|
1 /* |
|
2 ***************************************************************************** |
|
3 * Copyright (C) 1996-2011, International Business Machines Corporation and * |
|
4 * others. All Rights Reserved. * |
|
5 ***************************************************************************** |
|
6 */ |
|
7 |
|
8 #include "unicode/utypes.h" |
|
9 |
|
10 #if !UCONFIG_NO_NORMALIZATION |
|
11 |
|
12 #include "unicode/caniter.h" |
|
13 #include "unicode/normalizer2.h" |
|
14 #include "unicode/uchar.h" |
|
15 #include "unicode/uniset.h" |
|
16 #include "unicode/usetiter.h" |
|
17 #include "unicode/ustring.h" |
|
18 #include "unicode/utf16.h" |
|
19 #include "cmemory.h" |
|
20 #include "hash.h" |
|
21 #include "normalizer2impl.h" |
|
22 |
|
23 /** |
|
24 * This class allows one to iterate through all the strings that are canonically equivalent to a given |
|
25 * string. For example, here are some sample results: |
|
26 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
|
27 1: \u0041\u030A\u0064\u0307\u0327 |
|
28 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
|
29 2: \u0041\u030A\u0064\u0327\u0307 |
|
30 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
|
31 3: \u0041\u030A\u1E0B\u0327 |
|
32 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
|
33 4: \u0041\u030A\u1E11\u0307 |
|
34 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
|
35 5: \u00C5\u0064\u0307\u0327 |
|
36 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
|
37 6: \u00C5\u0064\u0327\u0307 |
|
38 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
|
39 7: \u00C5\u1E0B\u0327 |
|
40 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
|
41 8: \u00C5\u1E11\u0307 |
|
42 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
|
43 9: \u212B\u0064\u0307\u0327 |
|
44 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
|
45 10: \u212B\u0064\u0327\u0307 |
|
46 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
|
47 11: \u212B\u1E0B\u0327 |
|
48 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
|
49 12: \u212B\u1E11\u0307 |
|
50 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
|
51 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, |
|
52 * since it has not been optimized for that situation. |
|
53 *@author M. Davis |
|
54 *@draft |
|
55 */ |
|
56 |
|
57 // public |
|
58 |
|
59 U_NAMESPACE_BEGIN |
|
60 |
|
61 // TODO: add boilerplate methods. |
|
62 |
|
63 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
|
64 |
|
65 /** |
|
66 *@param source string to get results for |
|
67 */ |
|
68 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : |
|
69 pieces(NULL), |
|
70 pieces_length(0), |
|
71 pieces_lengths(NULL), |
|
72 current(NULL), |
|
73 current_length(0), |
|
74 nfd(*Normalizer2Factory::getNFDInstance(status)), |
|
75 nfcImpl(*Normalizer2Factory::getNFCImpl(status)) |
|
76 { |
|
77 if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { |
|
78 setSource(sourceStr, status); |
|
79 } |
|
80 } |
|
81 |
|
82 CanonicalIterator::~CanonicalIterator() { |
|
83 cleanPieces(); |
|
84 } |
|
85 |
|
86 void CanonicalIterator::cleanPieces() { |
|
87 int32_t i = 0; |
|
88 if(pieces != NULL) { |
|
89 for(i = 0; i < pieces_length; i++) { |
|
90 if(pieces[i] != NULL) { |
|
91 delete[] pieces[i]; |
|
92 } |
|
93 } |
|
94 uprv_free(pieces); |
|
95 pieces = NULL; |
|
96 pieces_length = 0; |
|
97 } |
|
98 if(pieces_lengths != NULL) { |
|
99 uprv_free(pieces_lengths); |
|
100 pieces_lengths = NULL; |
|
101 } |
|
102 if(current != NULL) { |
|
103 uprv_free(current); |
|
104 current = NULL; |
|
105 current_length = 0; |
|
106 } |
|
107 } |
|
108 |
|
109 /** |
|
110 *@return gets the source: NOTE: it is the NFD form of source |
|
111 */ |
|
112 UnicodeString CanonicalIterator::getSource() { |
|
113 return source; |
|
114 } |
|
115 |
|
116 /** |
|
117 * Resets the iterator so that one can start again from the beginning. |
|
118 */ |
|
119 void CanonicalIterator::reset() { |
|
120 done = FALSE; |
|
121 for (int i = 0; i < current_length; ++i) { |
|
122 current[i] = 0; |
|
123 } |
|
124 } |
|
125 |
|
126 /** |
|
127 *@return the next string that is canonically equivalent. The value null is returned when |
|
128 * the iteration is done. |
|
129 */ |
|
130 UnicodeString CanonicalIterator::next() { |
|
131 int32_t i = 0; |
|
132 |
|
133 if (done) { |
|
134 buffer.setToBogus(); |
|
135 return buffer; |
|
136 } |
|
137 |
|
138 // delete old contents |
|
139 buffer.remove(); |
|
140 |
|
141 // construct return value |
|
142 |
|
143 for (i = 0; i < pieces_length; ++i) { |
|
144 buffer.append(pieces[i][current[i]]); |
|
145 } |
|
146 //String result = buffer.toString(); // not needed |
|
147 |
|
148 // find next value for next time |
|
149 |
|
150 for (i = current_length - 1; ; --i) { |
|
151 if (i < 0) { |
|
152 done = TRUE; |
|
153 break; |
|
154 } |
|
155 current[i]++; |
|
156 if (current[i] < pieces_lengths[i]) break; // got sequence |
|
157 current[i] = 0; |
|
158 } |
|
159 return buffer; |
|
160 } |
|
161 |
|
162 /** |
|
163 *@param set the source string to iterate against. This allows the same iterator to be used |
|
164 * while changing the source string, saving object creation. |
|
165 */ |
|
166 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { |
|
167 int32_t list_length = 0; |
|
168 UChar32 cp = 0; |
|
169 int32_t start = 0; |
|
170 int32_t i = 0; |
|
171 UnicodeString *list = NULL; |
|
172 |
|
173 nfd.normalize(newSource, source, status); |
|
174 if(U_FAILURE(status)) { |
|
175 return; |
|
176 } |
|
177 done = FALSE; |
|
178 |
|
179 cleanPieces(); |
|
180 |
|
181 // catch degenerate case |
|
182 if (newSource.length() == 0) { |
|
183 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); |
|
184 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
|
185 pieces_length = 1; |
|
186 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
|
187 current_length = 1; |
|
188 if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
|
189 status = U_MEMORY_ALLOCATION_ERROR; |
|
190 goto CleanPartialInitialization; |
|
191 } |
|
192 current[0] = 0; |
|
193 pieces[0] = new UnicodeString[1]; |
|
194 pieces_lengths[0] = 1; |
|
195 if (pieces[0] == 0) { |
|
196 status = U_MEMORY_ALLOCATION_ERROR; |
|
197 goto CleanPartialInitialization; |
|
198 } |
|
199 return; |
|
200 } |
|
201 |
|
202 |
|
203 list = new UnicodeString[source.length()]; |
|
204 if (list == 0) { |
|
205 status = U_MEMORY_ALLOCATION_ERROR; |
|
206 goto CleanPartialInitialization; |
|
207 } |
|
208 |
|
209 // i should initialy be the number of code units at the |
|
210 // start of the string |
|
211 i = U16_LENGTH(source.char32At(0)); |
|
212 //int32_t i = 1; |
|
213 // find the segments |
|
214 // This code iterates through the source string and |
|
215 // extracts segments that end up on a codepoint that |
|
216 // doesn't start any decompositions. (Analysis is done |
|
217 // on the NFD form - see above). |
|
218 for (; i < source.length(); i += U16_LENGTH(cp)) { |
|
219 cp = source.char32At(i); |
|
220 if (nfcImpl.isCanonSegmentStarter(cp)) { |
|
221 source.extract(start, i-start, list[list_length++]); // add up to i |
|
222 start = i; |
|
223 } |
|
224 } |
|
225 source.extract(start, i-start, list[list_length++]); // add last one |
|
226 |
|
227 |
|
228 // allocate the arrays, and find the strings that are CE to each segment |
|
229 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); |
|
230 pieces_length = list_length; |
|
231 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
|
232 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
|
233 current_length = list_length; |
|
234 if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
|
235 status = U_MEMORY_ALLOCATION_ERROR; |
|
236 goto CleanPartialInitialization; |
|
237 } |
|
238 |
|
239 for (i = 0; i < current_length; i++) { |
|
240 current[i] = 0; |
|
241 } |
|
242 // for each segment, get all the combinations that can produce |
|
243 // it after NFD normalization |
|
244 for (i = 0; i < pieces_length; ++i) { |
|
245 //if (PROGRESS) printf("SEGMENT\n"); |
|
246 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); |
|
247 } |
|
248 |
|
249 delete[] list; |
|
250 return; |
|
251 // Common section to cleanup all local variables and reset object variables. |
|
252 CleanPartialInitialization: |
|
253 if (list != NULL) { |
|
254 delete[] list; |
|
255 } |
|
256 cleanPieces(); |
|
257 } |
|
258 |
|
259 /** |
|
260 * Dumb recursive implementation of permutation. |
|
261 * TODO: optimize |
|
262 * @param source the string to find permutations for |
|
263 * @return the results in a set. |
|
264 */ |
|
265 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { |
|
266 if(U_FAILURE(status)) { |
|
267 return; |
|
268 } |
|
269 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); |
|
270 int32_t i = 0; |
|
271 |
|
272 // optimization: |
|
273 // if zero or one character, just return a set with it |
|
274 // we check for length < 2 to keep from counting code points all the time |
|
275 if (source.length() <= 2 && source.countChar32() <= 1) { |
|
276 UnicodeString *toPut = new UnicodeString(source); |
|
277 /* test for NULL */ |
|
278 if (toPut == 0) { |
|
279 status = U_MEMORY_ALLOCATION_ERROR; |
|
280 return; |
|
281 } |
|
282 result->put(source, toPut, status); |
|
283 return; |
|
284 } |
|
285 |
|
286 // otherwise iterate through the string, and recursively permute all the other characters |
|
287 UChar32 cp; |
|
288 Hashtable subpermute(status); |
|
289 if(U_FAILURE(status)) { |
|
290 return; |
|
291 } |
|
292 subpermute.setValueDeleter(uprv_deleteUObject); |
|
293 |
|
294 for (i = 0; i < source.length(); i += U16_LENGTH(cp)) { |
|
295 cp = source.char32At(i); |
|
296 const UHashElement *ne = NULL; |
|
297 int32_t el = -1; |
|
298 UnicodeString subPermuteString = source; |
|
299 |
|
300 // optimization: |
|
301 // if the character is canonical combining class zero, |
|
302 // don't permute it |
|
303 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { |
|
304 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); |
|
305 continue; |
|
306 } |
|
307 |
|
308 subpermute.removeAll(); |
|
309 |
|
310 // see what the permutations of the characters before and after this one are |
|
311 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); |
|
312 permute(subPermuteString.replace(i, U16_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status); |
|
313 /* Test for buffer overflows */ |
|
314 if(U_FAILURE(status)) { |
|
315 return; |
|
316 } |
|
317 // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents |
|
318 // of source at this point. |
|
319 |
|
320 // prefix this character to all of them |
|
321 ne = subpermute.nextElement(el); |
|
322 while (ne != NULL) { |
|
323 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); |
|
324 UnicodeString *chStr = new UnicodeString(cp); |
|
325 //test for NULL |
|
326 if (chStr == NULL) { |
|
327 status = U_MEMORY_ALLOCATION_ERROR; |
|
328 return; |
|
329 } |
|
330 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); |
|
331 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); |
|
332 result->put(*chStr, chStr, status); |
|
333 ne = subpermute.nextElement(el); |
|
334 } |
|
335 } |
|
336 //return result; |
|
337 } |
|
338 |
|
339 // privates |
|
340 |
|
341 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. |
|
342 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { |
|
343 Hashtable result(status); |
|
344 Hashtable permutations(status); |
|
345 Hashtable basic(status); |
|
346 if (U_FAILURE(status)) { |
|
347 return 0; |
|
348 } |
|
349 result.setValueDeleter(uprv_deleteUObject); |
|
350 permutations.setValueDeleter(uprv_deleteUObject); |
|
351 basic.setValueDeleter(uprv_deleteUObject); |
|
352 |
|
353 UChar USeg[256]; |
|
354 int32_t segLen = segment.extract(USeg, 256, status); |
|
355 getEquivalents2(&basic, USeg, segLen, status); |
|
356 |
|
357 // now get all the permutations |
|
358 // add only the ones that are canonically equivalent |
|
359 // TODO: optimize by not permuting any class zero. |
|
360 |
|
361 const UHashElement *ne = NULL; |
|
362 int32_t el = -1; |
|
363 //Iterator it = basic.iterator(); |
|
364 ne = basic.nextElement(el); |
|
365 //while (it.hasNext()) |
|
366 while (ne != NULL) { |
|
367 //String item = (String) it.next(); |
|
368 UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
|
369 |
|
370 permutations.removeAll(); |
|
371 permute(item, CANITER_SKIP_ZEROES, &permutations, status); |
|
372 const UHashElement *ne2 = NULL; |
|
373 int32_t el2 = -1; |
|
374 //Iterator it2 = permutations.iterator(); |
|
375 ne2 = permutations.nextElement(el2); |
|
376 //while (it2.hasNext()) |
|
377 while (ne2 != NULL) { |
|
378 //String possible = (String) it2.next(); |
|
379 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); |
|
380 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); |
|
381 UnicodeString attempt; |
|
382 nfd.normalize(possible, attempt, status); |
|
383 |
|
384 // TODO: check if operator == is semanticaly the same as attempt.equals(segment) |
|
385 if (attempt==segment) { |
|
386 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); |
|
387 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). |
|
388 result.put(possible, new UnicodeString(possible), status); //add(possible); |
|
389 } else { |
|
390 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); |
|
391 } |
|
392 |
|
393 ne2 = permutations.nextElement(el2); |
|
394 } |
|
395 ne = basic.nextElement(el); |
|
396 } |
|
397 |
|
398 /* Test for buffer overflows */ |
|
399 if(U_FAILURE(status)) { |
|
400 return 0; |
|
401 } |
|
402 // convert into a String[] to clean up storage |
|
403 //String[] finalResult = new String[result.size()]; |
|
404 UnicodeString *finalResult = NULL; |
|
405 int32_t resultCount; |
|
406 if((resultCount = result.count())) { |
|
407 finalResult = new UnicodeString[resultCount]; |
|
408 if (finalResult == 0) { |
|
409 status = U_MEMORY_ALLOCATION_ERROR; |
|
410 return NULL; |
|
411 } |
|
412 } |
|
413 else { |
|
414 status = U_ILLEGAL_ARGUMENT_ERROR; |
|
415 return NULL; |
|
416 } |
|
417 //result.toArray(finalResult); |
|
418 result_len = 0; |
|
419 el = -1; |
|
420 ne = result.nextElement(el); |
|
421 while(ne != NULL) { |
|
422 finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); |
|
423 ne = result.nextElement(el); |
|
424 } |
|
425 |
|
426 |
|
427 return finalResult; |
|
428 } |
|
429 |
|
430 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { |
|
431 |
|
432 if (U_FAILURE(status)) { |
|
433 return NULL; |
|
434 } |
|
435 |
|
436 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); |
|
437 |
|
438 UnicodeString toPut(segment, segLen); |
|
439 |
|
440 fillinResult->put(toPut, new UnicodeString(toPut), status); |
|
441 |
|
442 UnicodeSet starts; |
|
443 |
|
444 // cycle through all the characters |
|
445 UChar32 cp; |
|
446 for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) { |
|
447 // see if any character is at the start of some decomposition |
|
448 U16_GET(segment, 0, i, segLen, cp); |
|
449 if (!nfcImpl.getCanonStartSet(cp, starts)) { |
|
450 continue; |
|
451 } |
|
452 // if so, see which decompositions match |
|
453 UnicodeSetIterator iter(starts); |
|
454 while (iter.next()) { |
|
455 UChar32 cp2 = iter.getCodepoint(); |
|
456 Hashtable remainder(status); |
|
457 remainder.setValueDeleter(uprv_deleteUObject); |
|
458 if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { |
|
459 continue; |
|
460 } |
|
461 |
|
462 // there were some matches, so add all the possibilities to the set. |
|
463 UnicodeString prefix(segment, i); |
|
464 prefix += cp2; |
|
465 |
|
466 int32_t el = -1; |
|
467 const UHashElement *ne = remainder.nextElement(el); |
|
468 while (ne != NULL) { |
|
469 UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
|
470 UnicodeString *toAdd = new UnicodeString(prefix); |
|
471 /* test for NULL */ |
|
472 if (toAdd == 0) { |
|
473 status = U_MEMORY_ALLOCATION_ERROR; |
|
474 return NULL; |
|
475 } |
|
476 *toAdd += item; |
|
477 fillinResult->put(*toAdd, toAdd, status); |
|
478 |
|
479 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); |
|
480 |
|
481 ne = remainder.nextElement(el); |
|
482 } |
|
483 } |
|
484 } |
|
485 |
|
486 /* Test for buffer overflows */ |
|
487 if(U_FAILURE(status)) { |
|
488 return NULL; |
|
489 } |
|
490 return fillinResult; |
|
491 } |
|
492 |
|
493 /** |
|
494 * See if the decomposition of cp2 is at segment starting at segmentPos |
|
495 * (with canonical rearrangment!) |
|
496 * If so, take the remainder, and return the equivalents |
|
497 */ |
|
498 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
|
499 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
|
500 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); |
|
501 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); |
|
502 |
|
503 if (U_FAILURE(status)) { |
|
504 return NULL; |
|
505 } |
|
506 |
|
507 UnicodeString temp(comp); |
|
508 int32_t inputLen=temp.length(); |
|
509 UnicodeString decompString; |
|
510 nfd.normalize(temp, decompString, status); |
|
511 const UChar *decomp=decompString.getBuffer(); |
|
512 int32_t decompLen=decompString.length(); |
|
513 |
|
514 // See if it matches the start of segment (at segmentPos) |
|
515 UBool ok = FALSE; |
|
516 UChar32 cp; |
|
517 int32_t decompPos = 0; |
|
518 UChar32 decompCp; |
|
519 U16_NEXT(decomp, decompPos, decompLen, decompCp); |
|
520 |
|
521 int32_t i = segmentPos; |
|
522 while(i < segLen) { |
|
523 U16_NEXT(segment, i, segLen, cp); |
|
524 |
|
525 if (cp == decompCp) { // if equal, eat another cp from decomp |
|
526 |
|
527 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); |
|
528 |
|
529 if (decompPos == decompLen) { // done, have all decomp characters! |
|
530 temp.append(segment+i, segLen-i); |
|
531 ok = TRUE; |
|
532 break; |
|
533 } |
|
534 U16_NEXT(decomp, decompPos, decompLen, decompCp); |
|
535 } else { |
|
536 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); |
|
537 |
|
538 // brute force approach |
|
539 temp.append(cp); |
|
540 |
|
541 /* TODO: optimize |
|
542 // since we know that the classes are monotonically increasing, after zero |
|
543 // e.g. 0 5 7 9 0 3 |
|
544 // we can do an optimization |
|
545 // there are only a few cases that work: zero, less, same, greater |
|
546 // if both classes are the same, we fail |
|
547 // if the decomp class < the segment class, we fail |
|
548 |
|
549 segClass = getClass(cp); |
|
550 if (decompClass <= segClass) return null; |
|
551 */ |
|
552 } |
|
553 } |
|
554 if (!ok) |
|
555 return NULL; // we failed, characters left over |
|
556 |
|
557 //if (PROGRESS) printf("Matches\n"); |
|
558 |
|
559 if (inputLen == temp.length()) { |
|
560 fillinResult->put(UnicodeString(), new UnicodeString(), status); |
|
561 return fillinResult; // succeed, but no remainder |
|
562 } |
|
563 |
|
564 // brute force approach |
|
565 // check to make sure result is canonically equivalent |
|
566 UnicodeString trial; |
|
567 nfd.normalize(temp, trial, status); |
|
568 if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { |
|
569 return NULL; |
|
570 } |
|
571 |
|
572 return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); |
|
573 } |
|
574 |
|
575 U_NAMESPACE_END |
|
576 |
|
577 #endif /* #if !UCONFIG_NO_NORMALIZATION */ |