|
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 #ifndef BASE_MESSAGE_PUMP_WIN_H_ |
|
6 #define BASE_MESSAGE_PUMP_WIN_H_ |
|
7 |
|
8 #include <windows.h> |
|
9 |
|
10 #include <list> |
|
11 |
|
12 #include "base/lock.h" |
|
13 #include "base/message_pump.h" |
|
14 #include "base/observer_list.h" |
|
15 #include "base/scoped_handle.h" |
|
16 #include "base/time.h" |
|
17 |
|
18 namespace base { |
|
19 |
|
20 // MessagePumpWin serves as the base for specialized versions of the MessagePump |
|
21 // for Windows. It provides basic functionality like handling of observers and |
|
22 // controlling the lifetime of the message pump. |
|
23 class MessagePumpWin : public MessagePump { |
|
24 public: |
|
25 // An Observer is an object that receives global notifications from the |
|
26 // MessageLoop. |
|
27 // |
|
28 // NOTE: An Observer implementation should be extremely fast! |
|
29 // |
|
30 class Observer { |
|
31 public: |
|
32 virtual ~Observer() {} |
|
33 |
|
34 // This method is called before processing a message. |
|
35 // The message may be undefined in which case msg.message is 0 |
|
36 virtual void WillProcessMessage(const MSG& msg) = 0; |
|
37 |
|
38 // This method is called when control returns from processing a UI message. |
|
39 // The message may be undefined in which case msg.message is 0 |
|
40 virtual void DidProcessMessage(const MSG& msg) = 0; |
|
41 }; |
|
42 |
|
43 // Dispatcher is used during a nested invocation of Run to dispatch events. |
|
44 // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not |
|
45 // dispatch events (or invoke TranslateMessage), rather every message is |
|
46 // passed to Dispatcher's Dispatch method for dispatch. It is up to the |
|
47 // Dispatcher to dispatch, or not, the event. |
|
48 // |
|
49 // The nested loop is exited by either posting a quit, or returning false |
|
50 // from Dispatch. |
|
51 class Dispatcher { |
|
52 public: |
|
53 virtual ~Dispatcher() {} |
|
54 // Dispatches the event. If true is returned processing continues as |
|
55 // normal. If false is returned, the nested loop exits immediately. |
|
56 virtual bool Dispatch(const MSG& msg) = 0; |
|
57 }; |
|
58 |
|
59 MessagePumpWin() : have_work_(0), state_(NULL) {} |
|
60 virtual ~MessagePumpWin() {} |
|
61 |
|
62 // Add an Observer, which will start receiving notifications immediately. |
|
63 void AddObserver(Observer* observer); |
|
64 |
|
65 // Remove an Observer. It is safe to call this method while an Observer is |
|
66 // receiving a notification callback. |
|
67 void RemoveObserver(Observer* observer); |
|
68 |
|
69 // Give a chance to code processing additional messages to notify the |
|
70 // message loop observers that another message has been processed. |
|
71 void WillProcessMessage(const MSG& msg); |
|
72 void DidProcessMessage(const MSG& msg); |
|
73 |
|
74 // Like MessagePump::Run, but MSG objects are routed through dispatcher. |
|
75 void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher); |
|
76 |
|
77 // MessagePump methods: |
|
78 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); } |
|
79 virtual void Quit(); |
|
80 |
|
81 protected: |
|
82 struct RunState { |
|
83 Delegate* delegate; |
|
84 Dispatcher* dispatcher; |
|
85 |
|
86 // Used to flag that the current Run() invocation should return ASAP. |
|
87 bool should_quit; |
|
88 |
|
89 // Used to count how many Run() invocations are on the stack. |
|
90 int run_depth; |
|
91 }; |
|
92 |
|
93 virtual void DoRunLoop() = 0; |
|
94 int GetCurrentDelay() const; |
|
95 |
|
96 ObserverList<Observer> observers_; |
|
97 |
|
98 // The time at which delayed work should run. |
|
99 TimeTicks delayed_work_time_; |
|
100 |
|
101 // A boolean value used to indicate if there is a kMsgDoWork message pending |
|
102 // in the Windows Message queue. There is at most one such message, and it |
|
103 // can drive execution of tasks when a native message pump is running. |
|
104 LONG have_work_; |
|
105 |
|
106 // State for the current invocation of Run. |
|
107 RunState* state_; |
|
108 }; |
|
109 |
|
110 //----------------------------------------------------------------------------- |
|
111 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a |
|
112 // MessageLoop instantiated with TYPE_UI. |
|
113 // |
|
114 // MessagePumpForUI implements a "traditional" Windows message pump. It contains |
|
115 // a nearly infinite loop that peeks out messages, and then dispatches them. |
|
116 // Intermixed with those peeks are callouts to DoWork for pending tasks, and |
|
117 // DoDelayedWork for pending timers. When there are no events to be serviced, |
|
118 // this pump goes into a wait state. In most cases, this message pump handles |
|
119 // all processing. |
|
120 // |
|
121 // However, when a task, or windows event, invokes on the stack a native dialog |
|
122 // box or such, that window typically provides a bare bones (native?) message |
|
123 // pump. That bare-bones message pump generally supports little more than a |
|
124 // peek of the Windows message queue, followed by a dispatch of the peeked |
|
125 // message. MessageLoop extends that bare-bones message pump to also service |
|
126 // Tasks, at the cost of some complexity. |
|
127 // |
|
128 // The basic structure of the extension (refered to as a sub-pump) is that a |
|
129 // special message, kMsgHaveWork, is repeatedly injected into the Windows |
|
130 // Message queue. Each time the kMsgHaveWork message is peeked, checks are |
|
131 // made for an extended set of events, including the availability of Tasks to |
|
132 // run. |
|
133 // |
|
134 // After running a task, the special message kMsgHaveWork is again posted to |
|
135 // the Windows Message queue, ensuring a future time slice for processing a |
|
136 // future event. To prevent flooding the Windows Message queue, care is taken |
|
137 // to be sure that at most one kMsgHaveWork message is EVER pending in the |
|
138 // Window's Message queue. |
|
139 // |
|
140 // There are a few additional complexities in this system where, when there are |
|
141 // no Tasks to run, this otherwise infinite stream of messages which drives the |
|
142 // sub-pump is halted. The pump is automatically re-started when Tasks are |
|
143 // queued. |
|
144 // |
|
145 // A second complexity is that the presence of this stream of posted tasks may |
|
146 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. |
|
147 // Such paint and timer events always give priority to a posted message, such as |
|
148 // kMsgHaveWork messages. As a result, care is taken to do some peeking in |
|
149 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork |
|
150 // is peeked, and before a replacement kMsgHaveWork is posted). |
|
151 // |
|
152 // NOTE: Although it may seem odd that messages are used to start and stop this |
|
153 // flow (as opposed to signaling objects, etc.), it should be understood that |
|
154 // the native message pump will *only* respond to messages. As a result, it is |
|
155 // an excellent choice. It is also helpful that the starter messages that are |
|
156 // placed in the queue when new task arrive also awakens DoRunLoop. |
|
157 // |
|
158 class MessagePumpForUI : public MessagePumpWin { |
|
159 public: |
|
160 MessagePumpForUI(); |
|
161 virtual ~MessagePumpForUI(); |
|
162 |
|
163 // MessagePump methods: |
|
164 virtual void ScheduleWork(); |
|
165 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time); |
|
166 |
|
167 // Applications can call this to encourage us to process all pending WM_PAINT |
|
168 // messages. This method will process all paint messages the Windows Message |
|
169 // queue can provide, up to some fixed number (to avoid any infinite loops). |
|
170 void PumpOutPendingPaintMessages(); |
|
171 |
|
172 private: |
|
173 static LRESULT CALLBACK WndProcThunk( |
|
174 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); |
|
175 virtual void DoRunLoop(); |
|
176 void InitMessageWnd(); |
|
177 void WaitForWork(); |
|
178 void HandleWorkMessage(); |
|
179 void HandleTimerMessage(); |
|
180 bool ProcessNextWindowsMessage(); |
|
181 bool ProcessMessageHelper(const MSG& msg); |
|
182 bool ProcessPumpReplacementMessage(); |
|
183 |
|
184 // A hidden message-only window. |
|
185 HWND message_hwnd_; |
|
186 }; |
|
187 |
|
188 //----------------------------------------------------------------------------- |
|
189 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a |
|
190 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not |
|
191 // deal with Windows mesagges, and instead has a Run loop based on Completion |
|
192 // Ports so it is better suited for IO operations. |
|
193 // |
|
194 class MessagePumpForIO : public MessagePumpWin { |
|
195 public: |
|
196 struct IOContext; |
|
197 |
|
198 // Clients interested in receiving OS notifications when asynchronous IO |
|
199 // operations complete should implement this interface and register themselves |
|
200 // with the message pump. |
|
201 // |
|
202 // Typical use #1: |
|
203 // // Use only when there are no user's buffers involved on the actual IO, |
|
204 // // so that all the cleanup can be done by the message pump. |
|
205 // class MyFile : public IOHandler { |
|
206 // MyFile() { |
|
207 // ... |
|
208 // context_ = new IOContext; |
|
209 // context_->handler = this; |
|
210 // message_pump->RegisterIOHandler(file_, this); |
|
211 // } |
|
212 // ~MyFile() { |
|
213 // if (pending_) { |
|
214 // // By setting the handler to NULL, we're asking for this context |
|
215 // // to be deleted when received, without calling back to us. |
|
216 // context_->handler = NULL; |
|
217 // } else { |
|
218 // delete context_; |
|
219 // } |
|
220 // } |
|
221 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, |
|
222 // DWORD error) { |
|
223 // pending_ = false; |
|
224 // } |
|
225 // void DoSomeIo() { |
|
226 // ... |
|
227 // // The only buffer required for this operation is the overlapped |
|
228 // // structure. |
|
229 // ConnectNamedPipe(file_, &context_->overlapped); |
|
230 // pending_ = true; |
|
231 // } |
|
232 // bool pending_; |
|
233 // IOContext* context_; |
|
234 // HANDLE file_; |
|
235 // }; |
|
236 // |
|
237 // Typical use #2: |
|
238 // class MyFile : public IOHandler { |
|
239 // MyFile() { |
|
240 // ... |
|
241 // message_pump->RegisterIOHandler(file_, this); |
|
242 // } |
|
243 // // Plus some code to make sure that this destructor is not called |
|
244 // // while there are pending IO operations. |
|
245 // ~MyFile() { |
|
246 // } |
|
247 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, |
|
248 // DWORD error) { |
|
249 // ... |
|
250 // delete context; |
|
251 // } |
|
252 // void DoSomeIo() { |
|
253 // ... |
|
254 // IOContext* context = new IOContext; |
|
255 // // This is not used for anything. It just prevents the context from |
|
256 // // being considered "abandoned". |
|
257 // context->handler = this; |
|
258 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); |
|
259 // } |
|
260 // HANDLE file_; |
|
261 // }; |
|
262 // |
|
263 // Typical use #3: |
|
264 // Same as the previous example, except that in order to deal with the |
|
265 // requirement stated for the destructor, the class calls WaitForIOCompletion |
|
266 // from the destructor to block until all IO finishes. |
|
267 // ~MyFile() { |
|
268 // while(pending_) |
|
269 // message_pump->WaitForIOCompletion(INFINITE, this); |
|
270 // } |
|
271 // |
|
272 class IOHandler { |
|
273 public: |
|
274 virtual ~IOHandler() {} |
|
275 // This will be called once the pending IO operation associated with |
|
276 // |context| completes. |error| is the Win32 error code of the IO operation |
|
277 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero |
|
278 // on error. |
|
279 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, |
|
280 DWORD error) = 0; |
|
281 }; |
|
282 |
|
283 // The extended context that should be used as the base structure on every |
|
284 // overlapped IO operation. |handler| must be set to the registered IOHandler |
|
285 // for the given file when the operation is started, and it can be set to NULL |
|
286 // before the operation completes to indicate that the handler should not be |
|
287 // called anymore, and instead, the IOContext should be deleted when the OS |
|
288 // notifies the completion of this operation. Please remember that any buffers |
|
289 // involved with an IO operation should be around until the callback is |
|
290 // received, so this technique can only be used for IO that do not involve |
|
291 // additional buffers (other than the overlapped structure itself). |
|
292 struct IOContext { |
|
293 OVERLAPPED overlapped; |
|
294 IOHandler* handler; |
|
295 }; |
|
296 |
|
297 MessagePumpForIO(); |
|
298 virtual ~MessagePumpForIO() {} |
|
299 |
|
300 // MessagePump methods: |
|
301 virtual void ScheduleWork(); |
|
302 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time); |
|
303 |
|
304 // Register the handler to be used when asynchronous IO for the given file |
|
305 // completes. The registration persists as long as |file_handle| is valid, so |
|
306 // |handler| must be valid as long as there is pending IO for the given file. |
|
307 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); |
|
308 |
|
309 // Waits for the next IO completion that should be processed by |filter|, for |
|
310 // up to |timeout| milliseconds. Return true if any IO operation completed, |
|
311 // regardless of the involved handler, and false if the timeout expired. If |
|
312 // the completion port received any message and the involved IO handler |
|
313 // matches |filter|, the callback is called before returning from this code; |
|
314 // if the handler is not the one that we are looking for, the callback will |
|
315 // be postponed for another time, so reentrancy problems can be avoided. |
|
316 // External use of this method should be reserved for the rare case when the |
|
317 // caller is willing to allow pausing regular task dispatching on this thread. |
|
318 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); |
|
319 |
|
320 private: |
|
321 struct IOItem { |
|
322 IOHandler* handler; |
|
323 IOContext* context; |
|
324 DWORD bytes_transfered; |
|
325 DWORD error; |
|
326 }; |
|
327 |
|
328 virtual void DoRunLoop(); |
|
329 void WaitForWork(); |
|
330 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); |
|
331 bool GetIOItem(DWORD timeout, IOItem* item); |
|
332 bool ProcessInternalIOItem(const IOItem& item); |
|
333 |
|
334 // The completion port associated with this thread. |
|
335 ScopedHandle port_; |
|
336 // This list will be empty almost always. It stores IO completions that have |
|
337 // not been delivered yet because somebody was doing cleanup. |
|
338 std::list<IOItem> completed_io_; |
|
339 }; |
|
340 |
|
341 } // namespace base |
|
342 |
|
343 #endif // BASE_MESSAGE_PUMP_WIN_H_ |