|
1 /* crc32.c -- compute the CRC-32 of a data stream |
|
2 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler |
|
3 * For conditions of distribution and use, see copyright notice in zlib.h |
|
4 * |
|
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
|
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
|
7 * tables for updating the shift register in one step with three exclusive-ors |
|
8 * instead of four steps with four exclusive-ors. This results in about a |
|
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
|
10 */ |
|
11 |
|
12 /* @(#) $Id$ */ |
|
13 |
|
14 /* |
|
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
|
16 protection on the static variables used to control the first-use generation |
|
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
|
18 first call get_crc_table() to initialize the tables before allowing more than |
|
19 one thread to use crc32(). |
|
20 |
|
21 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. |
|
22 */ |
|
23 |
|
24 #ifdef MAKECRCH |
|
25 # include <stdio.h> |
|
26 # ifndef DYNAMIC_CRC_TABLE |
|
27 # define DYNAMIC_CRC_TABLE |
|
28 # endif /* !DYNAMIC_CRC_TABLE */ |
|
29 #endif /* MAKECRCH */ |
|
30 |
|
31 #include "zutil.h" /* for STDC and FAR definitions */ |
|
32 |
|
33 #define local static |
|
34 |
|
35 /* Definitions for doing the crc four data bytes at a time. */ |
|
36 #if !defined(NOBYFOUR) && defined(Z_U4) |
|
37 # define BYFOUR |
|
38 #endif |
|
39 #ifdef BYFOUR |
|
40 local unsigned long crc32_little OF((unsigned long, |
|
41 const unsigned char FAR *, unsigned)); |
|
42 local unsigned long crc32_big OF((unsigned long, |
|
43 const unsigned char FAR *, unsigned)); |
|
44 # define TBLS 8 |
|
45 #else |
|
46 # define TBLS 1 |
|
47 #endif /* BYFOUR */ |
|
48 |
|
49 /* Local functions for crc concatenation */ |
|
50 local unsigned long gf2_matrix_times OF((unsigned long *mat, |
|
51 unsigned long vec)); |
|
52 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
|
53 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); |
|
54 |
|
55 |
|
56 #ifdef DYNAMIC_CRC_TABLE |
|
57 |
|
58 local volatile int crc_table_empty = 1; |
|
59 local z_crc_t FAR crc_table[TBLS][256]; |
|
60 local void make_crc_table OF((void)); |
|
61 #ifdef MAKECRCH |
|
62 local void write_table OF((FILE *, const z_crc_t FAR *)); |
|
63 #endif /* MAKECRCH */ |
|
64 /* |
|
65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
|
66 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
|
67 |
|
68 Polynomials over GF(2) are represented in binary, one bit per coefficient, |
|
69 with the lowest powers in the most significant bit. Then adding polynomials |
|
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by |
|
71 one. If we call the above polynomial p, and represent a byte as the |
|
72 polynomial q, also with the lowest power in the most significant bit (so the |
|
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
|
74 where a mod b means the remainder after dividing a by b. |
|
75 |
|
76 This calculation is done using the shift-register method of multiplying and |
|
77 taking the remainder. The register is initialized to zero, and for each |
|
78 incoming bit, x^32 is added mod p to the register if the bit is a one (where |
|
79 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
|
80 x (which is shifting right by one and adding x^32 mod p if the bit shifted |
|
81 out is a one). We start with the highest power (least significant bit) of |
|
82 q and repeat for all eight bits of q. |
|
83 |
|
84 The first table is simply the CRC of all possible eight bit values. This is |
|
85 all the information needed to generate CRCs on data a byte at a time for all |
|
86 combinations of CRC register values and incoming bytes. The remaining tables |
|
87 allow for word-at-a-time CRC calculation for both big-endian and little- |
|
88 endian machines, where a word is four bytes. |
|
89 */ |
|
90 local void make_crc_table() |
|
91 { |
|
92 z_crc_t c; |
|
93 int n, k; |
|
94 z_crc_t poly; /* polynomial exclusive-or pattern */ |
|
95 /* terms of polynomial defining this crc (except x^32): */ |
|
96 static volatile int first = 1; /* flag to limit concurrent making */ |
|
97 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
|
98 |
|
99 /* See if another task is already doing this (not thread-safe, but better |
|
100 than nothing -- significantly reduces duration of vulnerability in |
|
101 case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
|
102 if (first) { |
|
103 first = 0; |
|
104 |
|
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
|
106 poly = 0; |
|
107 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) |
|
108 poly |= (z_crc_t)1 << (31 - p[n]); |
|
109 |
|
110 /* generate a crc for every 8-bit value */ |
|
111 for (n = 0; n < 256; n++) { |
|
112 c = (z_crc_t)n; |
|
113 for (k = 0; k < 8; k++) |
|
114 c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
|
115 crc_table[0][n] = c; |
|
116 } |
|
117 |
|
118 #ifdef BYFOUR |
|
119 /* generate crc for each value followed by one, two, and three zeros, |
|
120 and then the byte reversal of those as well as the first table */ |
|
121 for (n = 0; n < 256; n++) { |
|
122 c = crc_table[0][n]; |
|
123 crc_table[4][n] = ZSWAP32(c); |
|
124 for (k = 1; k < 4; k++) { |
|
125 c = crc_table[0][c & 0xff] ^ (c >> 8); |
|
126 crc_table[k][n] = c; |
|
127 crc_table[k + 4][n] = ZSWAP32(c); |
|
128 } |
|
129 } |
|
130 #endif /* BYFOUR */ |
|
131 |
|
132 crc_table_empty = 0; |
|
133 } |
|
134 else { /* not first */ |
|
135 /* wait for the other guy to finish (not efficient, but rare) */ |
|
136 while (crc_table_empty) |
|
137 ; |
|
138 } |
|
139 |
|
140 #ifdef MAKECRCH |
|
141 /* write out CRC tables to crc32.h */ |
|
142 { |
|
143 FILE *out; |
|
144 |
|
145 out = fopen("crc32.h", "w"); |
|
146 if (out == NULL) return; |
|
147 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
|
148 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
|
149 fprintf(out, "local const z_crc_t FAR "); |
|
150 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
|
151 write_table(out, crc_table[0]); |
|
152 # ifdef BYFOUR |
|
153 fprintf(out, "#ifdef BYFOUR\n"); |
|
154 for (k = 1; k < 8; k++) { |
|
155 fprintf(out, " },\n {\n"); |
|
156 write_table(out, crc_table[k]); |
|
157 } |
|
158 fprintf(out, "#endif\n"); |
|
159 # endif /* BYFOUR */ |
|
160 fprintf(out, " }\n};\n"); |
|
161 fclose(out); |
|
162 } |
|
163 #endif /* MAKECRCH */ |
|
164 } |
|
165 |
|
166 #ifdef MAKECRCH |
|
167 local void write_table(out, table) |
|
168 FILE *out; |
|
169 const z_crc_t FAR *table; |
|
170 { |
|
171 int n; |
|
172 |
|
173 for (n = 0; n < 256; n++) |
|
174 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", |
|
175 (unsigned long)(table[n]), |
|
176 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
|
177 } |
|
178 #endif /* MAKECRCH */ |
|
179 |
|
180 #else /* !DYNAMIC_CRC_TABLE */ |
|
181 /* ======================================================================== |
|
182 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
|
183 */ |
|
184 #include "crc32.h" |
|
185 #endif /* DYNAMIC_CRC_TABLE */ |
|
186 |
|
187 /* ========================================================================= |
|
188 * This function can be used by asm versions of crc32() |
|
189 */ |
|
190 const z_crc_t FAR * ZEXPORT get_crc_table() |
|
191 { |
|
192 #ifdef DYNAMIC_CRC_TABLE |
|
193 if (crc_table_empty) |
|
194 make_crc_table(); |
|
195 #endif /* DYNAMIC_CRC_TABLE */ |
|
196 return (const z_crc_t FAR *)crc_table; |
|
197 } |
|
198 |
|
199 /* ========================================================================= */ |
|
200 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
|
201 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
|
202 |
|
203 /* ========================================================================= */ |
|
204 unsigned long ZEXPORT crc32(crc, buf, len) |
|
205 unsigned long crc; |
|
206 const unsigned char FAR *buf; |
|
207 uInt len; |
|
208 { |
|
209 if (buf == Z_NULL) return 0UL; |
|
210 |
|
211 #ifdef DYNAMIC_CRC_TABLE |
|
212 if (crc_table_empty) |
|
213 make_crc_table(); |
|
214 #endif /* DYNAMIC_CRC_TABLE */ |
|
215 |
|
216 #ifdef BYFOUR |
|
217 if (sizeof(void *) == sizeof(ptrdiff_t)) { |
|
218 z_crc_t endian; |
|
219 |
|
220 endian = 1; |
|
221 if (*((unsigned char *)(&endian))) |
|
222 return crc32_little(crc, buf, len); |
|
223 else |
|
224 return crc32_big(crc, buf, len); |
|
225 } |
|
226 #endif /* BYFOUR */ |
|
227 crc = crc ^ 0xffffffffUL; |
|
228 while (len >= 8) { |
|
229 DO8; |
|
230 len -= 8; |
|
231 } |
|
232 if (len) do { |
|
233 DO1; |
|
234 } while (--len); |
|
235 return crc ^ 0xffffffffUL; |
|
236 } |
|
237 |
|
238 #ifdef BYFOUR |
|
239 |
|
240 /* ========================================================================= */ |
|
241 #define DOLIT4 c ^= *buf4++; \ |
|
242 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
|
243 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
|
244 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
|
245 |
|
246 /* ========================================================================= */ |
|
247 local unsigned long crc32_little(crc, buf, len) |
|
248 unsigned long crc; |
|
249 const unsigned char FAR *buf; |
|
250 unsigned len; |
|
251 { |
|
252 register z_crc_t c; |
|
253 register const z_crc_t FAR *buf4; |
|
254 |
|
255 c = (z_crc_t)crc; |
|
256 c = ~c; |
|
257 while (len && ((ptrdiff_t)buf & 3)) { |
|
258 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
259 len--; |
|
260 } |
|
261 |
|
262 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
|
263 while (len >= 32) { |
|
264 DOLIT32; |
|
265 len -= 32; |
|
266 } |
|
267 while (len >= 4) { |
|
268 DOLIT4; |
|
269 len -= 4; |
|
270 } |
|
271 buf = (const unsigned char FAR *)buf4; |
|
272 |
|
273 if (len) do { |
|
274 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
275 } while (--len); |
|
276 c = ~c; |
|
277 return (unsigned long)c; |
|
278 } |
|
279 |
|
280 /* ========================================================================= */ |
|
281 #define DOBIG4 c ^= *++buf4; \ |
|
282 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
|
283 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
|
284 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
|
285 |
|
286 /* ========================================================================= */ |
|
287 local unsigned long crc32_big(crc, buf, len) |
|
288 unsigned long crc; |
|
289 const unsigned char FAR *buf; |
|
290 unsigned len; |
|
291 { |
|
292 register z_crc_t c; |
|
293 register const z_crc_t FAR *buf4; |
|
294 |
|
295 c = ZSWAP32((z_crc_t)crc); |
|
296 c = ~c; |
|
297 while (len && ((ptrdiff_t)buf & 3)) { |
|
298 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
299 len--; |
|
300 } |
|
301 |
|
302 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; |
|
303 buf4--; |
|
304 while (len >= 32) { |
|
305 DOBIG32; |
|
306 len -= 32; |
|
307 } |
|
308 while (len >= 4) { |
|
309 DOBIG4; |
|
310 len -= 4; |
|
311 } |
|
312 buf4++; |
|
313 buf = (const unsigned char FAR *)buf4; |
|
314 |
|
315 if (len) do { |
|
316 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
317 } while (--len); |
|
318 c = ~c; |
|
319 return (unsigned long)(ZSWAP32(c)); |
|
320 } |
|
321 |
|
322 #endif /* BYFOUR */ |
|
323 |
|
324 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
|
325 |
|
326 /* ========================================================================= */ |
|
327 local unsigned long gf2_matrix_times(mat, vec) |
|
328 unsigned long *mat; |
|
329 unsigned long vec; |
|
330 { |
|
331 unsigned long sum; |
|
332 |
|
333 sum = 0; |
|
334 while (vec) { |
|
335 if (vec & 1) |
|
336 sum ^= *mat; |
|
337 vec >>= 1; |
|
338 mat++; |
|
339 } |
|
340 return sum; |
|
341 } |
|
342 |
|
343 /* ========================================================================= */ |
|
344 local void gf2_matrix_square(square, mat) |
|
345 unsigned long *square; |
|
346 unsigned long *mat; |
|
347 { |
|
348 int n; |
|
349 |
|
350 for (n = 0; n < GF2_DIM; n++) |
|
351 square[n] = gf2_matrix_times(mat, mat[n]); |
|
352 } |
|
353 |
|
354 /* ========================================================================= */ |
|
355 local uLong crc32_combine_(crc1, crc2, len2) |
|
356 uLong crc1; |
|
357 uLong crc2; |
|
358 z_off64_t len2; |
|
359 { |
|
360 int n; |
|
361 unsigned long row; |
|
362 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
|
363 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
|
364 |
|
365 /* degenerate case (also disallow negative lengths) */ |
|
366 if (len2 <= 0) |
|
367 return crc1; |
|
368 |
|
369 /* put operator for one zero bit in odd */ |
|
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
|
371 row = 1; |
|
372 for (n = 1; n < GF2_DIM; n++) { |
|
373 odd[n] = row; |
|
374 row <<= 1; |
|
375 } |
|
376 |
|
377 /* put operator for two zero bits in even */ |
|
378 gf2_matrix_square(even, odd); |
|
379 |
|
380 /* put operator for four zero bits in odd */ |
|
381 gf2_matrix_square(odd, even); |
|
382 |
|
383 /* apply len2 zeros to crc1 (first square will put the operator for one |
|
384 zero byte, eight zero bits, in even) */ |
|
385 do { |
|
386 /* apply zeros operator for this bit of len2 */ |
|
387 gf2_matrix_square(even, odd); |
|
388 if (len2 & 1) |
|
389 crc1 = gf2_matrix_times(even, crc1); |
|
390 len2 >>= 1; |
|
391 |
|
392 /* if no more bits set, then done */ |
|
393 if (len2 == 0) |
|
394 break; |
|
395 |
|
396 /* another iteration of the loop with odd and even swapped */ |
|
397 gf2_matrix_square(odd, even); |
|
398 if (len2 & 1) |
|
399 crc1 = gf2_matrix_times(odd, crc1); |
|
400 len2 >>= 1; |
|
401 |
|
402 /* if no more bits set, then done */ |
|
403 } while (len2 != 0); |
|
404 |
|
405 /* return combined crc */ |
|
406 crc1 ^= crc2; |
|
407 return crc1; |
|
408 } |
|
409 |
|
410 /* ========================================================================= */ |
|
411 uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
|
412 uLong crc1; |
|
413 uLong crc2; |
|
414 z_off_t len2; |
|
415 { |
|
416 return crc32_combine_(crc1, crc2, len2); |
|
417 } |
|
418 |
|
419 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
|
420 uLong crc1; |
|
421 uLong crc2; |
|
422 z_off64_t len2; |
|
423 { |
|
424 return crc32_combine_(crc1, crc2, len2); |
|
425 } |