|
1 /* |
|
2 * Copyright (C) 2010, Google Inc. All rights reserved. |
|
3 * |
|
4 * Redistribution and use in source and binary forms, with or without |
|
5 * modification, are permitted provided that the following conditions |
|
6 * are met: |
|
7 * 1. Redistributions of source code must retain the above copyright |
|
8 * notice, this list of conditions and the following disclaimer. |
|
9 * 2. Redistributions in binary form must reproduce the above copyright |
|
10 * notice, this list of conditions and the following disclaimer in the |
|
11 * documentation and/or other materials provided with the distribution. |
|
12 * |
|
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
|
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
16 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
|
17 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
18 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
|
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
22 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
23 */ |
|
24 |
|
25 #include "HRTFPanner.h" |
|
26 #include "HRTFDatabaseLoader.h" |
|
27 |
|
28 #include "FFTConvolver.h" |
|
29 #include "HRTFDatabase.h" |
|
30 |
|
31 using namespace std; |
|
32 using namespace mozilla; |
|
33 using dom::ChannelInterpretation; |
|
34 |
|
35 namespace WebCore { |
|
36 |
|
37 // The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds). |
|
38 // We ASSERT the delay values used in process() with this value. |
|
39 const double MaxDelayTimeSeconds = 0.002; |
|
40 |
|
41 const int UninitializedAzimuth = -1; |
|
42 const unsigned RenderingQuantum = WEBAUDIO_BLOCK_SIZE; |
|
43 |
|
44 HRTFPanner::HRTFPanner(float sampleRate, mozilla::TemporaryRef<HRTFDatabaseLoader> databaseLoader) |
|
45 : m_databaseLoader(databaseLoader) |
|
46 , m_sampleRate(sampleRate) |
|
47 , m_crossfadeSelection(CrossfadeSelection1) |
|
48 , m_azimuthIndex1(UninitializedAzimuth) |
|
49 , m_azimuthIndex2(UninitializedAzimuth) |
|
50 // m_elevation1 and m_elevation2 are initialized in pan() |
|
51 , m_crossfadeX(0) |
|
52 , m_crossfadeIncr(0) |
|
53 , m_convolverL1(HRTFElevation::fftSizeForSampleRate(sampleRate)) |
|
54 , m_convolverR1(m_convolverL1.fftSize()) |
|
55 , m_convolverL2(m_convolverL1.fftSize()) |
|
56 , m_convolverR2(m_convolverL1.fftSize()) |
|
57 , m_delayLine(MaxDelayTimeSeconds * sampleRate, 1.0) |
|
58 { |
|
59 MOZ_ASSERT(m_databaseLoader); |
|
60 MOZ_COUNT_CTOR(HRTFPanner); |
|
61 |
|
62 m_tempL1.SetLength(RenderingQuantum); |
|
63 m_tempR1.SetLength(RenderingQuantum); |
|
64 m_tempL2.SetLength(RenderingQuantum); |
|
65 m_tempR2.SetLength(RenderingQuantum); |
|
66 } |
|
67 |
|
68 HRTFPanner::~HRTFPanner() |
|
69 { |
|
70 MOZ_COUNT_DTOR(HRTFPanner); |
|
71 } |
|
72 |
|
73 size_t HRTFPanner::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const |
|
74 { |
|
75 size_t amount = aMallocSizeOf(this); |
|
76 |
|
77 if (m_databaseLoader) { |
|
78 m_databaseLoader->sizeOfIncludingThis(aMallocSizeOf); |
|
79 } |
|
80 |
|
81 amount += m_convolverL1.sizeOfExcludingThis(aMallocSizeOf); |
|
82 amount += m_convolverR1.sizeOfExcludingThis(aMallocSizeOf); |
|
83 amount += m_convolverL2.sizeOfExcludingThis(aMallocSizeOf); |
|
84 amount += m_convolverR2.sizeOfExcludingThis(aMallocSizeOf); |
|
85 amount += m_delayLine.SizeOfExcludingThis(aMallocSizeOf); |
|
86 amount += m_tempL1.SizeOfExcludingThis(aMallocSizeOf); |
|
87 amount += m_tempL2.SizeOfExcludingThis(aMallocSizeOf); |
|
88 amount += m_tempR1.SizeOfExcludingThis(aMallocSizeOf); |
|
89 amount += m_tempR2.SizeOfExcludingThis(aMallocSizeOf); |
|
90 |
|
91 return amount; |
|
92 } |
|
93 |
|
94 void HRTFPanner::reset() |
|
95 { |
|
96 m_azimuthIndex1 = UninitializedAzimuth; |
|
97 m_azimuthIndex2 = UninitializedAzimuth; |
|
98 // m_elevation1 and m_elevation2 are initialized in pan() |
|
99 m_crossfadeSelection = CrossfadeSelection1; |
|
100 m_crossfadeX = 0.0f; |
|
101 m_crossfadeIncr = 0.0f; |
|
102 m_convolverL1.reset(); |
|
103 m_convolverR1.reset(); |
|
104 m_convolverL2.reset(); |
|
105 m_convolverR2.reset(); |
|
106 m_delayLine.Reset(); |
|
107 } |
|
108 |
|
109 int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend) |
|
110 { |
|
111 // Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360. |
|
112 // The azimuth index may then be calculated from this positive value. |
|
113 if (azimuth < 0) |
|
114 azimuth += 360.0; |
|
115 |
|
116 HRTFDatabase* database = m_databaseLoader->database(); |
|
117 MOZ_ASSERT(database); |
|
118 |
|
119 int numberOfAzimuths = database->numberOfAzimuths(); |
|
120 const double angleBetweenAzimuths = 360.0 / numberOfAzimuths; |
|
121 |
|
122 // Calculate the azimuth index and the blend (0 -> 1) for interpolation. |
|
123 double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths; |
|
124 int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat); |
|
125 azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex); |
|
126 |
|
127 // We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at. |
|
128 // This minimizes the clicks and graininess for moving sources which occur otherwise. |
|
129 desiredAzimuthIndex = max(0, desiredAzimuthIndex); |
|
130 desiredAzimuthIndex = min(numberOfAzimuths - 1, desiredAzimuthIndex); |
|
131 return desiredAzimuthIndex; |
|
132 } |
|
133 |
|
134 void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioChunk* inputBus, AudioChunk* outputBus) |
|
135 { |
|
136 #ifdef DEBUG |
|
137 unsigned numInputChannels = |
|
138 inputBus->IsNull() ? 0 : inputBus->mChannelData.Length(); |
|
139 |
|
140 MOZ_ASSERT(numInputChannels <= 2); |
|
141 MOZ_ASSERT(inputBus->mDuration == WEBAUDIO_BLOCK_SIZE); |
|
142 #endif |
|
143 |
|
144 bool isOutputGood = outputBus && outputBus->mChannelData.Length() == 2 && outputBus->mDuration == WEBAUDIO_BLOCK_SIZE; |
|
145 MOZ_ASSERT(isOutputGood); |
|
146 |
|
147 if (!isOutputGood) { |
|
148 if (outputBus) |
|
149 outputBus->SetNull(outputBus->mDuration); |
|
150 return; |
|
151 } |
|
152 |
|
153 HRTFDatabase* database = m_databaseLoader->database(); |
|
154 if (!database) { // not yet loaded |
|
155 outputBus->SetNull(outputBus->mDuration); |
|
156 return; |
|
157 } |
|
158 |
|
159 // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth. |
|
160 double azimuth = -desiredAzimuth; |
|
161 |
|
162 bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; |
|
163 MOZ_ASSERT(isAzimuthGood); |
|
164 if (!isAzimuthGood) { |
|
165 outputBus->SetNull(outputBus->mDuration); |
|
166 return; |
|
167 } |
|
168 |
|
169 // Normally, we'll just be dealing with mono sources. |
|
170 // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF. |
|
171 |
|
172 // Get destination pointers. |
|
173 float* destinationL = |
|
174 static_cast<float*>(const_cast<void*>(outputBus->mChannelData[0])); |
|
175 float* destinationR = |
|
176 static_cast<float*>(const_cast<void*>(outputBus->mChannelData[1])); |
|
177 |
|
178 double azimuthBlend; |
|
179 int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); |
|
180 |
|
181 // Initially snap azimuth and elevation values to first values encountered. |
|
182 if (m_azimuthIndex1 == UninitializedAzimuth) { |
|
183 m_azimuthIndex1 = desiredAzimuthIndex; |
|
184 m_elevation1 = elevation; |
|
185 } |
|
186 if (m_azimuthIndex2 == UninitializedAzimuth) { |
|
187 m_azimuthIndex2 = desiredAzimuthIndex; |
|
188 m_elevation2 = elevation; |
|
189 } |
|
190 |
|
191 // Cross-fade / transition over a period of around 45 milliseconds. |
|
192 // This is an empirical value tuned to be a reasonable trade-off between |
|
193 // smoothness and speed. |
|
194 const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096; |
|
195 |
|
196 // Check for azimuth and elevation changes, initiating a cross-fade if needed. |
|
197 if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) { |
|
198 if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) { |
|
199 // Cross-fade from 1 -> 2 |
|
200 m_crossfadeIncr = 1 / fadeFrames; |
|
201 m_azimuthIndex2 = desiredAzimuthIndex; |
|
202 m_elevation2 = elevation; |
|
203 } |
|
204 } |
|
205 if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) { |
|
206 if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) { |
|
207 // Cross-fade from 2 -> 1 |
|
208 m_crossfadeIncr = -1 / fadeFrames; |
|
209 m_azimuthIndex1 = desiredAzimuthIndex; |
|
210 m_elevation1 = elevation; |
|
211 } |
|
212 } |
|
213 |
|
214 // Get the HRTFKernels and interpolated delays. |
|
215 HRTFKernel* kernelL1; |
|
216 HRTFKernel* kernelR1; |
|
217 HRTFKernel* kernelL2; |
|
218 HRTFKernel* kernelR2; |
|
219 double frameDelayL1; |
|
220 double frameDelayR1; |
|
221 double frameDelayL2; |
|
222 double frameDelayR2; |
|
223 database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1); |
|
224 database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2); |
|
225 |
|
226 bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2; |
|
227 MOZ_ASSERT(areKernelsGood); |
|
228 if (!areKernelsGood) { |
|
229 outputBus->SetNull(outputBus->mDuration); |
|
230 return; |
|
231 } |
|
232 |
|
233 MOZ_ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds); |
|
234 MOZ_ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds); |
|
235 |
|
236 // Crossfade inter-aural delays based on transitions. |
|
237 double frameDelaysL[WEBAUDIO_BLOCK_SIZE]; |
|
238 double frameDelaysR[WEBAUDIO_BLOCK_SIZE]; |
|
239 { |
|
240 float x = m_crossfadeX; |
|
241 float incr = m_crossfadeIncr; |
|
242 for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) { |
|
243 frameDelaysL[i] = (1 - x) * frameDelayL1 + x * frameDelayL2; |
|
244 frameDelaysR[i] = (1 - x) * frameDelayR1 + x * frameDelayR2; |
|
245 x += incr; |
|
246 } |
|
247 } |
|
248 |
|
249 // First run through delay lines for inter-aural time difference. |
|
250 m_delayLine.Write(*inputBus); |
|
251 // "Speakers" means a mono input is read into both outputs (with possibly |
|
252 // different delays). |
|
253 m_delayLine.ReadChannel(frameDelaysL, outputBus, 0, |
|
254 ChannelInterpretation::Speakers); |
|
255 m_delayLine.ReadChannel(frameDelaysR, outputBus, 1, |
|
256 ChannelInterpretation::Speakers); |
|
257 m_delayLine.NextBlock(); |
|
258 |
|
259 bool needsCrossfading = m_crossfadeIncr; |
|
260 |
|
261 // Have the convolvers render directly to the final destination if we're not cross-fading. |
|
262 float* convolutionDestinationL1 = needsCrossfading ? m_tempL1.Elements() : destinationL; |
|
263 float* convolutionDestinationR1 = needsCrossfading ? m_tempR1.Elements() : destinationR; |
|
264 float* convolutionDestinationL2 = needsCrossfading ? m_tempL2.Elements() : destinationL; |
|
265 float* convolutionDestinationR2 = needsCrossfading ? m_tempR2.Elements() : destinationR; |
|
266 |
|
267 // Now do the convolutions. |
|
268 // Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading. |
|
269 |
|
270 if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) { |
|
271 m_convolverL1.process(kernelL1->fftFrame(), destinationL, convolutionDestinationL1, WEBAUDIO_BLOCK_SIZE); |
|
272 m_convolverR1.process(kernelR1->fftFrame(), destinationR, convolutionDestinationR1, WEBAUDIO_BLOCK_SIZE); |
|
273 } |
|
274 |
|
275 if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) { |
|
276 m_convolverL2.process(kernelL2->fftFrame(), destinationL, convolutionDestinationL2, WEBAUDIO_BLOCK_SIZE); |
|
277 m_convolverR2.process(kernelR2->fftFrame(), destinationR, convolutionDestinationR2, WEBAUDIO_BLOCK_SIZE); |
|
278 } |
|
279 |
|
280 if (needsCrossfading) { |
|
281 // Apply linear cross-fade. |
|
282 float x = m_crossfadeX; |
|
283 float incr = m_crossfadeIncr; |
|
284 for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) { |
|
285 destinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i]; |
|
286 destinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i]; |
|
287 x += incr; |
|
288 } |
|
289 // Update cross-fade value from local. |
|
290 m_crossfadeX = x; |
|
291 |
|
292 if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) { |
|
293 // We've fully made the crossfade transition from 1 -> 2. |
|
294 m_crossfadeSelection = CrossfadeSelection2; |
|
295 m_crossfadeX = 1; |
|
296 m_crossfadeIncr = 0; |
|
297 } else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) { |
|
298 // We've fully made the crossfade transition from 2 -> 1. |
|
299 m_crossfadeSelection = CrossfadeSelection1; |
|
300 m_crossfadeX = 0; |
|
301 m_crossfadeIncr = 0; |
|
302 } |
|
303 } |
|
304 } |
|
305 |
|
306 int HRTFPanner::maxTailFrames() const |
|
307 { |
|
308 // Although the ideal tail time would be the length of the impulse |
|
309 // response, there is additional tail time from the approximations in the |
|
310 // implementation. Because HRTFPanner is implemented with a DelayKernel |
|
311 // and a FFTConvolver, the tailTime of the HRTFPanner is the sum of the |
|
312 // tailTime of the DelayKernel and the tailTime of the FFTConvolver. |
|
313 // The FFTConvolver has a tail time of fftSize(), including latency of |
|
314 // fftSize()/2. |
|
315 return m_delayLine.MaxDelayTicks() + fftSize(); |
|
316 } |
|
317 |
|
318 } // namespace WebCore |