gfx/layers/composite/AsyncCompositionManager.cpp

changeset 0
6474c204b198
equal deleted inserted replaced
-1:000000000000 0:abb8f544661a
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set sw=2 ts=2 et tw=80 : */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6
7 #include "mozilla/layers/AsyncCompositionManager.h"
8 #include <stdint.h> // for uint32_t
9 #include "AnimationCommon.h" // for ComputedTimingFunction
10 #include "CompositorParent.h" // for CompositorParent, etc
11 #include "FrameMetrics.h" // for FrameMetrics
12 #include "LayerManagerComposite.h" // for LayerManagerComposite, etc
13 #include "Layers.h" // for Layer, ContainerLayer, etc
14 #include "gfxPoint.h" // for gfxPoint, gfxSize
15 #include "gfxPoint3D.h" // for gfxPoint3D
16 #include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
17 #include "mozilla/gfx/BaseRect.h" // for BaseRect
18 #include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
19 #include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
20 #include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
21 #include "mozilla/layers/AsyncPanZoomController.h"
22 #include "mozilla/layers/Compositor.h" // for Compositor
23 #include "nsAnimationManager.h" // for ElementAnimations
24 #include "nsCSSPropList.h"
25 #include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
26 #include "nsDebug.h" // for NS_ASSERTION, etc
27 #include "nsDeviceContext.h" // for nsDeviceContext
28 #include "nsDisplayList.h" // for nsDisplayTransform, etc
29 #include "nsMathUtils.h" // for NS_round
30 #include "nsPoint.h" // for nsPoint
31 #include "nsRect.h" // for nsIntRect
32 #include "nsRegion.h" // for nsIntRegion
33 #include "nsStyleAnimation.h" // for nsStyleAnimation::Value, etc
34 #include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
35 #include "nsTArrayForwardDeclare.h" // for InfallibleTArray
36 #if defined(MOZ_WIDGET_ANDROID)
37 # include <android/log.h>
38 # include "AndroidBridge.h"
39 #endif
40 #include "GeckoProfiler.h"
41
42 struct nsCSSValueSharedList;
43
44 using namespace mozilla::dom;
45 using namespace mozilla::gfx;
46
47 namespace mozilla {
48 namespace layers {
49
50 enum Op { Resolve, Detach };
51
52 static bool
53 IsSameDimension(ScreenOrientation o1, ScreenOrientation o2)
54 {
55 bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary);
56 bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary);
57 return !(isO1portrait ^ isO2portrait);
58 }
59
60 static bool
61 ContentMightReflowOnOrientationChange(const nsIntRect& rect)
62 {
63 return rect.width != rect.height;
64 }
65
66 template<Op OP>
67 static void
68 WalkTheTree(Layer* aLayer,
69 bool& aReady,
70 const TargetConfig& aTargetConfig)
71 {
72 if (RefLayer* ref = aLayer->AsRefLayer()) {
73 if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
74 if (Layer* referent = state->mRoot) {
75 if (!ref->GetVisibleRegion().IsEmpty()) {
76 ScreenOrientation chromeOrientation = aTargetConfig.orientation();
77 ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
78 if (!IsSameDimension(chromeOrientation, contentOrientation) &&
79 ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) {
80 aReady = false;
81 }
82 }
83
84 if (OP == Resolve) {
85 ref->ConnectReferentLayer(referent);
86 } else {
87 ref->DetachReferentLayer(referent);
88 }
89 }
90 }
91 }
92 for (Layer* child = aLayer->GetFirstChild();
93 child; child = child->GetNextSibling()) {
94 WalkTheTree<OP>(child, aReady, aTargetConfig);
95 }
96 }
97
98 void
99 AsyncCompositionManager::ResolveRefLayers()
100 {
101 if (!mLayerManager->GetRoot()) {
102 return;
103 }
104
105 mReadyForCompose = true;
106 WalkTheTree<Resolve>(mLayerManager->GetRoot(),
107 mReadyForCompose,
108 mTargetConfig);
109 }
110
111 void
112 AsyncCompositionManager::DetachRefLayers()
113 {
114 if (!mLayerManager->GetRoot()) {
115 return;
116 }
117 WalkTheTree<Detach>(mLayerManager->GetRoot(),
118 mReadyForCompose,
119 mTargetConfig);
120 }
121
122 void
123 AsyncCompositionManager::ComputeRotation()
124 {
125 if (!mTargetConfig.naturalBounds().IsEmpty()) {
126 mLayerManager->SetWorldTransform(
127 ComputeTransformForRotation(mTargetConfig.naturalBounds(),
128 mTargetConfig.rotation()));
129 }
130 }
131
132 static bool
133 GetBaseTransform2D(Layer* aLayer, Matrix* aTransform)
134 {
135 // Start with the animated transform if there is one
136 return (aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation() ?
137 aLayer->GetLocalTransform() : aLayer->GetTransform()).Is2D(aTransform);
138 }
139
140 static void
141 TranslateShadowLayer2D(Layer* aLayer,
142 const gfxPoint& aTranslation)
143 {
144 Matrix layerTransform;
145 if (!GetBaseTransform2D(aLayer, &layerTransform)) {
146 return;
147 }
148
149 // Apply the 2D translation to the layer transform.
150 layerTransform._31 += aTranslation.x;
151 layerTransform._32 += aTranslation.y;
152
153 // The transform already takes the resolution scale into account. Since we
154 // will apply the resolution scale again when computing the effective
155 // transform, we must apply the inverse resolution scale here.
156 Matrix4x4 layerTransform3D = Matrix4x4::From2D(layerTransform);
157 if (ContainerLayer* c = aLayer->AsContainerLayer()) {
158 layerTransform3D.Scale(1.0f/c->GetPreXScale(),
159 1.0f/c->GetPreYScale(),
160 1);
161 }
162 layerTransform3D = layerTransform3D *
163 Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(),
164 1.0f/aLayer->GetPostYScale(),
165 1);
166
167 LayerComposite* layerComposite = aLayer->AsLayerComposite();
168 layerComposite->SetShadowTransform(layerTransform3D);
169 layerComposite->SetShadowTransformSetByAnimation(false);
170
171 const nsIntRect* clipRect = aLayer->GetClipRect();
172 if (clipRect) {
173 nsIntRect transformedClipRect(*clipRect);
174 transformedClipRect.MoveBy(aTranslation.x, aTranslation.y);
175 layerComposite->SetShadowClipRect(&transformedClipRect);
176 }
177 }
178
179 static bool
180 AccumulateLayerTransforms2D(Layer* aLayer,
181 Layer* aAncestor,
182 Matrix& aMatrix)
183 {
184 // Accumulate the transforms between this layer and the subtree root layer.
185 for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
186 Matrix l2D;
187 if (!GetBaseTransform2D(l, &l2D)) {
188 return false;
189 }
190 aMatrix *= l2D;
191 }
192
193 return true;
194 }
195
196 static LayerPoint
197 GetLayerFixedMarginsOffset(Layer* aLayer,
198 const LayerMargin& aFixedLayerMargins)
199 {
200 // Work out the necessary translation, in root scrollable layer space.
201 // Because fixed layer margins are stored relative to the root scrollable
202 // layer, we can just take the difference between these values.
203 LayerPoint translation;
204 const LayerPoint& anchor = aLayer->GetFixedPositionAnchor();
205 const LayerMargin& fixedMargins = aLayer->GetFixedPositionMargins();
206
207 if (fixedMargins.left >= 0) {
208 if (anchor.x > 0) {
209 translation.x -= aFixedLayerMargins.right - fixedMargins.right;
210 } else {
211 translation.x += aFixedLayerMargins.left - fixedMargins.left;
212 }
213 }
214
215 if (fixedMargins.top >= 0) {
216 if (anchor.y > 0) {
217 translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
218 } else {
219 translation.y += aFixedLayerMargins.top - fixedMargins.top;
220 }
221 }
222
223 return translation;
224 }
225
226 static gfxFloat
227 IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
228 {
229 // Determine the amount of overlap between the 1D vector |aTranslation|
230 // and the interval [aMin, aMax].
231 if (aTranslation > 0) {
232 return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
233 } else {
234 return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
235 }
236 }
237
238 void
239 AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer,
240 Layer* aTransformedSubtreeRoot,
241 const Matrix4x4& aPreviousTransformForRoot,
242 const LayerMargin& aFixedLayerMargins)
243 {
244 bool isRootFixed = aLayer->GetIsFixedPosition() &&
245 !aLayer->GetParent()->GetIsFixedPosition();
246 bool isStickyForSubtree = aLayer->GetIsStickyPosition() &&
247 aTransformedSubtreeRoot->AsContainerLayer() &&
248 aLayer->GetStickyScrollContainerId() ==
249 aTransformedSubtreeRoot->AsContainerLayer()->GetFrameMetrics().GetScrollId();
250 if (aLayer != aTransformedSubtreeRoot && (isRootFixed || isStickyForSubtree)) {
251 // Insert a translation so that the position of the anchor point is the same
252 // before and after the change to the transform of aTransformedSubtreeRoot.
253 // This currently only works for fixed layers with 2D transforms.
254
255 // Accumulate the transforms between this layer and the subtree root layer.
256 Matrix ancestorTransform;
257 if (!AccumulateLayerTransforms2D(aLayer->GetParent(), aTransformedSubtreeRoot,
258 ancestorTransform)) {
259 return;
260 }
261
262 Matrix oldRootTransform;
263 Matrix newRootTransform;
264 if (!aPreviousTransformForRoot.Is2D(&oldRootTransform) ||
265 !aTransformedSubtreeRoot->GetLocalTransform().Is2D(&newRootTransform)) {
266 return;
267 }
268
269 // Calculate the cumulative transforms between the subtree root with the
270 // old transform and the current transform.
271 Matrix oldCumulativeTransform = ancestorTransform * oldRootTransform;
272 Matrix newCumulativeTransform = ancestorTransform * newRootTransform;
273 if (newCumulativeTransform.IsSingular()) {
274 return;
275 }
276 Matrix newCumulativeTransformInverse = newCumulativeTransform;
277 newCumulativeTransformInverse.Invert();
278
279 // Now work out the translation necessary to make sure the layer doesn't
280 // move given the new sub-tree root transform.
281 Matrix layerTransform;
282 if (!GetBaseTransform2D(aLayer, &layerTransform)) {
283 return;
284 }
285
286 // Calculate any offset necessary, in previous transform sub-tree root
287 // space. This is used to make sure fixed position content respects
288 // content document fixed position margins.
289 LayerPoint offsetInOldSubtreeLayerSpace = GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins);
290
291 // Add the above offset to the anchor point so we can offset the layer by
292 // and amount that's specified in old subtree layer space.
293 const LayerPoint& anchorInOldSubtreeLayerSpace = aLayer->GetFixedPositionAnchor();
294 LayerPoint offsetAnchorInOldSubtreeLayerSpace = anchorInOldSubtreeLayerSpace + offsetInOldSubtreeLayerSpace;
295
296 // Add the local layer transform to the two points to make the equation
297 // below this section more convenient.
298 Point anchor(anchorInOldSubtreeLayerSpace.x, anchorInOldSubtreeLayerSpace.y);
299 Point offsetAnchor(offsetAnchorInOldSubtreeLayerSpace.x, offsetAnchorInOldSubtreeLayerSpace.y);
300 Point locallyTransformedAnchor = layerTransform * anchor;
301 Point locallyTransformedOffsetAnchor = layerTransform * offsetAnchor;
302
303 // Transforming the locallyTransformedAnchor by oldCumulativeTransform
304 // returns the layer's anchor point relative to the parent of
305 // aTransformedSubtreeRoot, before the new transform was applied.
306 // Then, applying newCumulativeTransformInverse maps that point relative
307 // to the layer's parent, which is the same coordinate space as
308 // locallyTransformedAnchor again, allowing us to subtract them and find
309 // out the offset necessary to make sure the layer stays stationary.
310 Point oldAnchorPositionInNewSpace =
311 newCumulativeTransformInverse * (oldCumulativeTransform * locallyTransformedOffsetAnchor);
312 Point translation = oldAnchorPositionInNewSpace - locallyTransformedAnchor;
313
314 if (aLayer->GetIsStickyPosition()) {
315 // For sticky positioned layers, the difference between the two rectangles
316 // defines a pair of translation intervals in each dimension through which
317 // the layer should not move relative to the scroll container. To
318 // accomplish this, we limit each dimension of the |translation| to that
319 // part of it which overlaps those intervals.
320 const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter();
321 const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner();
322
323 translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
324 IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
325 translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
326 IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
327 }
328
329 // Finally, apply the 2D translation to the layer transform.
330 TranslateShadowLayer2D(aLayer, ThebesPoint(translation));
331
332 // The transform has now been applied, so there's no need to iterate over
333 // child layers.
334 return;
335 }
336
337 // Fixed layers are relative to their nearest scrollable layer, so when we
338 // encounter a scrollable layer, reset the transform to that layer and remove
339 // the fixed margins.
340 if (aLayer->AsContainerLayer() &&
341 aLayer->AsContainerLayer()->GetFrameMetrics().IsScrollable() &&
342 aLayer != aTransformedSubtreeRoot) {
343 AlignFixedAndStickyLayers(aLayer, aLayer, aLayer->GetTransform(), LayerMargin(0, 0, 0, 0));
344 return;
345 }
346
347 for (Layer* child = aLayer->GetFirstChild();
348 child; child = child->GetNextSibling()) {
349 AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot,
350 aPreviousTransformForRoot, aFixedLayerMargins);
351 }
352 }
353
354 static void
355 SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
356 nsStyleAnimation::Value& aEnd, Animatable* aValue)
357 {
358 nsStyleAnimation::Value interpolatedValue;
359 NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
360 aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
361 aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
362 nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
363 aPortion, interpolatedValue);
364 if (aAnimation.property() == eCSSProperty_opacity) {
365 *aValue = interpolatedValue.GetFloatValue();
366 return;
367 }
368
369 nsCSSValueSharedList* interpolatedList =
370 interpolatedValue.GetCSSValueSharedListValue();
371
372 TransformData& data = aAnimation.data().get_TransformData();
373 nsPoint origin = data.origin();
374 // we expect all our transform data to arrive in css pixels, so here we must
375 // adjust to dev pixels.
376 double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
377 / double(data.appUnitsPerDevPixel());
378 gfxPoint3D transformOrigin = data.transformOrigin();
379 transformOrigin.x = transformOrigin.x * cssPerDev;
380 transformOrigin.y = transformOrigin.y * cssPerDev;
381 gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
382 perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
383 perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
384 nsDisplayTransform::FrameTransformProperties props(interpolatedList,
385 transformOrigin,
386 perspectiveOrigin,
387 data.perspective());
388 gfx3DMatrix transform =
389 nsDisplayTransform::GetResultingTransformMatrix(props, origin,
390 data.appUnitsPerDevPixel(),
391 &data.bounds());
392 gfxPoint3D scaledOrigin =
393 gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
394 NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
395 0.0f);
396
397 transform.Translate(scaledOrigin);
398
399 InfallibleTArray<TransformFunction> functions;
400 Matrix4x4 realTransform;
401 ToMatrix4x4(transform, realTransform);
402 functions.AppendElement(TransformMatrix(realTransform));
403 *aValue = functions;
404 }
405
406 static bool
407 SampleAnimations(Layer* aLayer, TimeStamp aPoint)
408 {
409 AnimationArray& animations = aLayer->GetAnimations();
410 InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
411
412 bool activeAnimations = false;
413
414 for (uint32_t i = animations.Length(); i-- !=0; ) {
415 Animation& animation = animations[i];
416 AnimData& animData = animationData[i];
417
418 activeAnimations = true;
419
420 TimeDuration elapsedDuration = aPoint - animation.startTime();
421 // Skip animations that are yet to start.
422 //
423 // Currently, this should only happen when the refresh driver is under test
424 // control and is made to produce a time in the past or is restored from
425 // test control causing it to jump backwards in time.
426 //
427 // Since activeAnimations is true, this could mean we keep compositing
428 // unnecessarily during the delay, but so long as this only happens while
429 // the refresh driver is under test control that should be ok.
430 if (elapsedDuration.ToSeconds() < 0) {
431 continue;
432 }
433
434 double numIterations = animation.numIterations() != -1 ?
435 animation.numIterations() : NS_IEEEPositiveInfinity();
436 double positionInIteration =
437 ElementAnimations::GetPositionInIteration(elapsedDuration,
438 animation.duration(),
439 numIterations,
440 animation.direction());
441
442 NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
443 positionInIteration <= 1.0,
444 "position should be in [0-1]");
445
446 int segmentIndex = 0;
447 AnimationSegment* segment = animation.segments().Elements();
448 while (segment->endPortion() < positionInIteration) {
449 ++segment;
450 ++segmentIndex;
451 }
452
453 double positionInSegment = (positionInIteration - segment->startPortion()) /
454 (segment->endPortion() - segment->startPortion());
455
456 double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
457
458 // interpolate the property
459 Animatable interpolatedValue;
460 SampleValue(portion, animation, animData.mStartValues[segmentIndex],
461 animData.mEndValues[segmentIndex], &interpolatedValue);
462 LayerComposite* layerComposite = aLayer->AsLayerComposite();
463 switch (animation.property()) {
464 case eCSSProperty_opacity:
465 {
466 layerComposite->SetShadowOpacity(interpolatedValue.get_float());
467 break;
468 }
469 case eCSSProperty_transform:
470 {
471 Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
472 if (ContainerLayer* c = aLayer->AsContainerLayer()) {
473 matrix = matrix * Matrix4x4().Scale(c->GetInheritedXScale(),
474 c->GetInheritedYScale(),
475 1);
476 }
477 layerComposite->SetShadowTransform(matrix);
478 layerComposite->SetShadowTransformSetByAnimation(true);
479 break;
480 }
481 default:
482 NS_WARNING("Unhandled animated property");
483 }
484 }
485
486 for (Layer* child = aLayer->GetFirstChild(); child;
487 child = child->GetNextSibling()) {
488 activeAnimations |= SampleAnimations(child, aPoint);
489 }
490
491 return activeAnimations;
492 }
493
494 bool
495 AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
496 Layer *aLayer,
497 bool* aWantNextFrame)
498 {
499 bool appliedTransform = false;
500 for (Layer* child = aLayer->GetFirstChild();
501 child; child = child->GetNextSibling()) {
502 appliedTransform |=
503 ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
504 }
505
506 ContainerLayer* container = aLayer->AsContainerLayer();
507 if (!container) {
508 return appliedTransform;
509 }
510
511 if (AsyncPanZoomController* controller = container->GetAsyncPanZoomController()) {
512 LayerComposite* layerComposite = aLayer->AsLayerComposite();
513 Matrix4x4 oldTransform = aLayer->GetTransform();
514
515 ViewTransform treeTransform;
516 ScreenPoint scrollOffset;
517 *aWantNextFrame |=
518 controller->SampleContentTransformForFrame(aCurrentFrame,
519 &treeTransform,
520 scrollOffset);
521
522 const FrameMetrics& metrics = container->GetFrameMetrics();
523 CSSToLayerScale paintScale = metrics.LayersPixelsPerCSSPixel();
524 CSSRect displayPort(metrics.mCriticalDisplayPort.IsEmpty() ?
525 metrics.mDisplayPort : metrics.mCriticalDisplayPort);
526 LayerMargin fixedLayerMargins(0, 0, 0, 0);
527 ScreenPoint offset(0, 0);
528 SyncFrameMetrics(scrollOffset, treeTransform.mScale.scale, metrics.mScrollableRect,
529 mLayersUpdated, displayPort, paintScale,
530 mIsFirstPaint, fixedLayerMargins, offset);
531
532 mIsFirstPaint = false;
533 mLayersUpdated = false;
534
535 // Apply the render offset
536 mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
537
538 Matrix4x4 transform;
539 ToMatrix4x4(gfx3DMatrix(treeTransform), transform);
540 transform = transform * aLayer->GetTransform();
541
542 // GetTransform already takes the pre- and post-scale into account. Since we
543 // will apply the pre- and post-scale again when computing the effective
544 // transform, we must apply the inverses here.
545 transform.Scale(1.0f/container->GetPreXScale(),
546 1.0f/container->GetPreYScale(),
547 1);
548 transform = transform * Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(),
549 1.0f/aLayer->GetPostYScale(),
550 1);
551 layerComposite->SetShadowTransform(transform);
552 NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
553 "overwriting animated transform!");
554
555 // Apply resolution scaling to the old transform - the layer tree as it is
556 // doesn't have the necessary transform to display correctly.
557 LayoutDeviceToLayerScale resolution = metrics.mCumulativeResolution;
558 oldTransform.Scale(resolution.scale, resolution.scale, 1);
559
560 AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform, fixedLayerMargins);
561
562 appliedTransform = true;
563 }
564
565 if (container->GetScrollbarDirection() != Layer::NONE) {
566 ApplyAsyncTransformToScrollbar(aCurrentFrame, container);
567 }
568 return appliedTransform;
569 }
570
571 static bool
572 LayerHasNonContainerDescendants(ContainerLayer* aContainer)
573 {
574 for (Layer* child = aContainer->GetFirstChild();
575 child; child = child->GetNextSibling()) {
576 ContainerLayer* container = child->AsContainerLayer();
577 if (!container || LayerHasNonContainerDescendants(container)) {
578 return true;
579 }
580 }
581
582 return false;
583 }
584
585 static bool
586 LayerIsContainerForScrollbarTarget(Layer* aTarget, ContainerLayer* aScrollbar)
587 {
588 if (!aTarget->AsContainerLayer()) {
589 return false;
590 }
591 AsyncPanZoomController* apzc = aTarget->AsContainerLayer()->GetAsyncPanZoomController();
592 if (!apzc) {
593 return false;
594 }
595 const FrameMetrics& metrics = aTarget->AsContainerLayer()->GetFrameMetrics();
596 if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
597 return false;
598 }
599 return true;
600 }
601
602 static void
603 ApplyAsyncTransformToScrollbarForContent(TimeStamp aCurrentFrame, ContainerLayer* aScrollbar,
604 Layer* aContent, bool aScrollbarIsChild)
605 {
606 ContainerLayer* content = aContent->AsContainerLayer();
607 if (!LayerHasNonContainerDescendants(content)) {
608 return;
609 }
610
611 const FrameMetrics& metrics = content->GetFrameMetrics();
612 AsyncPanZoomController* apzc = content->GetAsyncPanZoomController();
613
614 if (aScrollbarIsChild) {
615 // Because we try to apply the scrollbar transform before we apply the async transform on
616 // the actual content, we need to ensure that the APZC has updated any pending animations
617 // to the current frame timestamp before we extract the transforms from it. The code in this
618 // block accomplishes that and throws away the temp variables.
619 // TODO: it might be cleaner to do a pass through the layer tree to advance all the APZC
620 // transforms before updating the layer shadow transforms. That will allow removal of this code.
621 ViewTransform treeTransform;
622 ScreenPoint scrollOffset;
623 apzc->SampleContentTransformForFrame(aCurrentFrame, &treeTransform, scrollOffset);
624 }
625
626 gfx3DMatrix asyncTransform = gfx3DMatrix(apzc->GetCurrentAsyncTransform());
627 gfx3DMatrix nontransientTransform = apzc->GetNontransientAsyncTransform();
628 gfx3DMatrix transientTransform = asyncTransform * nontransientTransform.Inverse();
629
630 // |transientTransform| represents the amount by which we have scrolled and
631 // zoomed since the last paint. Because the scrollbar was sized and positioned based
632 // on the painted content, we need to adjust it based on transientTransform so that
633 // it reflects what the user is actually seeing now.
634 // - The scroll thumb needs to be scaled in the direction of scrolling by the inverse
635 // of the transientTransform scale (representing the zoom). This is because zooming
636 // in decreases the fraction of the whole scrollable rect that is in view.
637 // - It needs to be translated in opposite direction of the transientTransform
638 // translation (representing the scroll). This is because scrolling down, which
639 // translates the layer content up, should result in moving the scroll thumb down.
640 // The amount of the translation to the scroll thumb should be such that the ratio
641 // of the translation to the size of the scroll port is the same as the ratio
642 // of the scroll amount to the size of the scrollable rect.
643 Matrix4x4 scrollbarTransform;
644 if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
645 float scale = metrics.CalculateCompositedSizeInCssPixels().height / metrics.mScrollableRect.height;
646 scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f, 1.f / transientTransform.GetYScale(), 1.f);
647 scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(0, -transientTransform._42 * scale, 0);
648 }
649 if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
650 float scale = metrics.CalculateCompositedSizeInCssPixels().width / metrics.mScrollableRect.width;
651 scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f / transientTransform.GetXScale(), 1.f, 1.f);
652 scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(-transientTransform._41 * scale, 0, 0);
653 }
654
655 Matrix4x4 transform = scrollbarTransform * aScrollbar->GetTransform();
656
657 if (aScrollbarIsChild) {
658 // If the scrollbar layer is a child of the content it is a scrollbar for, then we
659 // need to do an extra untransform to cancel out the transient async transform on
660 // the content. This is needed because otherwise that transient async transform is
661 // part of the effective transform of this scrollbar, and the scrollbar will jitter
662 // as the content scrolls.
663 Matrix4x4 targetUntransform;
664 ToMatrix4x4(transientTransform.Inverse(), targetUntransform);
665 transform = transform * targetUntransform;
666 }
667
668 // GetTransform already takes the pre- and post-scale into account. Since we
669 // will apply the pre- and post-scale again when computing the effective
670 // transform, we must apply the inverses here.
671 transform.Scale(1.0f/aScrollbar->GetPreXScale(),
672 1.0f/aScrollbar->GetPreYScale(),
673 1);
674 transform = transform * Matrix4x4().Scale(1.0f/aScrollbar->GetPostXScale(),
675 1.0f/aScrollbar->GetPostYScale(),
676 1);
677 aScrollbar->AsLayerComposite()->SetShadowTransform(transform);
678 }
679
680 void
681 AsyncCompositionManager::ApplyAsyncTransformToScrollbar(TimeStamp aCurrentFrame, ContainerLayer* aLayer)
682 {
683 // If this layer corresponds to a scrollbar, then there should be a layer that
684 // is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
685 // That is the content that this scrollbar is for. We pick up the transient
686 // async transform from that layer and use it to update the scrollbar position.
687 // Note that it is possible that the content layer is no longer there; in
688 // this case we don't need to do anything because there can't be an async
689 // transform on the content.
690 // We only apply the transform if the scroll-target layer has non-container
691 // children (i.e. when it has some possibly-visible content). This is to
692 // avoid moving scroll-bars in the situation that only a scroll information
693 // layer has been built for a scroll frame, as this would result in a
694 // disparity between scrollbars and visible content.
695 for (Layer* scrollTarget = aLayer->GetPrevSibling();
696 scrollTarget;
697 scrollTarget = scrollTarget->GetPrevSibling()) {
698 if (LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) {
699 // Found a sibling that matches our criteria
700 ApplyAsyncTransformToScrollbarForContent(aCurrentFrame, aLayer, scrollTarget, false);
701 return;
702 }
703 }
704
705 // If we didn't find a sibling, look for a parent
706 Layer* scrollTarget = aLayer->GetParent();
707 if (scrollTarget && LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) {
708 ApplyAsyncTransformToScrollbarForContent(aCurrentFrame, aLayer, scrollTarget, true);
709 }
710 }
711
712 void
713 AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
714 {
715 LayerComposite* layerComposite = aLayer->AsLayerComposite();
716 ContainerLayer* container = aLayer->AsContainerLayer();
717
718 const FrameMetrics& metrics = container->GetFrameMetrics();
719 // We must apply the resolution scale before a pan/zoom transform, so we call
720 // GetTransform here.
721 gfx3DMatrix currentTransform;
722 To3DMatrix(aLayer->GetTransform(), currentTransform);
723 Matrix4x4 oldTransform = aLayer->GetTransform();
724
725 gfx3DMatrix treeTransform;
726
727 CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel();
728
729 LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
730
731 if (mIsFirstPaint) {
732 mContentRect = metrics.mScrollableRect;
733 SetFirstPaintViewport(scrollOffsetLayerPixels,
734 geckoZoom,
735 mContentRect);
736 mIsFirstPaint = false;
737 } else if (!metrics.mScrollableRect.IsEqualEdges(mContentRect)) {
738 mContentRect = metrics.mScrollableRect;
739 SetPageRect(mContentRect);
740 }
741
742 // We synchronise the viewport information with Java after sending the above
743 // notifications, so that Java can take these into account in its response.
744 // Calculate the absolute display port to send to Java
745 LayerIntRect displayPort = RoundedToInt(
746 (metrics.mCriticalDisplayPort.IsEmpty()
747 ? metrics.mDisplayPort
748 : metrics.mCriticalDisplayPort
749 ) * geckoZoom);
750 displayPort += scrollOffsetLayerPixels;
751
752 LayerMargin fixedLayerMargins(0, 0, 0, 0);
753 ScreenPoint offset(0, 0);
754
755 // Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
756 // but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
757 // appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
758 // however, we can assume there is no async zooming in progress and so the following statement
759 // works fine.
760 CSSToScreenScale userZoom(metrics.mDevPixelsPerCSSPixel * metrics.mCumulativeResolution * LayerToScreenScale(1));
761 ScreenPoint userScroll = metrics.GetScrollOffset() * userZoom;
762 SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated,
763 userScroll, userZoom, fixedLayerMargins,
764 offset);
765 mLayersUpdated = false;
766
767 // Apply the render offset
768 mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);
769
770 // Handle transformations for asynchronous panning and zooming. We determine the
771 // zoom used by Gecko from the transformation set on the root layer, and we
772 // determine the scroll offset used by Gecko from the frame metrics of the
773 // primary scrollable layer. We compare this to the user zoom and scroll
774 // offset in the view transform we obtained from Java in order to compute the
775 // transformation we need to apply.
776 LayerToScreenScale zoomAdjust = userZoom / geckoZoom;
777
778 LayerPoint geckoScroll(0, 0);
779 if (metrics.IsScrollable()) {
780 geckoScroll = metrics.GetScrollOffset() * geckoZoom;
781 }
782
783 LayerPoint translation = (userScroll / zoomAdjust) - geckoScroll;
784 treeTransform = gfx3DMatrix(ViewTransform(-translation,
785 userZoom
786 / metrics.mDevPixelsPerCSSPixel
787 / metrics.GetParentResolution()));
788
789 // The transform already takes the resolution scale into account. Since we
790 // will apply the resolution scale again when computing the effective
791 // transform, we must apply the inverse resolution scale here.
792 gfx3DMatrix computedTransform = treeTransform * currentTransform;
793 computedTransform.Scale(1.0f/container->GetPreXScale(),
794 1.0f/container->GetPreYScale(),
795 1);
796 computedTransform.ScalePost(1.0f/container->GetPostXScale(),
797 1.0f/container->GetPostYScale(),
798 1);
799 Matrix4x4 matrix;
800 ToMatrix4x4(computedTransform, matrix);
801 layerComposite->SetShadowTransform(matrix);
802 NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
803 "overwriting animated transform!");
804
805 // Apply resolution scaling to the old transform - the layer tree as it is
806 // doesn't have the necessary transform to display correctly.
807 oldTransform.Scale(metrics.mResolution.scale, metrics.mResolution.scale, 1);
808
809 // Make sure that overscroll and under-zoom are represented in the old
810 // transform so that fixed position content moves and scales accordingly.
811 // These calculations will effectively scale and offset fixed position layers
812 // in screen space when the compensatory transform is performed in
813 // AlignFixedAndStickyLayers.
814 ScreenRect contentScreenRect = mContentRect * userZoom;
815 gfxPoint3D overscrollTranslation;
816 if (userScroll.x < contentScreenRect.x) {
817 overscrollTranslation.x = contentScreenRect.x - userScroll.x;
818 } else if (userScroll.x + metrics.mCompositionBounds.width > contentScreenRect.XMost()) {
819 overscrollTranslation.x = contentScreenRect.XMost() -
820 (userScroll.x + metrics.mCompositionBounds.width);
821 }
822 if (userScroll.y < contentScreenRect.y) {
823 overscrollTranslation.y = contentScreenRect.y - userScroll.y;
824 } else if (userScroll.y + metrics.mCompositionBounds.height > contentScreenRect.YMost()) {
825 overscrollTranslation.y = contentScreenRect.YMost() -
826 (userScroll.y + metrics.mCompositionBounds.height);
827 }
828 oldTransform.Translate(overscrollTranslation.x,
829 overscrollTranslation.y,
830 overscrollTranslation.z);
831
832 gfx::Size underZoomScale(1.0f, 1.0f);
833 if (mContentRect.width * userZoom.scale < metrics.mCompositionBounds.width) {
834 underZoomScale.width = (mContentRect.width * userZoom.scale) /
835 metrics.mCompositionBounds.width;
836 }
837 if (mContentRect.height * userZoom.scale < metrics.mCompositionBounds.height) {
838 underZoomScale.height = (mContentRect.height * userZoom.scale) /
839 metrics.mCompositionBounds.height;
840 }
841 oldTransform.Scale(underZoomScale.width, underZoomScale.height, 1);
842
843 // Make sure fixed position layers don't move away from their anchor points
844 // when we're asynchronously panning or zooming
845 AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform, fixedLayerMargins);
846 }
847
848 bool
849 AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame)
850 {
851 PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree");
852 Layer* root = mLayerManager->GetRoot();
853 if (!root) {
854 return false;
855 }
856
857 // NB: we must sample animations *before* sampling pan/zoom
858 // transforms.
859 bool wantNextFrame = SampleAnimations(root, aCurrentFrame);
860
861 // FIXME/bug 775437: unify this interface with the ~native-fennec
862 // derived code
863 //
864 // Attempt to apply an async content transform to any layer that has
865 // an async pan zoom controller (which means that it is rendered
866 // async using Gecko). If this fails, fall back to transforming the
867 // primary scrollable layer. "Failing" here means that we don't
868 // find a frame that is async scrollable. Note that the fallback
869 // code also includes Fennec which is rendered async. Fennec uses
870 // its own platform-specific async rendering that is done partially
871 // in Gecko and partially in Java.
872 if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
873 nsAutoTArray<Layer*,1> scrollableLayers;
874 #ifdef MOZ_WIDGET_ANDROID
875 scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
876 #else
877 mLayerManager->GetScrollableLayers(scrollableLayers);
878 #endif
879
880 for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
881 if (scrollableLayers[i]) {
882 TransformScrollableLayer(scrollableLayers[i]);
883 }
884 }
885 }
886
887 return wantNextFrame;
888 }
889
890 void
891 AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
892 const CSSToLayerScale& aZoom,
893 const CSSRect& aCssPageRect)
894 {
895 #ifdef MOZ_WIDGET_ANDROID
896 AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
897 #endif
898 }
899
900 void
901 AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
902 {
903 #ifdef MOZ_WIDGET_ANDROID
904 AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
905 #endif
906 }
907
908 void
909 AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
910 const CSSToLayerScale& aDisplayResolution,
911 bool aLayersUpdated,
912 ScreenPoint& aScrollOffset,
913 CSSToScreenScale& aScale,
914 LayerMargin& aFixedLayerMargins,
915 ScreenPoint& aOffset)
916 {
917 #ifdef MOZ_WIDGET_ANDROID
918 AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
919 aDisplayResolution,
920 aLayersUpdated,
921 aScrollOffset,
922 aScale,
923 aFixedLayerMargins,
924 aOffset);
925 #endif
926 }
927
928 void
929 AsyncCompositionManager::SyncFrameMetrics(const ScreenPoint& aScrollOffset,
930 float aZoom,
931 const CSSRect& aCssPageRect,
932 bool aLayersUpdated,
933 const CSSRect& aDisplayPort,
934 const CSSToLayerScale& aDisplayResolution,
935 bool aIsFirstPaint,
936 LayerMargin& aFixedLayerMargins,
937 ScreenPoint& aOffset)
938 {
939 #ifdef MOZ_WIDGET_ANDROID
940 AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
941 aLayersUpdated, aDisplayPort,
942 aDisplayResolution, aIsFirstPaint,
943 aFixedLayerMargins, aOffset);
944 #endif
945 }
946
947 } // namespace layers
948 } // namespace mozilla

mercurial