
1059 Not that it particularly matters any more, since the |
|
1060 resulting compressed stream is now the same regardless |
|
1061 of whether or not we use the main sort or fallback sort. |
|
1062 */ |
|
1063 if (wfact < 1 ) wfact = 1; |
|
1064 if (wfact > 100) wfact = 100; |
|
1065 budgetInit = nblock * ((wfact-1) / 3); |
|
1066 budget = budgetInit; |
|
1067 |
|
1068 mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); |
|
1069 if (verb >= 3) |
|
1070 VPrintf3 ( " %d work, %d block, ratio %5.2f\n", |
|
1071 budgetInit - budget, |
|
1072 nblock, |
|
1073 (float)(budgetInit - budget) / |
|
1074 (float)(nblock==0 ? 1 : nblock) ); |
|
1075 if (budget < 0) { |
|
1076 if (verb >= 2) |
|
1077 VPrintf0 ( " too repetitive; using fallback" |
|
1078 " sorting algorithm\n" ); |
|
1079 fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); |
|
1080 } |
|
1081 } |
|
1082 |
|
1083 s->origPtr = -1; |
|
1084 for (i = 0; i < s->nblock; i++) |
|
1085 if (ptr[i] == 0) |
|
1086 { s->origPtr = i; break; }; |
|
1087 |
|
1088 AssertH( s->origPtr != -1, 1003 ); |
|
1089 } |
|
1090 |
|
1091 |
|
1092 /*-------------------------------------------------------------*/ |
|
1093 /*--- end blocksort.c ---*/ |
|
1094 /*-------------------------------------------------------------*/ |