| |
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
| |
2 * This Source Code Form is subject to the terms of the Mozilla Public |
| |
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
| |
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
5 |
| |
6 #ifndef nsMathUtils_h__ |
| |
7 #define nsMathUtils_h__ |
| |
8 |
| |
9 #define _USE_MATH_DEFINES /* needed for M_ constants on Win32 */ |
| |
10 |
| |
11 #include "nscore.h" |
| |
12 #include <cmath> |
| |
13 #include <float.h> |
| |
14 |
| |
15 #ifdef SOLARIS |
| |
16 #include <ieeefp.h> |
| |
17 #endif |
| |
18 |
| |
19 /* |
| |
20 * round |
| |
21 */ |
| |
22 inline NS_HIDDEN_(double) NS_round(double x) |
| |
23 { |
| |
24 return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5); |
| |
25 } |
| |
26 inline NS_HIDDEN_(float) NS_roundf(float x) |
| |
27 { |
| |
28 return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f); |
| |
29 } |
| |
30 inline NS_HIDDEN_(int32_t) NS_lround(double x) |
| |
31 { |
| |
32 return x >= 0.0 ? int32_t(x + 0.5) : int32_t(x - 0.5); |
| |
33 } |
| |
34 |
| |
35 /* NS_roundup30 rounds towards infinity for positive and */ |
| |
36 /* negative numbers. */ |
| |
37 |
| |
38 #if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) |
| |
39 inline NS_HIDDEN_(int32_t) NS_lroundup30(float x) |
| |
40 { |
| |
41 /* Code derived from Laurent de Soras' paper at */ |
| |
42 /* http://ldesoras.free.fr/doc/articles/rounding_en.pdf */ |
| |
43 |
| |
44 /* Rounding up on Windows is expensive using the float to */ |
| |
45 /* int conversion and the floor function. A faster */ |
| |
46 /* approach is to use f87 rounding while assuming the */ |
| |
47 /* default rounding mode of rounding to the nearest */ |
| |
48 /* integer. This rounding mode, however, actually rounds */ |
| |
49 /* to the nearest integer so we add the floating point */ |
| |
50 /* number to itself and add our rounding factor before */ |
| |
51 /* doing the conversion to an integer. We then do a right */ |
| |
52 /* shift of one bit on the integer to divide by two. */ |
| |
53 |
| |
54 /* This routine doesn't handle numbers larger in magnitude */ |
| |
55 /* than 2^30 but this is fine for NSToCoordRound because */ |
| |
56 /* Coords are limited to 2^30 in magnitude. */ |
| |
57 |
| |
58 static const double round_to_nearest = 0.5f; |
| |
59 int i; |
| |
60 |
| |
61 __asm { |
| |
62 fld x ; load fp argument |
| |
63 fadd st, st(0) ; double it |
| |
64 fadd round_to_nearest ; add the rounding factor |
| |
65 fistp dword ptr i ; convert the result to int |
| |
66 } |
| |
67 return i >> 1; /* divide by 2 */ |
| |
68 } |
| |
69 #endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */ |
| |
70 |
| |
71 inline NS_HIDDEN_(int32_t) NS_lroundf(float x) |
| |
72 { |
| |
73 return x >= 0.0f ? int32_t(x + 0.5f) : int32_t(x - 0.5f); |
| |
74 } |
| |
75 |
| |
76 /* |
| |
77 * hypot. We don't need a super accurate version of this, if a platform |
| |
78 * turns up with none of the possibilities below it would be okay to fall |
| |
79 * back to sqrt(x*x + y*y). |
| |
80 */ |
| |
81 inline NS_HIDDEN_(double) NS_hypot(double x, double y) |
| |
82 { |
| |
83 #ifdef __GNUC__ |
| |
84 return __builtin_hypot(x, y); |
| |
85 #elif defined _WIN32 |
| |
86 return _hypot(x, y); |
| |
87 #else |
| |
88 return hypot(x, y); |
| |
89 #endif |
| |
90 } |
| |
91 |
| |
92 /** |
| |
93 * Check whether a floating point number is finite (not +/-infinity and not a |
| |
94 * NaN value). |
| |
95 */ |
| |
96 inline NS_HIDDEN_(bool) NS_finite(double d) |
| |
97 { |
| |
98 #ifdef WIN32 |
| |
99 // NOTE: '!!' casts an int to bool without spamming MSVC warning C4800. |
| |
100 return !!_finite(d); |
| |
101 #elif defined(XP_DARWIN) |
| |
102 // Darwin has deprecated |finite| and recommends |isfinite|. The former is |
| |
103 // not present in the iOS SDK. |
| |
104 return std::isfinite(d); |
| |
105 #else |
| |
106 return finite(d); |
| |
107 #endif |
| |
108 } |
| |
109 |
| |
110 /** |
| |
111 * Returns the result of the modulo of x by y using a floored division. |
| |
112 * fmod(x, y) is using a truncated division. |
| |
113 * The main difference is that the result of this method will have the sign of |
| |
114 * y while the result of fmod(x, y) will have the sign of x. |
| |
115 */ |
| |
116 inline NS_HIDDEN_(double) NS_floorModulo(double x, double y) |
| |
117 { |
| |
118 return (x - y * floor(x / y)); |
| |
119 } |
| |
120 |
| |
121 #endif |