|
1 |
|
2 /* |
|
3 * Copyright 2006 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #ifndef SkGeometry_DEFINED |
|
11 #define SkGeometry_DEFINED |
|
12 |
|
13 #include "SkMatrix.h" |
|
14 |
|
15 /** An XRay is a half-line that runs from the specific point/origin to |
|
16 +infinity in the X direction. e.g. XRay(3,5) is the half-line |
|
17 (3,5)....(infinity, 5) |
|
18 */ |
|
19 typedef SkPoint SkXRay; |
|
20 |
|
21 /** Given a line segment from pts[0] to pts[1], and an xray, return true if |
|
22 they intersect. Optional outgoing "ambiguous" argument indicates |
|
23 whether the answer is ambiguous because the query occurred exactly at |
|
24 one of the endpoints' y coordinates, indicating that another query y |
|
25 coordinate is preferred for robustness. |
|
26 */ |
|
27 bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], |
|
28 bool* ambiguous = NULL); |
|
29 |
|
30 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
|
31 equation. |
|
32 */ |
|
33 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
|
34 |
|
35 /////////////////////////////////////////////////////////////////////////////// |
|
36 |
|
37 /** Set pt to the point on the src quadratic specified by t. t must be |
|
38 0 <= t <= 1.0 |
|
39 */ |
|
40 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, |
|
41 SkVector* tangent = NULL); |
|
42 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, |
|
43 SkVector* tangent = NULL); |
|
44 |
|
45 /** Given a src quadratic bezier, chop it at the specified t value, |
|
46 where 0 < t < 1, and return the two new quadratics in dst: |
|
47 dst[0..2] and dst[2..4] |
|
48 */ |
|
49 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
|
50 |
|
51 /** Given a src quadratic bezier, chop it at the specified t == 1/2, |
|
52 The new quads are returned in dst[0..2] and dst[2..4] |
|
53 */ |
|
54 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
|
55 |
|
56 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
|
57 for extrema, and return the number of t-values that are found that represent |
|
58 these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
|
59 function returns 0. |
|
60 Returned count tValues[] |
|
61 0 ignored |
|
62 1 0 < tValues[0] < 1 |
|
63 */ |
|
64 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
|
65 |
|
66 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
|
67 the resulting beziers are monotonic in Y. This is called by the scan converter. |
|
68 Depending on what is returned, dst[] is treated as follows |
|
69 0 dst[0..2] is the original quad |
|
70 1 dst[0..2] and dst[2..4] are the two new quads |
|
71 */ |
|
72 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
|
73 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); |
|
74 |
|
75 /** Given 3 points on a quadratic bezier, if the point of maximum |
|
76 curvature exists on the segment, returns the t value for this |
|
77 point along the curve. Otherwise it will return a value of 0. |
|
78 */ |
|
79 float SkFindQuadMaxCurvature(const SkPoint src[3]); |
|
80 |
|
81 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
|
82 if the point of maximum curvature exists on the quad segment. |
|
83 Depending on what is returned, dst[] is treated as follows |
|
84 1 dst[0..2] is the original quad |
|
85 2 dst[0..2] and dst[2..4] are the two new quads |
|
86 If dst == null, it is ignored and only the count is returned. |
|
87 */ |
|
88 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
|
89 |
|
90 /** Given 3 points on a quadratic bezier, use degree elevation to |
|
91 convert it into the cubic fitting the same curve. The new cubic |
|
92 curve is returned in dst[0..3]. |
|
93 */ |
|
94 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); |
|
95 |
|
96 /////////////////////////////////////////////////////////////////////////////// |
|
97 |
|
98 /** Convert from parametric from (pts) to polynomial coefficients |
|
99 coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] |
|
100 */ |
|
101 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]); |
|
102 |
|
103 /** Set pt to the point on the src cubic specified by t. t must be |
|
104 0 <= t <= 1.0 |
|
105 */ |
|
106 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, |
|
107 SkVector* tangentOrNull, SkVector* curvatureOrNull); |
|
108 |
|
109 /** Given a src cubic bezier, chop it at the specified t value, |
|
110 where 0 < t < 1, and return the two new cubics in dst: |
|
111 dst[0..3] and dst[3..6] |
|
112 */ |
|
113 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
|
114 /** Given a src cubic bezier, chop it at the specified t values, |
|
115 where 0 < t < 1, and return the new cubics in dst: |
|
116 dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] |
|
117 */ |
|
118 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], |
|
119 int t_count); |
|
120 |
|
121 /** Given a src cubic bezier, chop it at the specified t == 1/2, |
|
122 The new cubics are returned in dst[0..3] and dst[3..6] |
|
123 */ |
|
124 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
|
125 |
|
126 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
|
127 for extrema, and return the number of t-values that are found that represent |
|
128 these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
|
129 function returns 0. |
|
130 Returned count tValues[] |
|
131 0 ignored |
|
132 1 0 < tValues[0] < 1 |
|
133 2 0 < tValues[0] < tValues[1] < 1 |
|
134 */ |
|
135 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
|
136 SkScalar tValues[2]); |
|
137 |
|
138 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
|
139 the resulting beziers are monotonic in Y. This is called by the scan converter. |
|
140 Depending on what is returned, dst[] is treated as follows |
|
141 0 dst[0..3] is the original cubic |
|
142 1 dst[0..3] and dst[3..6] are the two new cubics |
|
143 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
|
144 If dst == null, it is ignored and only the count is returned. |
|
145 */ |
|
146 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
|
147 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); |
|
148 |
|
149 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
|
150 inflection points. |
|
151 */ |
|
152 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
|
153 |
|
154 /** Return 1 for no chop, 2 for having chopped the cubic at a single |
|
155 inflection point, 3 for having chopped at 2 inflection points. |
|
156 dst will hold the resulting 1, 2, or 3 cubics. |
|
157 */ |
|
158 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
|
159 |
|
160 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
|
161 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
|
162 SkScalar tValues[3] = NULL); |
|
163 |
|
164 /** Given a monotonic cubic bezier, determine whether an xray intersects the |
|
165 cubic. |
|
166 By definition the cubic is open at the starting point; in other |
|
167 words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the |
|
168 left of the curve, the line is not considered to cross the curve, |
|
169 but if it is equal to cubic[3].fY then it is considered to |
|
170 cross. |
|
171 Optional outgoing "ambiguous" argument indicates whether the answer is |
|
172 ambiguous because the query occurred exactly at one of the endpoints' y |
|
173 coordinates, indicating that another query y coordinate is preferred |
|
174 for robustness. |
|
175 */ |
|
176 bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], |
|
177 bool* ambiguous = NULL); |
|
178 |
|
179 /** Given an arbitrary cubic bezier, return the number of times an xray crosses |
|
180 the cubic. Valid return values are [0..3] |
|
181 By definition the cubic is open at the starting point; in other |
|
182 words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the |
|
183 left of the curve, the line is not considered to cross the curve, |
|
184 but if it is equal to cubic[3].fY then it is considered to |
|
185 cross. |
|
186 Optional outgoing "ambiguous" argument indicates whether the answer is |
|
187 ambiguous because the query occurred exactly at one of the endpoints' y |
|
188 coordinates or at a tangent point, indicating that another query y |
|
189 coordinate is preferred for robustness. |
|
190 */ |
|
191 int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], |
|
192 bool* ambiguous = NULL); |
|
193 |
|
194 /////////////////////////////////////////////////////////////////////////////// |
|
195 |
|
196 enum SkRotationDirection { |
|
197 kCW_SkRotationDirection, |
|
198 kCCW_SkRotationDirection |
|
199 }; |
|
200 |
|
201 /** Maximum number of points needed in the quadPoints[] parameter for |
|
202 SkBuildQuadArc() |
|
203 */ |
|
204 #define kSkBuildQuadArcStorage 17 |
|
205 |
|
206 /** Given 2 unit vectors and a rotation direction, fill out the specified |
|
207 array of points with quadratic segments. Return is the number of points |
|
208 written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage } |
|
209 |
|
210 matrix, if not null, is appled to the points before they are returned. |
|
211 */ |
|
212 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, |
|
213 SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]); |
|
214 |
|
215 // experimental |
|
216 struct SkConic { |
|
217 SkPoint fPts[3]; |
|
218 SkScalar fW; |
|
219 |
|
220 void set(const SkPoint pts[3], SkScalar w) { |
|
221 memcpy(fPts, pts, 3 * sizeof(SkPoint)); |
|
222 fW = w; |
|
223 } |
|
224 |
|
225 /** |
|
226 * Given a t-value [0...1] return its position and/or tangent. |
|
227 * If pos is not null, return its position at the t-value. |
|
228 * If tangent is not null, return its tangent at the t-value. NOTE the |
|
229 * tangent value's length is arbitrary, and only its direction should |
|
230 * be used. |
|
231 */ |
|
232 void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const; |
|
233 void chopAt(SkScalar t, SkConic dst[2]) const; |
|
234 void chop(SkConic dst[2]) const; |
|
235 |
|
236 void computeAsQuadError(SkVector* err) const; |
|
237 bool asQuadTol(SkScalar tol) const; |
|
238 |
|
239 /** |
|
240 * return the power-of-2 number of quads needed to approximate this conic |
|
241 * with a sequence of quads. Will be >= 0. |
|
242 */ |
|
243 int computeQuadPOW2(SkScalar tol) const; |
|
244 |
|
245 /** |
|
246 * Chop this conic into N quads, stored continguously in pts[], where |
|
247 * N = 1 << pow2. The amount of storage needed is (1 + 2 * N) |
|
248 */ |
|
249 int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; |
|
250 |
|
251 bool findXExtrema(SkScalar* t) const; |
|
252 bool findYExtrema(SkScalar* t) const; |
|
253 bool chopAtXExtrema(SkConic dst[2]) const; |
|
254 bool chopAtYExtrema(SkConic dst[2]) const; |
|
255 |
|
256 void computeTightBounds(SkRect* bounds) const; |
|
257 void computeFastBounds(SkRect* bounds) const; |
|
258 |
|
259 /** Find the parameter value where the conic takes on its maximum curvature. |
|
260 * |
|
261 * @param t output scalar for max curvature. Will be unchanged if |
|
262 * max curvature outside 0..1 range. |
|
263 * |
|
264 * @return true if max curvature found inside 0..1 range, false otherwise |
|
265 */ |
|
266 bool findMaxCurvature(SkScalar* t) const; |
|
267 }; |
|
268 |
|
269 #include "SkTemplates.h" |
|
270 |
|
271 /** |
|
272 * Help class to allocate storage for approximating a conic with N quads. |
|
273 */ |
|
274 class SkAutoConicToQuads { |
|
275 public: |
|
276 SkAutoConicToQuads() : fQuadCount(0) {} |
|
277 |
|
278 /** |
|
279 * Given a conic and a tolerance, return the array of points for the |
|
280 * approximating quad(s). Call countQuads() to know the number of quads |
|
281 * represented in these points. |
|
282 * |
|
283 * The quads are allocated to share end-points. e.g. if there are 4 quads, |
|
284 * there will be 9 points allocated as follows |
|
285 * quad[0] == pts[0..2] |
|
286 * quad[1] == pts[2..4] |
|
287 * quad[2] == pts[4..6] |
|
288 * quad[3] == pts[6..8] |
|
289 */ |
|
290 const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { |
|
291 int pow2 = conic.computeQuadPOW2(tol); |
|
292 fQuadCount = 1 << pow2; |
|
293 SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); |
|
294 conic.chopIntoQuadsPOW2(pts, pow2); |
|
295 return pts; |
|
296 } |
|
297 |
|
298 const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, |
|
299 SkScalar tol) { |
|
300 SkConic conic; |
|
301 conic.set(pts, weight); |
|
302 return computeQuads(conic, tol); |
|
303 } |
|
304 |
|
305 int countQuads() const { return fQuadCount; } |
|
306 |
|
307 private: |
|
308 enum { |
|
309 kQuadCount = 8, // should handle most conics |
|
310 kPointCount = 1 + 2 * kQuadCount, |
|
311 }; |
|
312 SkAutoSTMalloc<kPointCount, SkPoint> fStorage; |
|
313 int fQuadCount; // #quads for current usage |
|
314 }; |
|
315 |
|
316 #endif |