|
1 #include <xmmintrin.h> |
|
2 |
|
3 #include "qcmsint.h" |
|
4 |
|
5 /* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */ |
|
6 #define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE) |
|
7 #define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZE ) |
|
8 static const ALIGN float floatScaleX4[4] = |
|
9 { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE}; |
|
10 static const ALIGN float clampMaxValueX4[4] = |
|
11 { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL}; |
|
12 |
|
13 void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform, |
|
14 unsigned char *src, |
|
15 unsigned char *dest, |
|
16 size_t length) |
|
17 { |
|
18 unsigned int i; |
|
19 float (*mat)[4] = transform->matrix; |
|
20 char input_back[32]; |
|
21 /* Ensure we have a buffer that's 16 byte aligned regardless of the original |
|
22 * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) |
|
23 * because they don't work on stack variables. gcc 4.4 does do the right thing |
|
24 * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ |
|
25 float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); |
|
26 /* share input and output locations to save having to keep the |
|
27 * locations in separate registers */ |
|
28 uint32_t const * output = (uint32_t*)input; |
|
29 |
|
30 /* deref *transform now to avoid it in loop */ |
|
31 const float *igtbl_r = transform->input_gamma_table_r; |
|
32 const float *igtbl_g = transform->input_gamma_table_g; |
|
33 const float *igtbl_b = transform->input_gamma_table_b; |
|
34 |
|
35 /* deref *transform now to avoid it in loop */ |
|
36 const uint8_t *otdata_r = &transform->output_table_r->data[0]; |
|
37 const uint8_t *otdata_g = &transform->output_table_g->data[0]; |
|
38 const uint8_t *otdata_b = &transform->output_table_b->data[0]; |
|
39 |
|
40 /* input matrix values never change */ |
|
41 const __m128 mat0 = _mm_load_ps(mat[0]); |
|
42 const __m128 mat1 = _mm_load_ps(mat[1]); |
|
43 const __m128 mat2 = _mm_load_ps(mat[2]); |
|
44 |
|
45 /* these values don't change, either */ |
|
46 const __m128 max = _mm_load_ps(clampMaxValueX4); |
|
47 const __m128 min = _mm_setzero_ps(); |
|
48 const __m128 scale = _mm_load_ps(floatScaleX4); |
|
49 |
|
50 /* working variables */ |
|
51 __m128 vec_r, vec_g, vec_b, result; |
|
52 |
|
53 /* CYA */ |
|
54 if (!length) |
|
55 return; |
|
56 |
|
57 /* one pixel is handled outside of the loop */ |
|
58 length--; |
|
59 |
|
60 /* setup for transforming 1st pixel */ |
|
61 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
|
62 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
|
63 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
|
64 src += 3; |
|
65 |
|
66 /* transform all but final pixel */ |
|
67 |
|
68 for (i=0; i<length; i++) |
|
69 { |
|
70 /* position values from gamma tables */ |
|
71 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
|
72 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
|
73 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
|
74 |
|
75 /* gamma * matrix */ |
|
76 vec_r = _mm_mul_ps(vec_r, mat0); |
|
77 vec_g = _mm_mul_ps(vec_g, mat1); |
|
78 vec_b = _mm_mul_ps(vec_b, mat2); |
|
79 |
|
80 /* crunch, crunch, crunch */ |
|
81 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
|
82 vec_r = _mm_max_ps(min, vec_r); |
|
83 vec_r = _mm_min_ps(max, vec_r); |
|
84 result = _mm_mul_ps(vec_r, scale); |
|
85 |
|
86 /* store calc'd output tables indices */ |
|
87 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
|
88 result = _mm_movehl_ps(result, result); |
|
89 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ; |
|
90 |
|
91 /* load for next loop while store completes */ |
|
92 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
|
93 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
|
94 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
|
95 src += 3; |
|
96 |
|
97 /* use calc'd indices to output RGB values */ |
|
98 dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; |
|
99 dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; |
|
100 dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; |
|
101 dest += RGB_OUTPUT_COMPONENTS; |
|
102 } |
|
103 |
|
104 /* handle final (maybe only) pixel */ |
|
105 |
|
106 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
|
107 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
|
108 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
|
109 |
|
110 vec_r = _mm_mul_ps(vec_r, mat0); |
|
111 vec_g = _mm_mul_ps(vec_g, mat1); |
|
112 vec_b = _mm_mul_ps(vec_b, mat2); |
|
113 |
|
114 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
|
115 vec_r = _mm_max_ps(min, vec_r); |
|
116 vec_r = _mm_min_ps(max, vec_r); |
|
117 result = _mm_mul_ps(vec_r, scale); |
|
118 |
|
119 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
|
120 result = _mm_movehl_ps(result, result); |
|
121 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); |
|
122 |
|
123 dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; |
|
124 dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; |
|
125 dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; |
|
126 |
|
127 _mm_empty(); |
|
128 } |
|
129 |
|
130 void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform, |
|
131 unsigned char *src, |
|
132 unsigned char *dest, |
|
133 size_t length) |
|
134 { |
|
135 unsigned int i; |
|
136 float (*mat)[4] = transform->matrix; |
|
137 char input_back[32]; |
|
138 /* Ensure we have a buffer that's 16 byte aligned regardless of the original |
|
139 * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32)) |
|
140 * because they don't work on stack variables. gcc 4.4 does do the right thing |
|
141 * on x86 but that's too new for us right now. For more info: gcc bug #16660 */ |
|
142 float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); |
|
143 /* share input and output locations to save having to keep the |
|
144 * locations in separate registers */ |
|
145 uint32_t const * output = (uint32_t*)input; |
|
146 |
|
147 /* deref *transform now to avoid it in loop */ |
|
148 const float *igtbl_r = transform->input_gamma_table_r; |
|
149 const float *igtbl_g = transform->input_gamma_table_g; |
|
150 const float *igtbl_b = transform->input_gamma_table_b; |
|
151 |
|
152 /* deref *transform now to avoid it in loop */ |
|
153 const uint8_t *otdata_r = &transform->output_table_r->data[0]; |
|
154 const uint8_t *otdata_g = &transform->output_table_g->data[0]; |
|
155 const uint8_t *otdata_b = &transform->output_table_b->data[0]; |
|
156 |
|
157 /* input matrix values never change */ |
|
158 const __m128 mat0 = _mm_load_ps(mat[0]); |
|
159 const __m128 mat1 = _mm_load_ps(mat[1]); |
|
160 const __m128 mat2 = _mm_load_ps(mat[2]); |
|
161 |
|
162 /* these values don't change, either */ |
|
163 const __m128 max = _mm_load_ps(clampMaxValueX4); |
|
164 const __m128 min = _mm_setzero_ps(); |
|
165 const __m128 scale = _mm_load_ps(floatScaleX4); |
|
166 |
|
167 /* working variables */ |
|
168 __m128 vec_r, vec_g, vec_b, result; |
|
169 unsigned char alpha; |
|
170 |
|
171 /* CYA */ |
|
172 if (!length) |
|
173 return; |
|
174 |
|
175 /* one pixel is handled outside of the loop */ |
|
176 length--; |
|
177 |
|
178 /* setup for transforming 1st pixel */ |
|
179 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
|
180 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
|
181 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
|
182 alpha = src[3]; |
|
183 src += 4; |
|
184 |
|
185 /* transform all but final pixel */ |
|
186 |
|
187 for (i=0; i<length; i++) |
|
188 { |
|
189 /* position values from gamma tables */ |
|
190 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
|
191 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
|
192 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
|
193 |
|
194 /* gamma * matrix */ |
|
195 vec_r = _mm_mul_ps(vec_r, mat0); |
|
196 vec_g = _mm_mul_ps(vec_g, mat1); |
|
197 vec_b = _mm_mul_ps(vec_b, mat2); |
|
198 |
|
199 /* store alpha for this pixel; load alpha for next */ |
|
200 dest[OUTPUT_A_INDEX] = alpha; |
|
201 alpha = src[3]; |
|
202 |
|
203 /* crunch, crunch, crunch */ |
|
204 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
|
205 vec_r = _mm_max_ps(min, vec_r); |
|
206 vec_r = _mm_min_ps(max, vec_r); |
|
207 result = _mm_mul_ps(vec_r, scale); |
|
208 |
|
209 /* store calc'd output tables indices */ |
|
210 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
|
211 result = _mm_movehl_ps(result, result); |
|
212 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); |
|
213 |
|
214 /* load gamma values for next loop while store completes */ |
|
215 vec_r = _mm_load_ss(&igtbl_r[src[0]]); |
|
216 vec_g = _mm_load_ss(&igtbl_g[src[1]]); |
|
217 vec_b = _mm_load_ss(&igtbl_b[src[2]]); |
|
218 src += 4; |
|
219 |
|
220 /* use calc'd indices to output RGB values */ |
|
221 dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; |
|
222 dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; |
|
223 dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; |
|
224 dest += 4; |
|
225 } |
|
226 |
|
227 /* handle final (maybe only) pixel */ |
|
228 |
|
229 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); |
|
230 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); |
|
231 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); |
|
232 |
|
233 vec_r = _mm_mul_ps(vec_r, mat0); |
|
234 vec_g = _mm_mul_ps(vec_g, mat1); |
|
235 vec_b = _mm_mul_ps(vec_b, mat2); |
|
236 |
|
237 dest[OUTPUT_A_INDEX] = alpha; |
|
238 |
|
239 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); |
|
240 vec_r = _mm_max_ps(min, vec_r); |
|
241 vec_r = _mm_min_ps(max, vec_r); |
|
242 result = _mm_mul_ps(vec_r, scale); |
|
243 |
|
244 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); |
|
245 result = _mm_movehl_ps(result, result); |
|
246 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); |
|
247 |
|
248 dest[OUTPUT_R_INDEX] = otdata_r[output[0]]; |
|
249 dest[OUTPUT_G_INDEX] = otdata_g[output[1]]; |
|
250 dest[OUTPUT_B_INDEX] = otdata_b[output[2]]; |
|
251 |
|
252 _mm_empty(); |
|
253 } |