|
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
|
2 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
5 |
|
6 #ifdef MOZ_LOGGING |
|
7 #define FORCE_PR_LOG /* Allow logging in the release build */ |
|
8 #include "prlog.h" |
|
9 #endif |
|
10 |
|
11 #include "mozilla/ArrayUtils.h" |
|
12 |
|
13 #include "gfxFontUtils.h" |
|
14 |
|
15 #include "nsServiceManagerUtils.h" |
|
16 |
|
17 #include "mozilla/dom/EncodingUtils.h" |
|
18 #include "mozilla/Preferences.h" |
|
19 #include "mozilla/Services.h" |
|
20 |
|
21 #include "nsCOMPtr.h" |
|
22 #include "nsIUUIDGenerator.h" |
|
23 #include "nsIUnicodeDecoder.h" |
|
24 |
|
25 #include "harfbuzz/hb.h" |
|
26 |
|
27 #include "plbase64.h" |
|
28 #include "prlog.h" |
|
29 |
|
30 #ifdef PR_LOGGING |
|
31 |
|
32 #define LOG(log, args) PR_LOG(gfxPlatform::GetLog(log), \ |
|
33 PR_LOG_DEBUG, args) |
|
34 |
|
35 #endif // PR_LOGGING |
|
36 |
|
37 #define UNICODE_BMP_LIMIT 0x10000 |
|
38 |
|
39 using namespace mozilla; |
|
40 |
|
41 #pragma pack(1) |
|
42 |
|
43 typedef struct { |
|
44 AutoSwap_PRUint16 format; |
|
45 AutoSwap_PRUint16 reserved; |
|
46 AutoSwap_PRUint32 length; |
|
47 AutoSwap_PRUint32 language; |
|
48 AutoSwap_PRUint32 numGroups; |
|
49 } Format12CmapHeader; |
|
50 |
|
51 typedef struct { |
|
52 AutoSwap_PRUint32 startCharCode; |
|
53 AutoSwap_PRUint32 endCharCode; |
|
54 AutoSwap_PRUint32 startGlyphId; |
|
55 } Format12Group; |
|
56 |
|
57 #pragma pack() |
|
58 |
|
59 #if PR_LOGGING |
|
60 void |
|
61 gfxSparseBitSet::Dump(const char* aPrefix, eGfxLog aWhichLog) const |
|
62 { |
|
63 NS_ASSERTION(mBlocks.DebugGetHeader(), "mHdr is null, this is bad"); |
|
64 uint32_t b, numBlocks = mBlocks.Length(); |
|
65 |
|
66 for (b = 0; b < numBlocks; b++) { |
|
67 Block *block = mBlocks[b]; |
|
68 if (!block) continue; |
|
69 char outStr[256]; |
|
70 int index = 0; |
|
71 index += sprintf(&outStr[index], "%s u+%6.6x [", aPrefix, (b << BLOCK_INDEX_SHIFT)); |
|
72 for (int i = 0; i < 32; i += 4) { |
|
73 for (int j = i; j < i + 4; j++) { |
|
74 uint8_t bits = block->mBits[j]; |
|
75 uint8_t flip1 = ((bits & 0xaa) >> 1) | ((bits & 0x55) << 1); |
|
76 uint8_t flip2 = ((flip1 & 0xcc) >> 2) | ((flip1 & 0x33) << 2); |
|
77 uint8_t flipped = ((flip2 & 0xf0) >> 4) | ((flip2 & 0x0f) << 4); |
|
78 |
|
79 index += sprintf(&outStr[index], "%2.2x", flipped); |
|
80 } |
|
81 if (i + 4 != 32) index += sprintf(&outStr[index], " "); |
|
82 } |
|
83 index += sprintf(&outStr[index], "]"); |
|
84 LOG(aWhichLog, ("%s", outStr)); |
|
85 } |
|
86 } |
|
87 #endif |
|
88 |
|
89 |
|
90 nsresult |
|
91 gfxFontUtils::ReadCMAPTableFormat12(const uint8_t *aBuf, uint32_t aLength, |
|
92 gfxSparseBitSet& aCharacterMap) |
|
93 { |
|
94 // Ensure table is large enough that we can safely read the header |
|
95 NS_ENSURE_TRUE(aLength >= sizeof(Format12CmapHeader), |
|
96 NS_ERROR_GFX_CMAP_MALFORMED); |
|
97 |
|
98 // Sanity-check header fields |
|
99 const Format12CmapHeader *cmap12 = |
|
100 reinterpret_cast<const Format12CmapHeader*>(aBuf); |
|
101 NS_ENSURE_TRUE(uint16_t(cmap12->format) == 12, |
|
102 NS_ERROR_GFX_CMAP_MALFORMED); |
|
103 NS_ENSURE_TRUE(uint16_t(cmap12->reserved) == 0, |
|
104 NS_ERROR_GFX_CMAP_MALFORMED); |
|
105 |
|
106 uint32_t tablelen = cmap12->length; |
|
107 NS_ENSURE_TRUE(tablelen >= sizeof(Format12CmapHeader) && |
|
108 tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED); |
|
109 |
|
110 NS_ENSURE_TRUE(cmap12->language == 0, NS_ERROR_GFX_CMAP_MALFORMED); |
|
111 |
|
112 // Check that the table is large enough for the group array |
|
113 const uint32_t numGroups = cmap12->numGroups; |
|
114 NS_ENSURE_TRUE((tablelen - sizeof(Format12CmapHeader)) / |
|
115 sizeof(Format12Group) >= numGroups, |
|
116 NS_ERROR_GFX_CMAP_MALFORMED); |
|
117 |
|
118 // The array of groups immediately follows the subtable header. |
|
119 const Format12Group *group = |
|
120 reinterpret_cast<const Format12Group*>(aBuf + sizeof(Format12CmapHeader)); |
|
121 |
|
122 // Check that groups are in correct order and do not overlap, |
|
123 // and record character coverage in aCharacterMap. |
|
124 uint32_t prevEndCharCode = 0; |
|
125 for (uint32_t i = 0; i < numGroups; i++, group++) { |
|
126 uint32_t startCharCode = group->startCharCode; |
|
127 const uint32_t endCharCode = group->endCharCode; |
|
128 NS_ENSURE_TRUE((prevEndCharCode < startCharCode || i == 0) && |
|
129 startCharCode <= endCharCode && |
|
130 endCharCode <= CMAP_MAX_CODEPOINT, |
|
131 NS_ERROR_GFX_CMAP_MALFORMED); |
|
132 // don't include a character that maps to glyph ID 0 (.notdef) |
|
133 if (group->startGlyphId == 0) { |
|
134 startCharCode++; |
|
135 } |
|
136 if (startCharCode <= endCharCode) { |
|
137 aCharacterMap.SetRange(startCharCode, endCharCode); |
|
138 } |
|
139 prevEndCharCode = endCharCode; |
|
140 } |
|
141 |
|
142 aCharacterMap.Compact(); |
|
143 |
|
144 return NS_OK; |
|
145 } |
|
146 |
|
147 nsresult |
|
148 gfxFontUtils::ReadCMAPTableFormat4(const uint8_t *aBuf, uint32_t aLength, |
|
149 gfxSparseBitSet& aCharacterMap) |
|
150 { |
|
151 enum { |
|
152 OffsetFormat = 0, |
|
153 OffsetLength = 2, |
|
154 OffsetLanguage = 4, |
|
155 OffsetSegCountX2 = 6 |
|
156 }; |
|
157 |
|
158 NS_ENSURE_TRUE(ReadShortAt(aBuf, OffsetFormat) == 4, |
|
159 NS_ERROR_GFX_CMAP_MALFORMED); |
|
160 uint16_t tablelen = ReadShortAt(aBuf, OffsetLength); |
|
161 NS_ENSURE_TRUE(tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED); |
|
162 NS_ENSURE_TRUE(tablelen > 16, NS_ERROR_GFX_CMAP_MALFORMED); |
|
163 |
|
164 // This field should normally (except for Mac platform subtables) be zero according to |
|
165 // the OT spec, but some buggy fonts have lang = 1 (which would be English for MacOS). |
|
166 // E.g. Arial Narrow Bold, v. 1.1 (Tiger), Arial Unicode MS (see bug 530614). |
|
167 // So accept either zero or one here; the error should be harmless. |
|
168 NS_ENSURE_TRUE((ReadShortAt(aBuf, OffsetLanguage) & 0xfffe) == 0, |
|
169 NS_ERROR_GFX_CMAP_MALFORMED); |
|
170 |
|
171 uint16_t segCountX2 = ReadShortAt(aBuf, OffsetSegCountX2); |
|
172 NS_ENSURE_TRUE(tablelen >= 16 + (segCountX2 * 4), |
|
173 NS_ERROR_GFX_CMAP_MALFORMED); |
|
174 |
|
175 const uint16_t segCount = segCountX2 / 2; |
|
176 |
|
177 const uint16_t *endCounts = reinterpret_cast<const uint16_t*>(aBuf + 14); |
|
178 const uint16_t *startCounts = endCounts + 1 /* skip one uint16_t for reservedPad */ + segCount; |
|
179 const uint16_t *idDeltas = startCounts + segCount; |
|
180 const uint16_t *idRangeOffsets = idDeltas + segCount; |
|
181 uint16_t prevEndCount = 0; |
|
182 for (uint16_t i = 0; i < segCount; i++) { |
|
183 const uint16_t endCount = ReadShortAt16(endCounts, i); |
|
184 const uint16_t startCount = ReadShortAt16(startCounts, i); |
|
185 const uint16_t idRangeOffset = ReadShortAt16(idRangeOffsets, i); |
|
186 |
|
187 // sanity-check range |
|
188 // This permits ranges to overlap by 1 character, which is strictly |
|
189 // incorrect but occurs in Baskerville on OS X 10.7 (see bug 689087), |
|
190 // and appears to be harmless in practice |
|
191 NS_ENSURE_TRUE(startCount >= prevEndCount && startCount <= endCount, |
|
192 NS_ERROR_GFX_CMAP_MALFORMED); |
|
193 prevEndCount = endCount; |
|
194 |
|
195 if (idRangeOffset == 0) { |
|
196 // figure out if there's a code in the range that would map to |
|
197 // glyph ID 0 (.notdef); if so, we need to skip setting that |
|
198 // character code in the map |
|
199 const uint16_t skipCode = 65536 - ReadShortAt16(idDeltas, i); |
|
200 if (startCount < skipCode) { |
|
201 aCharacterMap.SetRange(startCount, |
|
202 std::min<uint16_t>(skipCode - 1, |
|
203 endCount)); |
|
204 } |
|
205 if (skipCode < endCount) { |
|
206 aCharacterMap.SetRange(std::max<uint16_t>(startCount, |
|
207 skipCode + 1), |
|
208 endCount); |
|
209 } |
|
210 } else { |
|
211 // const uint16_t idDelta = ReadShortAt16(idDeltas, i); // Unused: self-documenting. |
|
212 for (uint32_t c = startCount; c <= endCount; ++c) { |
|
213 if (c == 0xFFFF) |
|
214 break; |
|
215 |
|
216 const uint16_t *gdata = (idRangeOffset/2 |
|
217 + (c - startCount) |
|
218 + &idRangeOffsets[i]); |
|
219 |
|
220 NS_ENSURE_TRUE((uint8_t*)gdata > aBuf && |
|
221 (uint8_t*)gdata < aBuf + aLength, |
|
222 NS_ERROR_GFX_CMAP_MALFORMED); |
|
223 |
|
224 // make sure we have a glyph |
|
225 if (*gdata != 0) { |
|
226 // The glyph index at this point is: |
|
227 uint16_t glyph = ReadShortAt16(idDeltas, i) + *gdata; |
|
228 if (glyph) { |
|
229 aCharacterMap.set(c); |
|
230 } |
|
231 } |
|
232 } |
|
233 } |
|
234 } |
|
235 |
|
236 aCharacterMap.Compact(); |
|
237 |
|
238 return NS_OK; |
|
239 } |
|
240 |
|
241 nsresult |
|
242 gfxFontUtils::ReadCMAPTableFormat14(const uint8_t *aBuf, uint32_t aLength, |
|
243 uint8_t*& aTable) |
|
244 { |
|
245 enum { |
|
246 OffsetFormat = 0, |
|
247 OffsetTableLength = 2, |
|
248 OffsetNumVarSelectorRecords = 6, |
|
249 OffsetVarSelectorRecords = 10, |
|
250 |
|
251 SizeOfVarSelectorRecord = 11, |
|
252 VSRecOffsetVarSelector = 0, |
|
253 VSRecOffsetDefUVSOffset = 3, |
|
254 VSRecOffsetNonDefUVSOffset = 7, |
|
255 |
|
256 SizeOfDefUVSTable = 4, |
|
257 DefUVSOffsetStartUnicodeValue = 0, |
|
258 DefUVSOffsetAdditionalCount = 3, |
|
259 |
|
260 SizeOfNonDefUVSTable = 5, |
|
261 NonDefUVSOffsetUnicodeValue = 0, |
|
262 NonDefUVSOffsetGlyphID = 3 |
|
263 }; |
|
264 NS_ENSURE_TRUE(aLength >= OffsetVarSelectorRecords, |
|
265 NS_ERROR_GFX_CMAP_MALFORMED); |
|
266 |
|
267 NS_ENSURE_TRUE(ReadShortAt(aBuf, OffsetFormat) == 14, |
|
268 NS_ERROR_GFX_CMAP_MALFORMED); |
|
269 |
|
270 uint32_t tablelen = ReadLongAt(aBuf, OffsetTableLength); |
|
271 NS_ENSURE_TRUE(tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED); |
|
272 NS_ENSURE_TRUE(tablelen >= OffsetVarSelectorRecords, |
|
273 NS_ERROR_GFX_CMAP_MALFORMED); |
|
274 |
|
275 const uint32_t numVarSelectorRecords = ReadLongAt(aBuf, OffsetNumVarSelectorRecords); |
|
276 NS_ENSURE_TRUE((tablelen - OffsetVarSelectorRecords) / |
|
277 SizeOfVarSelectorRecord >= numVarSelectorRecords, |
|
278 NS_ERROR_GFX_CMAP_MALFORMED); |
|
279 |
|
280 const uint8_t *records = aBuf + OffsetVarSelectorRecords; |
|
281 for (uint32_t i = 0; i < numVarSelectorRecords; |
|
282 i++, records += SizeOfVarSelectorRecord) { |
|
283 const uint32_t varSelector = ReadUint24At(records, VSRecOffsetVarSelector); |
|
284 const uint32_t defUVSOffset = ReadLongAt(records, VSRecOffsetDefUVSOffset); |
|
285 const uint32_t nonDefUVSOffset = ReadLongAt(records, VSRecOffsetNonDefUVSOffset); |
|
286 NS_ENSURE_TRUE(varSelector <= CMAP_MAX_CODEPOINT && |
|
287 defUVSOffset <= tablelen - 4 && |
|
288 nonDefUVSOffset <= tablelen - 4, |
|
289 NS_ERROR_GFX_CMAP_MALFORMED); |
|
290 |
|
291 if (defUVSOffset) { |
|
292 const uint32_t numUnicodeValueRanges = ReadLongAt(aBuf, defUVSOffset); |
|
293 NS_ENSURE_TRUE((tablelen - defUVSOffset) / |
|
294 SizeOfDefUVSTable >= numUnicodeValueRanges, |
|
295 NS_ERROR_GFX_CMAP_MALFORMED); |
|
296 const uint8_t *tables = aBuf + defUVSOffset + 4; |
|
297 uint32_t prevEndUnicode = 0; |
|
298 for (uint32_t j = 0; j < numUnicodeValueRanges; j++, tables += SizeOfDefUVSTable) { |
|
299 const uint32_t startUnicode = ReadUint24At(tables, DefUVSOffsetStartUnicodeValue); |
|
300 const uint32_t endUnicode = startUnicode + tables[DefUVSOffsetAdditionalCount]; |
|
301 NS_ENSURE_TRUE((prevEndUnicode < startUnicode || j == 0) && |
|
302 endUnicode <= CMAP_MAX_CODEPOINT, |
|
303 NS_ERROR_GFX_CMAP_MALFORMED); |
|
304 prevEndUnicode = endUnicode; |
|
305 } |
|
306 } |
|
307 |
|
308 if (nonDefUVSOffset) { |
|
309 const uint32_t numUVSMappings = ReadLongAt(aBuf, nonDefUVSOffset); |
|
310 NS_ENSURE_TRUE((tablelen - nonDefUVSOffset) / |
|
311 SizeOfNonDefUVSTable >= numUVSMappings, |
|
312 NS_ERROR_GFX_CMAP_MALFORMED); |
|
313 const uint8_t *tables = aBuf + nonDefUVSOffset + 4; |
|
314 uint32_t prevUnicode = 0; |
|
315 for (uint32_t j = 0; j < numUVSMappings; j++, tables += SizeOfNonDefUVSTable) { |
|
316 const uint32_t unicodeValue = ReadUint24At(tables, NonDefUVSOffsetUnicodeValue); |
|
317 NS_ENSURE_TRUE((prevUnicode < unicodeValue || j == 0) && |
|
318 unicodeValue <= CMAP_MAX_CODEPOINT, |
|
319 NS_ERROR_GFX_CMAP_MALFORMED); |
|
320 prevUnicode = unicodeValue; |
|
321 } |
|
322 } |
|
323 } |
|
324 |
|
325 aTable = new uint8_t[tablelen]; |
|
326 memcpy(aTable, aBuf, tablelen); |
|
327 |
|
328 return NS_OK; |
|
329 } |
|
330 |
|
331 // Windows requires fonts to have a format-4 cmap with a Microsoft ID (3). On the Mac, fonts either have |
|
332 // a format-4 cmap with Microsoft platform/encoding id or they have one with a platformID == Unicode (0) |
|
333 // For fonts with two format-4 tables, the first one (Unicode platform) is preferred on the Mac. |
|
334 |
|
335 #if defined(XP_MACOSX) |
|
336 #define acceptableFormat4(p,e,k) (((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDMicrosoft && !(k)) || \ |
|
337 ((p) == PLATFORM_ID_UNICODE)) |
|
338 |
|
339 #define acceptableUCS4Encoding(p, e, k) \ |
|
340 (((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDUCS4ForMicrosoftPlatform) && (k) != 12 || \ |
|
341 ((p) == PLATFORM_ID_UNICODE && \ |
|
342 ((e) == EncodingIDDefaultForUnicodePlatform || (e) >= EncodingIDUCS4ForUnicodePlatform))) |
|
343 #else |
|
344 #define acceptableFormat4(p,e,k) ((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDMicrosoft) |
|
345 |
|
346 #define acceptableUCS4Encoding(p, e, k) \ |
|
347 ((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDUCS4ForMicrosoftPlatform) |
|
348 #endif |
|
349 |
|
350 #define acceptablePlatform(p) ((p) == PLATFORM_ID_UNICODE || (p) == PLATFORM_ID_MICROSOFT) |
|
351 #define isSymbol(p,e) ((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDSymbol) |
|
352 #define isUVSEncoding(p, e) ((p) == PLATFORM_ID_UNICODE && (e) == EncodingIDUVSForUnicodePlatform) |
|
353 |
|
354 uint32_t |
|
355 gfxFontUtils::FindPreferredSubtable(const uint8_t *aBuf, uint32_t aBufLength, |
|
356 uint32_t *aTableOffset, |
|
357 uint32_t *aUVSTableOffset, |
|
358 bool *aSymbolEncoding) |
|
359 { |
|
360 enum { |
|
361 OffsetVersion = 0, |
|
362 OffsetNumTables = 2, |
|
363 SizeOfHeader = 4, |
|
364 |
|
365 TableOffsetPlatformID = 0, |
|
366 TableOffsetEncodingID = 2, |
|
367 TableOffsetOffset = 4, |
|
368 SizeOfTable = 8, |
|
369 |
|
370 SubtableOffsetFormat = 0 |
|
371 }; |
|
372 enum { |
|
373 EncodingIDSymbol = 0, |
|
374 EncodingIDMicrosoft = 1, |
|
375 EncodingIDDefaultForUnicodePlatform = 0, |
|
376 EncodingIDUCS4ForUnicodePlatform = 3, |
|
377 EncodingIDUVSForUnicodePlatform = 5, |
|
378 EncodingIDUCS4ForMicrosoftPlatform = 10 |
|
379 }; |
|
380 |
|
381 if (aUVSTableOffset) { |
|
382 *aUVSTableOffset = 0; |
|
383 } |
|
384 |
|
385 if (!aBuf || aBufLength < SizeOfHeader) { |
|
386 // cmap table is missing, or too small to contain header fields! |
|
387 return 0; |
|
388 } |
|
389 |
|
390 // uint16_t version = ReadShortAt(aBuf, OffsetVersion); // Unused: self-documenting. |
|
391 uint16_t numTables = ReadShortAt(aBuf, OffsetNumTables); |
|
392 if (aBufLength < uint32_t(SizeOfHeader + numTables * SizeOfTable)) { |
|
393 return 0; |
|
394 } |
|
395 |
|
396 // save the format we want here |
|
397 uint32_t keepFormat = 0; |
|
398 |
|
399 const uint8_t *table = aBuf + SizeOfHeader; |
|
400 for (uint16_t i = 0; i < numTables; ++i, table += SizeOfTable) { |
|
401 const uint16_t platformID = ReadShortAt(table, TableOffsetPlatformID); |
|
402 if (!acceptablePlatform(platformID)) |
|
403 continue; |
|
404 |
|
405 const uint16_t encodingID = ReadShortAt(table, TableOffsetEncodingID); |
|
406 const uint32_t offset = ReadLongAt(table, TableOffsetOffset); |
|
407 if (aBufLength - 2 < offset) { |
|
408 // this subtable is not valid - beyond end of buffer |
|
409 return 0; |
|
410 } |
|
411 |
|
412 const uint8_t *subtable = aBuf + offset; |
|
413 const uint16_t format = ReadShortAt(subtable, SubtableOffsetFormat); |
|
414 |
|
415 if (isSymbol(platformID, encodingID)) { |
|
416 keepFormat = format; |
|
417 *aTableOffset = offset; |
|
418 *aSymbolEncoding = true; |
|
419 break; |
|
420 } else if (format == 4 && acceptableFormat4(platformID, encodingID, keepFormat)) { |
|
421 keepFormat = format; |
|
422 *aTableOffset = offset; |
|
423 *aSymbolEncoding = false; |
|
424 } else if (format == 12 && acceptableUCS4Encoding(platformID, encodingID, keepFormat)) { |
|
425 keepFormat = format; |
|
426 *aTableOffset = offset; |
|
427 *aSymbolEncoding = false; |
|
428 if (platformID > PLATFORM_ID_UNICODE || !aUVSTableOffset || *aUVSTableOffset) { |
|
429 break; // we don't want to try anything else when this format is available. |
|
430 } |
|
431 } else if (format == 14 && isUVSEncoding(platformID, encodingID) && aUVSTableOffset) { |
|
432 *aUVSTableOffset = offset; |
|
433 if (keepFormat == 12) { |
|
434 break; |
|
435 } |
|
436 } |
|
437 } |
|
438 |
|
439 return keepFormat; |
|
440 } |
|
441 |
|
442 nsresult |
|
443 gfxFontUtils::ReadCMAP(const uint8_t *aBuf, uint32_t aBufLength, |
|
444 gfxSparseBitSet& aCharacterMap, |
|
445 uint32_t& aUVSOffset, |
|
446 bool& aUnicodeFont, bool& aSymbolFont) |
|
447 { |
|
448 uint32_t offset; |
|
449 bool symbol; |
|
450 uint32_t format = FindPreferredSubtable(aBuf, aBufLength, |
|
451 &offset, &aUVSOffset, &symbol); |
|
452 |
|
453 if (format == 4) { |
|
454 if (symbol) { |
|
455 aUnicodeFont = false; |
|
456 aSymbolFont = true; |
|
457 } else { |
|
458 aUnicodeFont = true; |
|
459 aSymbolFont = false; |
|
460 } |
|
461 return ReadCMAPTableFormat4(aBuf + offset, aBufLength - offset, |
|
462 aCharacterMap); |
|
463 } |
|
464 |
|
465 if (format == 12) { |
|
466 aUnicodeFont = true; |
|
467 aSymbolFont = false; |
|
468 return ReadCMAPTableFormat12(aBuf + offset, aBufLength - offset, |
|
469 aCharacterMap); |
|
470 } |
|
471 |
|
472 return NS_ERROR_FAILURE; |
|
473 } |
|
474 |
|
475 #pragma pack(1) |
|
476 |
|
477 typedef struct { |
|
478 AutoSwap_PRUint16 format; |
|
479 AutoSwap_PRUint16 length; |
|
480 AutoSwap_PRUint16 language; |
|
481 AutoSwap_PRUint16 segCountX2; |
|
482 AutoSwap_PRUint16 searchRange; |
|
483 AutoSwap_PRUint16 entrySelector; |
|
484 AutoSwap_PRUint16 rangeShift; |
|
485 |
|
486 AutoSwap_PRUint16 arrays[1]; |
|
487 } Format4Cmap; |
|
488 |
|
489 typedef struct { |
|
490 AutoSwap_PRUint16 format; |
|
491 AutoSwap_PRUint32 length; |
|
492 AutoSwap_PRUint32 numVarSelectorRecords; |
|
493 |
|
494 typedef struct { |
|
495 AutoSwap_PRUint24 varSelector; |
|
496 AutoSwap_PRUint32 defaultUVSOffset; |
|
497 AutoSwap_PRUint32 nonDefaultUVSOffset; |
|
498 } VarSelectorRecord; |
|
499 |
|
500 VarSelectorRecord varSelectorRecords[1]; |
|
501 } Format14Cmap; |
|
502 |
|
503 typedef struct { |
|
504 AutoSwap_PRUint32 numUVSMappings; |
|
505 |
|
506 typedef struct { |
|
507 AutoSwap_PRUint24 unicodeValue; |
|
508 AutoSwap_PRUint16 glyphID; |
|
509 } UVSMapping; |
|
510 |
|
511 UVSMapping uvsMappings[1]; |
|
512 } NonDefUVSTable; |
|
513 |
|
514 #pragma pack() |
|
515 |
|
516 uint32_t |
|
517 gfxFontUtils::MapCharToGlyphFormat4(const uint8_t *aBuf, char16_t aCh) |
|
518 { |
|
519 const Format4Cmap *cmap4 = reinterpret_cast<const Format4Cmap*>(aBuf); |
|
520 uint16_t segCount; |
|
521 const AutoSwap_PRUint16 *endCodes; |
|
522 const AutoSwap_PRUint16 *startCodes; |
|
523 const AutoSwap_PRUint16 *idDelta; |
|
524 const AutoSwap_PRUint16 *idRangeOffset; |
|
525 uint16_t probe; |
|
526 uint16_t rangeShiftOver2; |
|
527 uint16_t index; |
|
528 |
|
529 segCount = (uint16_t)(cmap4->segCountX2) / 2; |
|
530 |
|
531 endCodes = &cmap4->arrays[0]; |
|
532 startCodes = &cmap4->arrays[segCount + 1]; // +1 for reserved word between arrays |
|
533 idDelta = &startCodes[segCount]; |
|
534 idRangeOffset = &idDelta[segCount]; |
|
535 |
|
536 probe = 1 << (uint16_t)(cmap4->entrySelector); |
|
537 rangeShiftOver2 = (uint16_t)(cmap4->rangeShift) / 2; |
|
538 |
|
539 if ((uint16_t)(startCodes[rangeShiftOver2]) <= aCh) { |
|
540 index = rangeShiftOver2; |
|
541 } else { |
|
542 index = 0; |
|
543 } |
|
544 |
|
545 while (probe > 1) { |
|
546 probe >>= 1; |
|
547 if ((uint16_t)(startCodes[index + probe]) <= aCh) { |
|
548 index += probe; |
|
549 } |
|
550 } |
|
551 |
|
552 if (aCh >= (uint16_t)(startCodes[index]) && aCh <= (uint16_t)(endCodes[index])) { |
|
553 uint16_t result; |
|
554 if ((uint16_t)(idRangeOffset[index]) == 0) { |
|
555 result = aCh; |
|
556 } else { |
|
557 uint16_t offset = aCh - (uint16_t)(startCodes[index]); |
|
558 const AutoSwap_PRUint16 *glyphIndexTable = |
|
559 (const AutoSwap_PRUint16*)((const char*)&idRangeOffset[index] + |
|
560 (uint16_t)(idRangeOffset[index])); |
|
561 result = glyphIndexTable[offset]; |
|
562 } |
|
563 |
|
564 // note that this is unsigned 16-bit arithmetic, and may wrap around |
|
565 result += (uint16_t)(idDelta[index]); |
|
566 return result; |
|
567 } |
|
568 |
|
569 return 0; |
|
570 } |
|
571 |
|
572 uint32_t |
|
573 gfxFontUtils::MapCharToGlyphFormat12(const uint8_t *aBuf, uint32_t aCh) |
|
574 { |
|
575 const Format12CmapHeader *cmap12 = |
|
576 reinterpret_cast<const Format12CmapHeader*>(aBuf); |
|
577 |
|
578 // We know that numGroups is within range for the subtable size |
|
579 // because it was checked by ReadCMAPTableFormat12. |
|
580 uint32_t numGroups = cmap12->numGroups; |
|
581 |
|
582 // The array of groups immediately follows the subtable header. |
|
583 const Format12Group *groups = |
|
584 reinterpret_cast<const Format12Group*>(aBuf + sizeof(Format12CmapHeader)); |
|
585 |
|
586 // For most efficient binary search, we want to work on a range that |
|
587 // is a power of 2 so that we can always halve it by shifting. |
|
588 // So we find the largest power of 2 that is <= numGroups. |
|
589 // We will offset this range by rangeOffset so as to reach the end |
|
590 // of the table, provided that doesn't put us beyond the target |
|
591 // value from the outset. |
|
592 uint32_t powerOf2 = mozilla::FindHighestBit(numGroups); |
|
593 uint32_t rangeOffset = numGroups - powerOf2; |
|
594 uint32_t range = 0; |
|
595 uint32_t startCharCode; |
|
596 |
|
597 if (groups[rangeOffset].startCharCode <= aCh) { |
|
598 range = rangeOffset; |
|
599 } |
|
600 |
|
601 // Repeatedly halve the size of the range until we find the target group |
|
602 while (powerOf2 > 1) { |
|
603 powerOf2 >>= 1; |
|
604 if (groups[range + powerOf2].startCharCode <= aCh) { |
|
605 range += powerOf2; |
|
606 } |
|
607 } |
|
608 |
|
609 // Check if the character is actually present in the range and return |
|
610 // the corresponding glyph ID |
|
611 startCharCode = groups[range].startCharCode; |
|
612 if (startCharCode <= aCh && groups[range].endCharCode >= aCh) { |
|
613 return groups[range].startGlyphId + aCh - startCharCode; |
|
614 } |
|
615 |
|
616 // Else it's not present, so return the .notdef glyph |
|
617 return 0; |
|
618 } |
|
619 |
|
620 uint16_t |
|
621 gfxFontUtils::MapUVSToGlyphFormat14(const uint8_t *aBuf, uint32_t aCh, uint32_t aVS) |
|
622 { |
|
623 const Format14Cmap *cmap14 = reinterpret_cast<const Format14Cmap*>(aBuf); |
|
624 |
|
625 // binary search in varSelectorRecords |
|
626 uint32_t min = 0; |
|
627 uint32_t max = cmap14->numVarSelectorRecords; |
|
628 uint32_t nonDefUVSOffset = 0; |
|
629 while (min < max) { |
|
630 uint32_t index = (min + max) >> 1; |
|
631 uint32_t varSelector = cmap14->varSelectorRecords[index].varSelector; |
|
632 if (aVS == varSelector) { |
|
633 nonDefUVSOffset = cmap14->varSelectorRecords[index].nonDefaultUVSOffset; |
|
634 break; |
|
635 } |
|
636 if (aVS < varSelector) { |
|
637 max = index; |
|
638 } else { |
|
639 min = index + 1; |
|
640 } |
|
641 } |
|
642 if (!nonDefUVSOffset) { |
|
643 return 0; |
|
644 } |
|
645 |
|
646 const NonDefUVSTable *table = reinterpret_cast<const NonDefUVSTable*> |
|
647 (aBuf + nonDefUVSOffset); |
|
648 |
|
649 // binary search in uvsMappings |
|
650 min = 0; |
|
651 max = table->numUVSMappings; |
|
652 while (min < max) { |
|
653 uint32_t index = (min + max) >> 1; |
|
654 uint32_t unicodeValue = table->uvsMappings[index].unicodeValue; |
|
655 if (aCh == unicodeValue) { |
|
656 return table->uvsMappings[index].glyphID; |
|
657 } |
|
658 if (aCh < unicodeValue) { |
|
659 max = index; |
|
660 } else { |
|
661 min = index + 1; |
|
662 } |
|
663 } |
|
664 |
|
665 return 0; |
|
666 } |
|
667 |
|
668 uint32_t |
|
669 gfxFontUtils::MapCharToGlyph(const uint8_t *aCmapBuf, uint32_t aBufLength, |
|
670 uint32_t aUnicode, uint32_t aVarSelector) |
|
671 { |
|
672 uint32_t offset, uvsOffset; |
|
673 bool symbol; |
|
674 uint32_t format = FindPreferredSubtable(aCmapBuf, aBufLength, &offset, |
|
675 &uvsOffset, &symbol); |
|
676 |
|
677 uint32_t gid; |
|
678 switch (format) { |
|
679 case 4: |
|
680 gid = aUnicode < UNICODE_BMP_LIMIT ? |
|
681 MapCharToGlyphFormat4(aCmapBuf + offset, char16_t(aUnicode)) : 0; |
|
682 break; |
|
683 case 12: |
|
684 gid = MapCharToGlyphFormat12(aCmapBuf + offset, aUnicode); |
|
685 break; |
|
686 default: |
|
687 NS_WARNING("unsupported cmap format, glyphs will be missing"); |
|
688 gid = 0; |
|
689 } |
|
690 |
|
691 if (aVarSelector && uvsOffset && gid) { |
|
692 uint32_t varGID = |
|
693 gfxFontUtils::MapUVSToGlyphFormat14(aCmapBuf + uvsOffset, |
|
694 aUnicode, aVarSelector); |
|
695 if (!varGID) { |
|
696 aUnicode = gfxFontUtils::GetUVSFallback(aUnicode, aVarSelector); |
|
697 if (aUnicode) { |
|
698 switch (format) { |
|
699 case 4: |
|
700 if (aUnicode < UNICODE_BMP_LIMIT) { |
|
701 varGID = MapCharToGlyphFormat4(aCmapBuf + offset, |
|
702 char16_t(aUnicode)); |
|
703 } |
|
704 break; |
|
705 case 12: |
|
706 varGID = MapCharToGlyphFormat12(aCmapBuf + offset, |
|
707 aUnicode); |
|
708 break; |
|
709 } |
|
710 } |
|
711 } |
|
712 if (varGID) { |
|
713 gid = varGID; |
|
714 } |
|
715 |
|
716 // else the variation sequence was not supported, use default mapping |
|
717 // of the character code alone |
|
718 } |
|
719 |
|
720 return gid; |
|
721 } |
|
722 |
|
723 void gfxFontUtils::GetPrefsFontList(const char *aPrefName, nsTArray<nsString>& aFontList) |
|
724 { |
|
725 const char16_t kComma = char16_t(','); |
|
726 |
|
727 aFontList.Clear(); |
|
728 |
|
729 // get the list of single-face font families |
|
730 nsAdoptingString fontlistValue = Preferences::GetString(aPrefName); |
|
731 if (!fontlistValue) { |
|
732 return; |
|
733 } |
|
734 |
|
735 // append each font name to the list |
|
736 nsAutoString fontname; |
|
737 const char16_t *p, *p_end; |
|
738 fontlistValue.BeginReading(p); |
|
739 fontlistValue.EndReading(p_end); |
|
740 |
|
741 while (p < p_end) { |
|
742 const char16_t *nameStart = p; |
|
743 while (++p != p_end && *p != kComma) |
|
744 /* nothing */ ; |
|
745 |
|
746 // pull out a single name and clean out leading/trailing whitespace |
|
747 fontname = Substring(nameStart, p); |
|
748 fontname.CompressWhitespace(true, true); |
|
749 |
|
750 // append it to the list |
|
751 aFontList.AppendElement(fontname); |
|
752 ++p; |
|
753 } |
|
754 |
|
755 } |
|
756 |
|
757 // produce a unique font name that is (1) a valid Postscript name and (2) less |
|
758 // than 31 characters in length. Using AddFontMemResourceEx on Windows fails |
|
759 // for names longer than 30 characters in length. |
|
760 |
|
761 #define MAX_B64_LEN 32 |
|
762 |
|
763 nsresult gfxFontUtils::MakeUniqueUserFontName(nsAString& aName) |
|
764 { |
|
765 nsCOMPtr<nsIUUIDGenerator> uuidgen = |
|
766 do_GetService("@mozilla.org/uuid-generator;1"); |
|
767 NS_ENSURE_TRUE(uuidgen, NS_ERROR_OUT_OF_MEMORY); |
|
768 |
|
769 nsID guid; |
|
770 |
|
771 NS_ASSERTION(sizeof(guid) * 2 <= MAX_B64_LEN, "size of nsID has changed!"); |
|
772 |
|
773 nsresult rv = uuidgen->GenerateUUIDInPlace(&guid); |
|
774 NS_ENSURE_SUCCESS(rv, rv); |
|
775 |
|
776 char guidB64[MAX_B64_LEN] = {0}; |
|
777 |
|
778 if (!PL_Base64Encode(reinterpret_cast<char*>(&guid), sizeof(guid), guidB64)) |
|
779 return NS_ERROR_FAILURE; |
|
780 |
|
781 // all b64 characters except for '/' are allowed in Postscript names, so convert / ==> - |
|
782 char *p; |
|
783 for (p = guidB64; *p; p++) { |
|
784 if (*p == '/') |
|
785 *p = '-'; |
|
786 } |
|
787 |
|
788 aName.Assign(NS_LITERAL_STRING("uf")); |
|
789 aName.AppendASCII(guidB64); |
|
790 return NS_OK; |
|
791 } |
|
792 |
|
793 |
|
794 // TrueType/OpenType table handling code |
|
795 |
|
796 // need byte aligned structs |
|
797 #pragma pack(1) |
|
798 |
|
799 // name table stores set of name record structures, followed by |
|
800 // large block containing all the strings. name record offset and length |
|
801 // indicates the offset and length within that block. |
|
802 // http://www.microsoft.com/typography/otspec/name.htm |
|
803 struct NameRecordData { |
|
804 uint32_t offset; |
|
805 uint32_t length; |
|
806 }; |
|
807 |
|
808 #pragma pack() |
|
809 |
|
810 static bool |
|
811 IsValidSFNTVersion(uint32_t version) |
|
812 { |
|
813 // normally 0x00010000, CFF-style OT fonts == 'OTTO' and Apple TT fonts = 'true' |
|
814 // 'typ1' is also possible for old Type 1 fonts in a SFNT container but not supported |
|
815 return version == 0x10000 || |
|
816 version == TRUETYPE_TAG('O','T','T','O') || |
|
817 version == TRUETYPE_TAG('t','r','u','e'); |
|
818 } |
|
819 |
|
820 // copy and swap UTF-16 values, assume no surrogate pairs, can be in place |
|
821 static void |
|
822 CopySwapUTF16(const uint16_t *aInBuf, uint16_t *aOutBuf, uint32_t aLen) |
|
823 { |
|
824 const uint16_t *end = aInBuf + aLen; |
|
825 while (aInBuf < end) { |
|
826 uint16_t value = *aInBuf; |
|
827 *aOutBuf = (value >> 8) | (value & 0xff) << 8; |
|
828 aOutBuf++; |
|
829 aInBuf++; |
|
830 } |
|
831 } |
|
832 |
|
833 gfxUserFontType |
|
834 gfxFontUtils::DetermineFontDataType(const uint8_t *aFontData, uint32_t aFontDataLength) |
|
835 { |
|
836 // test for OpenType font data |
|
837 // problem: EOT-Lite with 0x10000 length will look like TrueType! |
|
838 if (aFontDataLength >= sizeof(SFNTHeader)) { |
|
839 const SFNTHeader *sfntHeader = reinterpret_cast<const SFNTHeader*>(aFontData); |
|
840 uint32_t sfntVersion = sfntHeader->sfntVersion; |
|
841 if (IsValidSFNTVersion(sfntVersion)) { |
|
842 return GFX_USERFONT_OPENTYPE; |
|
843 } |
|
844 } |
|
845 |
|
846 // test for WOFF |
|
847 if (aFontDataLength >= sizeof(AutoSwap_PRUint32)) { |
|
848 const AutoSwap_PRUint32 *version = |
|
849 reinterpret_cast<const AutoSwap_PRUint32*>(aFontData); |
|
850 if (uint32_t(*version) == TRUETYPE_TAG('w','O','F','F')) { |
|
851 return GFX_USERFONT_WOFF; |
|
852 } |
|
853 } |
|
854 |
|
855 // tests for other formats here |
|
856 |
|
857 return GFX_USERFONT_UNKNOWN; |
|
858 } |
|
859 |
|
860 nsresult |
|
861 gfxFontUtils::RenameFont(const nsAString& aName, const uint8_t *aFontData, |
|
862 uint32_t aFontDataLength, FallibleTArray<uint8_t> *aNewFont) |
|
863 { |
|
864 NS_ASSERTION(aNewFont, "null font data array"); |
|
865 |
|
866 uint64_t dataLength(aFontDataLength); |
|
867 |
|
868 // new name table |
|
869 static const uint32_t neededNameIDs[] = {NAME_ID_FAMILY, |
|
870 NAME_ID_STYLE, |
|
871 NAME_ID_UNIQUE, |
|
872 NAME_ID_FULL, |
|
873 NAME_ID_POSTSCRIPT}; |
|
874 |
|
875 // calculate new name table size |
|
876 uint16_t nameCount = ArrayLength(neededNameIDs); |
|
877 |
|
878 // leave room for null-terminator |
|
879 uint16_t nameStrLength = (aName.Length() + 1) * sizeof(char16_t); |
|
880 |
|
881 // round name table size up to 4-byte multiple |
|
882 uint32_t nameTableSize = (sizeof(NameHeader) + |
|
883 sizeof(NameRecord) * nameCount + |
|
884 nameStrLength + |
|
885 3) & ~3; |
|
886 |
|
887 if (dataLength + nameTableSize > UINT32_MAX) |
|
888 return NS_ERROR_FAILURE; |
|
889 |
|
890 // bug 505386 - need to handle unpadded font length |
|
891 uint32_t paddedFontDataSize = (aFontDataLength + 3) & ~3; |
|
892 uint32_t adjFontDataSize = paddedFontDataSize + nameTableSize; |
|
893 |
|
894 // create new buffer: old font data plus new name table |
|
895 if (!aNewFont->AppendElements(adjFontDataSize)) |
|
896 return NS_ERROR_OUT_OF_MEMORY; |
|
897 |
|
898 // copy the old font data |
|
899 uint8_t *newFontData = reinterpret_cast<uint8_t*>(aNewFont->Elements()); |
|
900 |
|
901 // null the last four bytes in case the font length is not a multiple of 4 |
|
902 memset(newFontData + aFontDataLength, 0, paddedFontDataSize - aFontDataLength); |
|
903 |
|
904 // copy font data |
|
905 memcpy(newFontData, aFontData, aFontDataLength); |
|
906 |
|
907 // null out the last 4 bytes for checksum calculations |
|
908 memset(newFontData + adjFontDataSize - 4, 0, 4); |
|
909 |
|
910 NameHeader *nameHeader = reinterpret_cast<NameHeader*>(newFontData + |
|
911 paddedFontDataSize); |
|
912 |
|
913 // -- name header |
|
914 nameHeader->format = 0; |
|
915 nameHeader->count = nameCount; |
|
916 nameHeader->stringOffset = sizeof(NameHeader) + nameCount * sizeof(NameRecord); |
|
917 |
|
918 // -- name records |
|
919 uint32_t i; |
|
920 NameRecord *nameRecord = reinterpret_cast<NameRecord*>(nameHeader + 1); |
|
921 |
|
922 for (i = 0; i < nameCount; i++, nameRecord++) { |
|
923 nameRecord->platformID = PLATFORM_ID_MICROSOFT; |
|
924 nameRecord->encodingID = ENCODING_ID_MICROSOFT_UNICODEBMP; |
|
925 nameRecord->languageID = LANG_ID_MICROSOFT_EN_US; |
|
926 nameRecord->nameID = neededNameIDs[i]; |
|
927 nameRecord->offset = 0; |
|
928 nameRecord->length = nameStrLength; |
|
929 } |
|
930 |
|
931 // -- string data, located after the name records, stored in big-endian form |
|
932 char16_t *strData = reinterpret_cast<char16_t*>(nameRecord); |
|
933 |
|
934 mozilla::NativeEndian::copyAndSwapToBigEndian(strData, |
|
935 aName.BeginReading(), |
|
936 aName.Length()); |
|
937 strData[aName.Length()] = 0; // add null termination |
|
938 |
|
939 // adjust name table header to point to the new name table |
|
940 SFNTHeader *sfntHeader = reinterpret_cast<SFNTHeader*>(newFontData); |
|
941 |
|
942 // table directory entries begin immediately following SFNT header |
|
943 TableDirEntry *dirEntry = |
|
944 reinterpret_cast<TableDirEntry*>(newFontData + sizeof(SFNTHeader)); |
|
945 |
|
946 uint32_t numTables = sfntHeader->numTables; |
|
947 |
|
948 for (i = 0; i < numTables; i++, dirEntry++) { |
|
949 if (dirEntry->tag == TRUETYPE_TAG('n','a','m','e')) { |
|
950 break; |
|
951 } |
|
952 } |
|
953 |
|
954 // function only called if font validates, so this should always be true |
|
955 NS_ASSERTION(i < numTables, "attempt to rename font with no name table"); |
|
956 |
|
957 // note: dirEntry now points to name record |
|
958 |
|
959 // recalculate name table checksum |
|
960 uint32_t checkSum = 0; |
|
961 AutoSwap_PRUint32 *nameData = reinterpret_cast<AutoSwap_PRUint32*> (nameHeader); |
|
962 AutoSwap_PRUint32 *nameDataEnd = nameData + (nameTableSize >> 2); |
|
963 |
|
964 while (nameData < nameDataEnd) |
|
965 checkSum = checkSum + *nameData++; |
|
966 |
|
967 // adjust name table entry to point to new name table |
|
968 dirEntry->offset = paddedFontDataSize; |
|
969 dirEntry->length = nameTableSize; |
|
970 dirEntry->checkSum = checkSum; |
|
971 |
|
972 // fix up checksums |
|
973 uint32_t checksum = 0; |
|
974 |
|
975 // checksum for font = (checksum of header) + (checksum of tables) |
|
976 uint32_t headerLen = sizeof(SFNTHeader) + sizeof(TableDirEntry) * numTables; |
|
977 const AutoSwap_PRUint32 *headerData = |
|
978 reinterpret_cast<const AutoSwap_PRUint32*>(newFontData); |
|
979 |
|
980 // header length is in bytes, checksum calculated in longwords |
|
981 for (i = 0; i < (headerLen >> 2); i++, headerData++) { |
|
982 checksum += *headerData; |
|
983 } |
|
984 |
|
985 uint32_t headOffset = 0; |
|
986 dirEntry = reinterpret_cast<TableDirEntry*>(newFontData + sizeof(SFNTHeader)); |
|
987 |
|
988 for (i = 0; i < numTables; i++, dirEntry++) { |
|
989 if (dirEntry->tag == TRUETYPE_TAG('h','e','a','d')) { |
|
990 headOffset = dirEntry->offset; |
|
991 } |
|
992 checksum += dirEntry->checkSum; |
|
993 } |
|
994 |
|
995 NS_ASSERTION(headOffset != 0, "no head table for font"); |
|
996 |
|
997 HeadTable *headData = reinterpret_cast<HeadTable*>(newFontData + headOffset); |
|
998 |
|
999 headData->checkSumAdjustment = HeadTable::HEAD_CHECKSUM_CALC_CONST - checksum; |
|
1000 |
|
1001 return NS_OK; |
|
1002 } |
|
1003 |
|
1004 // This is only called after the basic validity of the downloaded sfnt |
|
1005 // data has been checked, so it should never fail to find the name table |
|
1006 // (though it might fail to read it, if memory isn't available); |
|
1007 // other checks here are just for extra paranoia. |
|
1008 nsresult |
|
1009 gfxFontUtils::GetFullNameFromSFNT(const uint8_t* aFontData, uint32_t aLength, |
|
1010 nsAString& aFullName) |
|
1011 { |
|
1012 aFullName.AssignLiteral("(MISSING NAME)"); // should always get replaced |
|
1013 |
|
1014 NS_ENSURE_TRUE(aLength >= sizeof(SFNTHeader), NS_ERROR_UNEXPECTED); |
|
1015 const SFNTHeader *sfntHeader = |
|
1016 reinterpret_cast<const SFNTHeader*>(aFontData); |
|
1017 const TableDirEntry *dirEntry = |
|
1018 reinterpret_cast<const TableDirEntry*>(aFontData + sizeof(SFNTHeader)); |
|
1019 uint32_t numTables = sfntHeader->numTables; |
|
1020 NS_ENSURE_TRUE(aLength >= |
|
1021 sizeof(SFNTHeader) + numTables * sizeof(TableDirEntry), |
|
1022 NS_ERROR_UNEXPECTED); |
|
1023 bool foundName = false; |
|
1024 for (uint32_t i = 0; i < numTables; i++, dirEntry++) { |
|
1025 if (dirEntry->tag == TRUETYPE_TAG('n','a','m','e')) { |
|
1026 foundName = true; |
|
1027 break; |
|
1028 } |
|
1029 } |
|
1030 |
|
1031 // should never fail, as we're only called after font validation succeeded |
|
1032 NS_ENSURE_TRUE(foundName, NS_ERROR_NOT_AVAILABLE); |
|
1033 |
|
1034 uint32_t len = dirEntry->length; |
|
1035 NS_ENSURE_TRUE(aLength > len && aLength - len >= dirEntry->offset, |
|
1036 NS_ERROR_UNEXPECTED); |
|
1037 |
|
1038 hb_blob_t *nameBlob = |
|
1039 hb_blob_create((const char*)aFontData + dirEntry->offset, len, |
|
1040 HB_MEMORY_MODE_READONLY, nullptr, nullptr); |
|
1041 nsresult rv = GetFullNameFromTable(nameBlob, aFullName); |
|
1042 hb_blob_destroy(nameBlob); |
|
1043 |
|
1044 return rv; |
|
1045 } |
|
1046 |
|
1047 nsresult |
|
1048 gfxFontUtils::GetFullNameFromTable(hb_blob_t *aNameTable, |
|
1049 nsAString& aFullName) |
|
1050 { |
|
1051 nsAutoString name; |
|
1052 nsresult rv = |
|
1053 gfxFontUtils::ReadCanonicalName(aNameTable, |
|
1054 gfxFontUtils::NAME_ID_FULL, |
|
1055 name); |
|
1056 if (NS_SUCCEEDED(rv) && !name.IsEmpty()) { |
|
1057 aFullName = name; |
|
1058 return NS_OK; |
|
1059 } |
|
1060 rv = gfxFontUtils::ReadCanonicalName(aNameTable, |
|
1061 gfxFontUtils::NAME_ID_FAMILY, |
|
1062 name); |
|
1063 if (NS_SUCCEEDED(rv) && !name.IsEmpty()) { |
|
1064 nsAutoString styleName; |
|
1065 rv = gfxFontUtils::ReadCanonicalName(aNameTable, |
|
1066 gfxFontUtils::NAME_ID_STYLE, |
|
1067 styleName); |
|
1068 if (NS_SUCCEEDED(rv) && !styleName.IsEmpty()) { |
|
1069 name.AppendLiteral(" "); |
|
1070 name.Append(styleName); |
|
1071 aFullName = name; |
|
1072 } |
|
1073 return NS_OK; |
|
1074 } |
|
1075 |
|
1076 return NS_ERROR_NOT_AVAILABLE; |
|
1077 } |
|
1078 |
|
1079 nsresult |
|
1080 gfxFontUtils::GetFamilyNameFromTable(hb_blob_t *aNameTable, |
|
1081 nsAString& aFullName) |
|
1082 { |
|
1083 nsAutoString name; |
|
1084 nsresult rv = |
|
1085 gfxFontUtils::ReadCanonicalName(aNameTable, |
|
1086 gfxFontUtils::NAME_ID_FAMILY, |
|
1087 name); |
|
1088 if (NS_SUCCEEDED(rv) && !name.IsEmpty()) { |
|
1089 aFullName = name; |
|
1090 return NS_OK; |
|
1091 } |
|
1092 return NS_ERROR_NOT_AVAILABLE; |
|
1093 } |
|
1094 |
|
1095 enum { |
|
1096 #if defined(XP_MACOSX) |
|
1097 CANONICAL_LANG_ID = gfxFontUtils::LANG_ID_MAC_ENGLISH, |
|
1098 PLATFORM_ID = gfxFontUtils::PLATFORM_ID_MAC |
|
1099 #else |
|
1100 CANONICAL_LANG_ID = gfxFontUtils::LANG_ID_MICROSOFT_EN_US, |
|
1101 PLATFORM_ID = gfxFontUtils::PLATFORM_ID_MICROSOFT |
|
1102 #endif |
|
1103 }; |
|
1104 |
|
1105 nsresult |
|
1106 gfxFontUtils::ReadNames(const char *aNameData, uint32_t aDataLen, |
|
1107 uint32_t aNameID, int32_t aPlatformID, |
|
1108 nsTArray<nsString>& aNames) |
|
1109 { |
|
1110 return ReadNames(aNameData, aDataLen, aNameID, LANG_ALL, |
|
1111 aPlatformID, aNames); |
|
1112 } |
|
1113 |
|
1114 nsresult |
|
1115 gfxFontUtils::ReadCanonicalName(hb_blob_t *aNameTable, uint32_t aNameID, |
|
1116 nsString& aName) |
|
1117 { |
|
1118 uint32_t nameTableLen; |
|
1119 const char *nameTable = hb_blob_get_data(aNameTable, &nameTableLen); |
|
1120 return ReadCanonicalName(nameTable, nameTableLen, aNameID, aName); |
|
1121 } |
|
1122 |
|
1123 nsresult |
|
1124 gfxFontUtils::ReadCanonicalName(const char *aNameData, uint32_t aDataLen, |
|
1125 uint32_t aNameID, nsString& aName) |
|
1126 { |
|
1127 nsresult rv; |
|
1128 |
|
1129 nsTArray<nsString> names; |
|
1130 |
|
1131 // first, look for the English name (this will succeed 99% of the time) |
|
1132 rv = ReadNames(aNameData, aDataLen, aNameID, CANONICAL_LANG_ID, |
|
1133 PLATFORM_ID, names); |
|
1134 NS_ENSURE_SUCCESS(rv, rv); |
|
1135 |
|
1136 // otherwise, grab names for all languages |
|
1137 if (names.Length() == 0) { |
|
1138 rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ALL, |
|
1139 PLATFORM_ID, names); |
|
1140 NS_ENSURE_SUCCESS(rv, rv); |
|
1141 } |
|
1142 |
|
1143 #if defined(XP_MACOSX) |
|
1144 // may be dealing with font that only has Microsoft name entries |
|
1145 if (names.Length() == 0) { |
|
1146 rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ID_MICROSOFT_EN_US, |
|
1147 PLATFORM_ID_MICROSOFT, names); |
|
1148 NS_ENSURE_SUCCESS(rv, rv); |
|
1149 |
|
1150 // getting really desperate now, take anything! |
|
1151 if (names.Length() == 0) { |
|
1152 rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ALL, |
|
1153 PLATFORM_ID_MICROSOFT, names); |
|
1154 NS_ENSURE_SUCCESS(rv, rv); |
|
1155 } |
|
1156 } |
|
1157 #endif |
|
1158 |
|
1159 // return the first name (99.9% of the time names will |
|
1160 // contain a single English name) |
|
1161 if (names.Length()) { |
|
1162 aName.Assign(names[0]); |
|
1163 return NS_OK; |
|
1164 } |
|
1165 |
|
1166 return NS_ERROR_FAILURE; |
|
1167 } |
|
1168 |
|
1169 // Charsets to use for decoding Mac platform font names. |
|
1170 // This table is sorted by {encoding, language}, with the wildcard "ANY" being |
|
1171 // greater than any defined values for each field; we use a binary search on both |
|
1172 // fields, and fall back to matching only encoding if necessary |
|
1173 |
|
1174 // Some "redundant" entries for specific combinations are included such as |
|
1175 // encoding=roman, lang=english, in order that common entries will be found |
|
1176 // on the first search. |
|
1177 |
|
1178 #define ANY 0xffff |
|
1179 const gfxFontUtils::MacFontNameCharsetMapping gfxFontUtils::gMacFontNameCharsets[] = |
|
1180 { |
|
1181 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ENGLISH, "macintosh" }, |
|
1182 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ICELANDIC, "x-mac-icelandic" }, |
|
1183 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_TURKISH, "x-mac-turkish" }, |
|
1184 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_POLISH, "x-mac-ce" }, |
|
1185 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ROMANIAN, "x-mac-romanian" }, |
|
1186 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_CZECH, "x-mac-ce" }, |
|
1187 { ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_SLOVAK, "x-mac-ce" }, |
|
1188 { ENCODING_ID_MAC_ROMAN, ANY, "macintosh" }, |
|
1189 { ENCODING_ID_MAC_JAPANESE, LANG_ID_MAC_JAPANESE, "Shift_JIS" }, |
|
1190 { ENCODING_ID_MAC_JAPANESE, ANY, "Shift_JIS" }, |
|
1191 { ENCODING_ID_MAC_TRAD_CHINESE, LANG_ID_MAC_TRAD_CHINESE, "Big5" }, |
|
1192 { ENCODING_ID_MAC_TRAD_CHINESE, ANY, "Big5" }, |
|
1193 { ENCODING_ID_MAC_KOREAN, LANG_ID_MAC_KOREAN, "EUC-KR" }, |
|
1194 { ENCODING_ID_MAC_KOREAN, ANY, "EUC-KR" }, |
|
1195 { ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_ARABIC, "x-mac-arabic" }, |
|
1196 { ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_URDU, "x-mac-farsi" }, |
|
1197 { ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_FARSI, "x-mac-farsi" }, |
|
1198 { ENCODING_ID_MAC_ARABIC, ANY, "x-mac-arabic" }, |
|
1199 { ENCODING_ID_MAC_HEBREW, LANG_ID_MAC_HEBREW, "x-mac-hebrew" }, |
|
1200 { ENCODING_ID_MAC_HEBREW, ANY, "x-mac-hebrew" }, |
|
1201 { ENCODING_ID_MAC_GREEK, ANY, "x-mac-greek" }, |
|
1202 { ENCODING_ID_MAC_CYRILLIC, ANY, "x-mac-cyrillic" }, |
|
1203 { ENCODING_ID_MAC_DEVANAGARI, ANY, "x-mac-devanagari"}, |
|
1204 { ENCODING_ID_MAC_GURMUKHI, ANY, "x-mac-gurmukhi" }, |
|
1205 { ENCODING_ID_MAC_GUJARATI, ANY, "x-mac-gujarati" }, |
|
1206 { ENCODING_ID_MAC_SIMP_CHINESE, LANG_ID_MAC_SIMP_CHINESE, "GB2312" }, |
|
1207 { ENCODING_ID_MAC_SIMP_CHINESE, ANY, "GB2312" } |
|
1208 }; |
|
1209 |
|
1210 const char* gfxFontUtils::gISOFontNameCharsets[] = |
|
1211 { |
|
1212 /* 0 */ "us-ascii" , |
|
1213 /* 1 */ nullptr , /* spec says "ISO 10646" but does not specify encoding form! */ |
|
1214 /* 2 */ "ISO-8859-1" |
|
1215 }; |
|
1216 |
|
1217 const char* gfxFontUtils::gMSFontNameCharsets[] = |
|
1218 { |
|
1219 /* [0] ENCODING_ID_MICROSOFT_SYMBOL */ "" , |
|
1220 /* [1] ENCODING_ID_MICROSOFT_UNICODEBMP */ "" , |
|
1221 /* [2] ENCODING_ID_MICROSOFT_SHIFTJIS */ "Shift_JIS" , |
|
1222 /* [3] ENCODING_ID_MICROSOFT_PRC */ nullptr , |
|
1223 /* [4] ENCODING_ID_MICROSOFT_BIG5 */ "Big5" , |
|
1224 /* [5] ENCODING_ID_MICROSOFT_WANSUNG */ nullptr , |
|
1225 /* [6] ENCODING_ID_MICROSOFT_JOHAB */ "x-johab" , |
|
1226 /* [7] reserved */ nullptr , |
|
1227 /* [8] reserved */ nullptr , |
|
1228 /* [9] reserved */ nullptr , |
|
1229 /*[10] ENCODING_ID_MICROSOFT_UNICODEFULL */ "" |
|
1230 }; |
|
1231 |
|
1232 // Return the name of the charset we should use to decode a font name |
|
1233 // given the name table attributes. |
|
1234 // Special return values: |
|
1235 // "" charset is UTF16BE, no need for a converter |
|
1236 // nullptr unknown charset, do not attempt conversion |
|
1237 const char* |
|
1238 gfxFontUtils::GetCharsetForFontName(uint16_t aPlatform, uint16_t aScript, uint16_t aLanguage) |
|
1239 { |
|
1240 switch (aPlatform) |
|
1241 { |
|
1242 case PLATFORM_ID_UNICODE: |
|
1243 return ""; |
|
1244 |
|
1245 case PLATFORM_ID_MAC: |
|
1246 { |
|
1247 uint32_t lo = 0, hi = ArrayLength(gMacFontNameCharsets); |
|
1248 MacFontNameCharsetMapping searchValue = { aScript, aLanguage, nullptr }; |
|
1249 for (uint32_t i = 0; i < 2; ++i) { |
|
1250 // binary search; if not found, set language to ANY and try again |
|
1251 while (lo < hi) { |
|
1252 uint32_t mid = (lo + hi) / 2; |
|
1253 const MacFontNameCharsetMapping& entry = gMacFontNameCharsets[mid]; |
|
1254 if (entry < searchValue) { |
|
1255 lo = mid + 1; |
|
1256 continue; |
|
1257 } |
|
1258 if (searchValue < entry) { |
|
1259 hi = mid; |
|
1260 continue; |
|
1261 } |
|
1262 // found a match |
|
1263 return entry.mCharsetName; |
|
1264 } |
|
1265 |
|
1266 // no match, so reset high bound for search and re-try |
|
1267 hi = ArrayLength(gMacFontNameCharsets); |
|
1268 searchValue.mLanguage = ANY; |
|
1269 } |
|
1270 } |
|
1271 break; |
|
1272 |
|
1273 case PLATFORM_ID_ISO: |
|
1274 if (aScript < ArrayLength(gISOFontNameCharsets)) { |
|
1275 return gISOFontNameCharsets[aScript]; |
|
1276 } |
|
1277 break; |
|
1278 |
|
1279 case PLATFORM_ID_MICROSOFT: |
|
1280 if (aScript < ArrayLength(gMSFontNameCharsets)) { |
|
1281 return gMSFontNameCharsets[aScript]; |
|
1282 } |
|
1283 break; |
|
1284 } |
|
1285 |
|
1286 return nullptr; |
|
1287 } |
|
1288 |
|
1289 // convert a raw name from the name table to an nsString, if possible; |
|
1290 // return value indicates whether conversion succeeded |
|
1291 bool |
|
1292 gfxFontUtils::DecodeFontName(const char *aNameData, int32_t aByteLen, |
|
1293 uint32_t aPlatformCode, uint32_t aScriptCode, |
|
1294 uint32_t aLangCode, nsAString& aName) |
|
1295 { |
|
1296 if (aByteLen <= 0) { |
|
1297 NS_WARNING("empty font name"); |
|
1298 aName.SetLength(0); |
|
1299 return true; |
|
1300 } |
|
1301 |
|
1302 const char *csName = GetCharsetForFontName(aPlatformCode, aScriptCode, aLangCode); |
|
1303 |
|
1304 if (!csName) { |
|
1305 // nullptr -> unknown charset |
|
1306 #ifdef DEBUG |
|
1307 char warnBuf[128]; |
|
1308 if (aByteLen > 64) |
|
1309 aByteLen = 64; |
|
1310 sprintf(warnBuf, "skipping font name, unknown charset %d:%d:%d for <%.*s>", |
|
1311 aPlatformCode, aScriptCode, aLangCode, aByteLen, aNameData); |
|
1312 NS_WARNING(warnBuf); |
|
1313 #endif |
|
1314 return false; |
|
1315 } |
|
1316 |
|
1317 if (csName[0] == 0) { |
|
1318 // empty charset name: data is utf16be, no need to instantiate a converter |
|
1319 uint32_t strLen = aByteLen / 2; |
|
1320 #ifdef IS_LITTLE_ENDIAN |
|
1321 aName.SetLength(strLen); |
|
1322 CopySwapUTF16(reinterpret_cast<const uint16_t*>(aNameData), |
|
1323 reinterpret_cast<uint16_t*>(aName.BeginWriting()), strLen); |
|
1324 #else |
|
1325 aName.Assign(reinterpret_cast<const char16_t*>(aNameData), strLen); |
|
1326 #endif |
|
1327 return true; |
|
1328 } |
|
1329 |
|
1330 nsCOMPtr<nsIUnicodeDecoder> decoder = |
|
1331 mozilla::dom::EncodingUtils::DecoderForEncoding(csName); |
|
1332 if (!decoder) { |
|
1333 NS_WARNING("failed to get the decoder for a font name string"); |
|
1334 return false; |
|
1335 } |
|
1336 |
|
1337 int32_t destLength; |
|
1338 nsresult rv = decoder->GetMaxLength(aNameData, aByteLen, &destLength); |
|
1339 if (NS_FAILED(rv)) { |
|
1340 NS_WARNING("decoder->GetMaxLength failed, invalid font name?"); |
|
1341 return false; |
|
1342 } |
|
1343 |
|
1344 // make space for the converted string |
|
1345 aName.SetLength(destLength); |
|
1346 rv = decoder->Convert(aNameData, &aByteLen, |
|
1347 aName.BeginWriting(), &destLength); |
|
1348 if (NS_FAILED(rv)) { |
|
1349 NS_WARNING("decoder->Convert failed, invalid font name?"); |
|
1350 return false; |
|
1351 } |
|
1352 aName.Truncate(destLength); // set the actual length |
|
1353 |
|
1354 return true; |
|
1355 } |
|
1356 |
|
1357 nsresult |
|
1358 gfxFontUtils::ReadNames(const char *aNameData, uint32_t aDataLen, |
|
1359 uint32_t aNameID, |
|
1360 int32_t aLangID, int32_t aPlatformID, |
|
1361 nsTArray<nsString>& aNames) |
|
1362 { |
|
1363 NS_ASSERTION(aDataLen != 0, "null name table"); |
|
1364 |
|
1365 if (!aDataLen) { |
|
1366 return NS_ERROR_FAILURE; |
|
1367 } |
|
1368 |
|
1369 // -- name table data |
|
1370 const NameHeader *nameHeader = reinterpret_cast<const NameHeader*>(aNameData); |
|
1371 |
|
1372 uint32_t nameCount = nameHeader->count; |
|
1373 |
|
1374 // -- sanity check the number of name records |
|
1375 if (uint64_t(nameCount) * sizeof(NameRecord) > aDataLen) { |
|
1376 NS_WARNING("invalid font (name table data)"); |
|
1377 return NS_ERROR_FAILURE; |
|
1378 } |
|
1379 |
|
1380 // -- iterate through name records |
|
1381 const NameRecord *nameRecord |
|
1382 = reinterpret_cast<const NameRecord*>(aNameData + sizeof(NameHeader)); |
|
1383 uint64_t nameStringsBase = uint64_t(nameHeader->stringOffset); |
|
1384 |
|
1385 uint32_t i; |
|
1386 for (i = 0; i < nameCount; i++, nameRecord++) { |
|
1387 uint32_t platformID; |
|
1388 |
|
1389 // skip over unwanted nameID's |
|
1390 if (uint32_t(nameRecord->nameID) != aNameID) |
|
1391 continue; |
|
1392 |
|
1393 // skip over unwanted platform data |
|
1394 platformID = nameRecord->platformID; |
|
1395 if (aPlatformID != PLATFORM_ALL |
|
1396 && uint32_t(nameRecord->platformID) != PLATFORM_ID) |
|
1397 continue; |
|
1398 |
|
1399 // skip over unwanted languages |
|
1400 if (aLangID != LANG_ALL |
|
1401 && uint32_t(nameRecord->languageID) != uint32_t(aLangID)) |
|
1402 continue; |
|
1403 |
|
1404 // add name to names array |
|
1405 |
|
1406 // -- calculate string location |
|
1407 uint32_t namelen = nameRecord->length; |
|
1408 uint32_t nameoff = nameRecord->offset; // offset from base of string storage |
|
1409 |
|
1410 if (nameStringsBase + uint64_t(nameoff) + uint64_t(namelen) |
|
1411 > aDataLen) { |
|
1412 NS_WARNING("invalid font (name table strings)"); |
|
1413 return NS_ERROR_FAILURE; |
|
1414 } |
|
1415 |
|
1416 // -- decode if necessary and make nsString |
|
1417 nsAutoString name; |
|
1418 |
|
1419 DecodeFontName(aNameData + nameStringsBase + nameoff, namelen, |
|
1420 platformID, uint32_t(nameRecord->encodingID), |
|
1421 uint32_t(nameRecord->languageID), name); |
|
1422 |
|
1423 uint32_t k, numNames; |
|
1424 bool foundName = false; |
|
1425 |
|
1426 numNames = aNames.Length(); |
|
1427 for (k = 0; k < numNames; k++) { |
|
1428 if (name.Equals(aNames[k])) { |
|
1429 foundName = true; |
|
1430 break; |
|
1431 } |
|
1432 } |
|
1433 |
|
1434 if (!foundName) |
|
1435 aNames.AppendElement(name); |
|
1436 |
|
1437 } |
|
1438 |
|
1439 return NS_OK; |
|
1440 } |
|
1441 |
|
1442 #ifdef XP_WIN |
|
1443 |
|
1444 /* static */ |
|
1445 bool |
|
1446 gfxFontUtils::IsCffFont(const uint8_t* aFontData) |
|
1447 { |
|
1448 // this is only called after aFontData has passed basic validation, |
|
1449 // so we know there is enough data present to allow us to read the version! |
|
1450 const SFNTHeader *sfntHeader = reinterpret_cast<const SFNTHeader*>(aFontData); |
|
1451 return (sfntHeader->sfntVersion == TRUETYPE_TAG('O','T','T','O')); |
|
1452 } |
|
1453 |
|
1454 #endif |
|
1455 |