|
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 // This webpage shows layout of YV12 and other YUV formats |
|
6 // http://www.fourcc.org/yuv.php |
|
7 // The actual conversion is best described here |
|
8 // http://en.wikipedia.org/wiki/YUV |
|
9 // An article on optimizing YUV conversion using tables instead of multiplies |
|
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf |
|
11 // |
|
12 // YV12 is a full plane of Y and a half height, half width chroma planes |
|
13 // YV16 is a full plane of Y and a full height, half width chroma planes |
|
14 // YV24 is a full plane of Y and a full height, full width chroma planes |
|
15 // |
|
16 // ARGB pixel format is output, which on little endian is stored as BGRA. |
|
17 // The alpha is set to 255, allowing the application to use RGBA or RGB32. |
|
18 |
|
19 #include "yuv_convert.h" |
|
20 |
|
21 // Header for low level row functions. |
|
22 #include "yuv_row.h" |
|
23 #include "mozilla/SSE.h" |
|
24 |
|
25 namespace mozilla { |
|
26 |
|
27 namespace gfx { |
|
28 |
|
29 // 16.16 fixed point arithmetic |
|
30 const int kFractionBits = 16; |
|
31 const int kFractionMax = 1 << kFractionBits; |
|
32 const int kFractionMask = ((1 << kFractionBits) - 1); |
|
33 |
|
34 NS_GFX_(YUVType) TypeFromSize(int ywidth, |
|
35 int yheight, |
|
36 int cbcrwidth, |
|
37 int cbcrheight) |
|
38 { |
|
39 if (ywidth == cbcrwidth && yheight == cbcrheight) { |
|
40 return YV24; |
|
41 } |
|
42 else if (ywidth / 2 == cbcrwidth && yheight == cbcrheight) { |
|
43 return YV16; |
|
44 } |
|
45 else { |
|
46 return YV12; |
|
47 } |
|
48 } |
|
49 |
|
50 // Convert a frame of YUV to 32 bit ARGB. |
|
51 NS_GFX_(void) ConvertYCbCrToRGB32(const uint8* y_buf, |
|
52 const uint8* u_buf, |
|
53 const uint8* v_buf, |
|
54 uint8* rgb_buf, |
|
55 int pic_x, |
|
56 int pic_y, |
|
57 int pic_width, |
|
58 int pic_height, |
|
59 int y_pitch, |
|
60 int uv_pitch, |
|
61 int rgb_pitch, |
|
62 YUVType yuv_type) { |
|
63 unsigned int y_shift = yuv_type == YV12 ? 1 : 0; |
|
64 unsigned int x_shift = yuv_type == YV24 ? 0 : 1; |
|
65 // Test for SSE because the optimized code uses movntq, which is not part of MMX. |
|
66 bool has_sse = supports_mmx() && supports_sse(); |
|
67 // There is no optimized YV24 SSE routine so we check for this and |
|
68 // fall back to the C code. |
|
69 has_sse &= yuv_type != YV24; |
|
70 bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0; |
|
71 int x_width = odd_pic_x ? pic_width - 1 : pic_width; |
|
72 |
|
73 for (int y = pic_y; y < pic_height + pic_y; ++y) { |
|
74 uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch; |
|
75 const uint8* y_ptr = y_buf + y * y_pitch + pic_x; |
|
76 const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); |
|
77 const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); |
|
78 |
|
79 if (odd_pic_x) { |
|
80 // Handle the single odd pixel manually and use the |
|
81 // fast routines for the remaining. |
|
82 FastConvertYUVToRGB32Row_C(y_ptr++, |
|
83 u_ptr++, |
|
84 v_ptr++, |
|
85 rgb_row, |
|
86 1, |
|
87 x_shift); |
|
88 rgb_row += 4; |
|
89 } |
|
90 |
|
91 if (has_sse) { |
|
92 FastConvertYUVToRGB32Row(y_ptr, |
|
93 u_ptr, |
|
94 v_ptr, |
|
95 rgb_row, |
|
96 x_width); |
|
97 } |
|
98 else { |
|
99 FastConvertYUVToRGB32Row_C(y_ptr, |
|
100 u_ptr, |
|
101 v_ptr, |
|
102 rgb_row, |
|
103 x_width, |
|
104 x_shift); |
|
105 } |
|
106 } |
|
107 |
|
108 // MMX used for FastConvertYUVToRGB32Row requires emms instruction. |
|
109 if (has_sse) |
|
110 EMMS(); |
|
111 } |
|
112 |
|
113 // C version does 8 at a time to mimic MMX code |
|
114 static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, |
|
115 int source_width, int source_y_fraction) { |
|
116 int y1_fraction = source_y_fraction; |
|
117 int y0_fraction = 256 - y1_fraction; |
|
118 uint8* end = ybuf + source_width; |
|
119 do { |
|
120 ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8; |
|
121 ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8; |
|
122 ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8; |
|
123 ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8; |
|
124 ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8; |
|
125 ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8; |
|
126 ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8; |
|
127 ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8; |
|
128 y0_ptr += 8; |
|
129 y1_ptr += 8; |
|
130 ybuf += 8; |
|
131 } while (ybuf < end); |
|
132 } |
|
133 |
|
134 #ifdef MOZILLA_MAY_SUPPORT_MMX |
|
135 void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, |
|
136 int source_width, int source_y_fraction); |
|
137 #endif |
|
138 |
|
139 #ifdef MOZILLA_MAY_SUPPORT_SSE2 |
|
140 void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, |
|
141 int source_width, int source_y_fraction); |
|
142 #endif |
|
143 |
|
144 static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr, |
|
145 const uint8* y1_ptr, int source_width, |
|
146 int source_y_fraction) { |
|
147 #ifdef MOZILLA_MAY_SUPPORT_SSE2 |
|
148 if (mozilla::supports_sse2()) { |
|
149 FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
|
150 return; |
|
151 } |
|
152 #endif |
|
153 |
|
154 #ifdef MOZILLA_MAY_SUPPORT_MMX |
|
155 if (mozilla::supports_mmx()) { |
|
156 FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
|
157 return; |
|
158 } |
|
159 #endif |
|
160 |
|
161 FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
|
162 } |
|
163 |
|
164 |
|
165 // Scale a frame of YUV to 32 bit ARGB. |
|
166 NS_GFX_(void) ScaleYCbCrToRGB32(const uint8* y_buf, |
|
167 const uint8* u_buf, |
|
168 const uint8* v_buf, |
|
169 uint8* rgb_buf, |
|
170 int source_width, |
|
171 int source_height, |
|
172 int width, |
|
173 int height, |
|
174 int y_pitch, |
|
175 int uv_pitch, |
|
176 int rgb_pitch, |
|
177 YUVType yuv_type, |
|
178 Rotate view_rotate, |
|
179 ScaleFilter filter) { |
|
180 bool has_mmx = supports_mmx(); |
|
181 |
|
182 // 4096 allows 3 buffers to fit in 12k. |
|
183 // Helps performance on CPU with 16K L1 cache. |
|
184 // Large enough for 3830x2160 and 30" displays which are 2560x1600. |
|
185 const int kFilterBufferSize = 4096; |
|
186 // Disable filtering if the screen is too big (to avoid buffer overflows). |
|
187 // This should never happen to regular users: they don't have monitors |
|
188 // wider than 4096 pixels. |
|
189 // TODO(fbarchard): Allow rotated videos to filter. |
|
190 if (source_width > kFilterBufferSize || view_rotate) |
|
191 filter = FILTER_NONE; |
|
192 |
|
193 unsigned int y_shift = yuv_type == YV12 ? 1 : 0; |
|
194 // Diagram showing origin and direction of source sampling. |
|
195 // ->0 4<- |
|
196 // 7 3 |
|
197 // |
|
198 // 6 5 |
|
199 // ->1 2<- |
|
200 // Rotations that start at right side of image. |
|
201 if ((view_rotate == ROTATE_180) || |
|
202 (view_rotate == ROTATE_270) || |
|
203 (view_rotate == MIRROR_ROTATE_0) || |
|
204 (view_rotate == MIRROR_ROTATE_90)) { |
|
205 y_buf += source_width - 1; |
|
206 u_buf += source_width / 2 - 1; |
|
207 v_buf += source_width / 2 - 1; |
|
208 source_width = -source_width; |
|
209 } |
|
210 // Rotations that start at bottom of image. |
|
211 if ((view_rotate == ROTATE_90) || |
|
212 (view_rotate == ROTATE_180) || |
|
213 (view_rotate == MIRROR_ROTATE_90) || |
|
214 (view_rotate == MIRROR_ROTATE_180)) { |
|
215 y_buf += (source_height - 1) * y_pitch; |
|
216 u_buf += ((source_height >> y_shift) - 1) * uv_pitch; |
|
217 v_buf += ((source_height >> y_shift) - 1) * uv_pitch; |
|
218 source_height = -source_height; |
|
219 } |
|
220 |
|
221 // Handle zero sized destination. |
|
222 if (width == 0 || height == 0) |
|
223 return; |
|
224 int source_dx = source_width * kFractionMax / width; |
|
225 int source_dy = source_height * kFractionMax / height; |
|
226 int source_dx_uv = source_dx; |
|
227 |
|
228 if ((view_rotate == ROTATE_90) || |
|
229 (view_rotate == ROTATE_270)) { |
|
230 int tmp = height; |
|
231 height = width; |
|
232 width = tmp; |
|
233 tmp = source_height; |
|
234 source_height = source_width; |
|
235 source_width = tmp; |
|
236 int original_dx = source_dx; |
|
237 int original_dy = source_dy; |
|
238 source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits; |
|
239 source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits; |
|
240 source_dy = original_dx; |
|
241 if (view_rotate == ROTATE_90) { |
|
242 y_pitch = -1; |
|
243 uv_pitch = -1; |
|
244 source_height = -source_height; |
|
245 } else { |
|
246 y_pitch = 1; |
|
247 uv_pitch = 1; |
|
248 } |
|
249 } |
|
250 |
|
251 // Need padding because FilterRows() will write 1 to 16 extra pixels |
|
252 // after the end for SSE2 version. |
|
253 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; |
|
254 uint8* ybuf = |
|
255 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); |
|
256 uint8* ubuf = ybuf + kFilterBufferSize; |
|
257 uint8* vbuf = ubuf + kFilterBufferSize; |
|
258 // TODO(fbarchard): Fixed point math is off by 1 on negatives. |
|
259 int yscale_fixed = (source_height << kFractionBits) / height; |
|
260 |
|
261 // TODO(fbarchard): Split this into separate function for better efficiency. |
|
262 for (int y = 0; y < height; ++y) { |
|
263 uint8* dest_pixel = rgb_buf + y * rgb_pitch; |
|
264 int source_y_subpixel = (y * yscale_fixed); |
|
265 if (yscale_fixed >= (kFractionMax * 2)) { |
|
266 source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter. |
|
267 } |
|
268 int source_y = source_y_subpixel >> kFractionBits; |
|
269 |
|
270 const uint8* y0_ptr = y_buf + source_y * y_pitch; |
|
271 const uint8* y1_ptr = y0_ptr + y_pitch; |
|
272 |
|
273 const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch; |
|
274 const uint8* u1_ptr = u0_ptr + uv_pitch; |
|
275 const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch; |
|
276 const uint8* v1_ptr = v0_ptr + uv_pitch; |
|
277 |
|
278 // vertical scaler uses 16.8 fixed point |
|
279 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; |
|
280 int source_uv_fraction = |
|
281 ((source_y_subpixel >> y_shift) & kFractionMask) >> 8; |
|
282 |
|
283 const uint8* y_ptr = y0_ptr; |
|
284 const uint8* u_ptr = u0_ptr; |
|
285 const uint8* v_ptr = v0_ptr; |
|
286 // Apply vertical filtering if necessary. |
|
287 // TODO(fbarchard): Remove memcpy when not necessary. |
|
288 if (filter & mozilla::gfx::FILTER_BILINEAR_V) { |
|
289 if (yscale_fixed != kFractionMax && |
|
290 source_y_fraction && ((source_y + 1) < source_height)) { |
|
291 FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); |
|
292 } else { |
|
293 memcpy(ybuf, y0_ptr, source_width); |
|
294 } |
|
295 y_ptr = ybuf; |
|
296 ybuf[source_width] = ybuf[source_width-1]; |
|
297 int uv_source_width = (source_width + 1) / 2; |
|
298 if (yscale_fixed != kFractionMax && |
|
299 source_uv_fraction && |
|
300 (((source_y >> y_shift) + 1) < (source_height >> y_shift))) { |
|
301 FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction); |
|
302 FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction); |
|
303 } else { |
|
304 memcpy(ubuf, u0_ptr, uv_source_width); |
|
305 memcpy(vbuf, v0_ptr, uv_source_width); |
|
306 } |
|
307 u_ptr = ubuf; |
|
308 v_ptr = vbuf; |
|
309 ubuf[uv_source_width] = ubuf[uv_source_width - 1]; |
|
310 vbuf[uv_source_width] = vbuf[uv_source_width - 1]; |
|
311 } |
|
312 if (source_dx == kFractionMax) { // Not scaled |
|
313 FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
|
314 dest_pixel, width); |
|
315 } else if (filter & FILTER_BILINEAR_H) { |
|
316 LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
|
317 dest_pixel, width, source_dx); |
|
318 } else { |
|
319 // Specialized scalers and rotation. |
|
320 #if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86) |
|
321 if(mozilla::supports_sse()) { |
|
322 if (width == (source_width * 2)) { |
|
323 DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, |
|
324 dest_pixel, width); |
|
325 } else if ((source_dx & kFractionMask) == 0) { |
|
326 // Scaling by integer scale factor. ie half. |
|
327 ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, |
|
328 dest_pixel, width, |
|
329 source_dx >> kFractionBits); |
|
330 } else if (source_dx_uv == source_dx) { // Not rotated. |
|
331 ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
|
332 dest_pixel, width, source_dx); |
|
333 } else { |
|
334 RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, |
|
335 dest_pixel, width, |
|
336 source_dx >> kFractionBits, |
|
337 source_dx_uv >> kFractionBits); |
|
338 } |
|
339 } |
|
340 else { |
|
341 ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr, |
|
342 dest_pixel, width, source_dx); |
|
343 } |
|
344 #else |
|
345 (void)source_dx_uv; |
|
346 ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, |
|
347 dest_pixel, width, source_dx); |
|
348 #endif |
|
349 } |
|
350 } |
|
351 // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms. |
|
352 if (has_mmx) |
|
353 EMMS(); |
|
354 } |
|
355 |
|
356 } // namespace gfx |
|
357 } // namespace mozilla |