|
1 |
|
2 // |
|
3 // file: rbbiscan.cpp |
|
4 // |
|
5 // Copyright (C) 2002-2012, International Business Machines Corporation and others. |
|
6 // All Rights Reserved. |
|
7 // |
|
8 // This file contains the Rule Based Break Iterator Rule Builder functions for |
|
9 // scanning the rules and assembling a parse tree. This is the first phase |
|
10 // of compiling the rules. |
|
11 // |
|
12 // The overall of the rules is managed by class RBBIRuleBuilder, which will |
|
13 // create and use an instance of this class as part of the process. |
|
14 // |
|
15 |
|
16 #include "unicode/utypes.h" |
|
17 |
|
18 #if !UCONFIG_NO_BREAK_ITERATION |
|
19 |
|
20 #include "unicode/unistr.h" |
|
21 #include "unicode/uniset.h" |
|
22 #include "unicode/uchar.h" |
|
23 #include "unicode/uchriter.h" |
|
24 #include "unicode/parsepos.h" |
|
25 #include "unicode/parseerr.h" |
|
26 #include "cmemory.h" |
|
27 #include "cstring.h" |
|
28 |
|
29 #include "rbbirpt.h" // Contains state table for the rbbi rules parser. |
|
30 // generated by a Perl script. |
|
31 #include "rbbirb.h" |
|
32 #include "rbbinode.h" |
|
33 #include "rbbiscan.h" |
|
34 #include "rbbitblb.h" |
|
35 |
|
36 #include "uassert.h" |
|
37 |
|
38 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
|
39 |
|
40 //------------------------------------------------------------------------------ |
|
41 // |
|
42 // Unicode Set init strings for each of the character classes needed for parsing a rule file. |
|
43 // (Initialized with hex values for portability to EBCDIC based machines. |
|
44 // Really ugly, but there's no good way to avoid it.) |
|
45 // |
|
46 // The sets are referred to by name in the rbbirpt.txt, which is the |
|
47 // source form of the state transition table for the RBBI rule parser. |
|
48 // |
|
49 //------------------------------------------------------------------------------ |
|
50 static const UChar gRuleSet_rule_char_pattern[] = { |
|
51 // [ ^ [ \ p { Z } \ u 0 0 2 0 |
|
52 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, |
|
53 // - \ u 0 0 7 f ] - [ \ p |
|
54 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, |
|
55 // { L } ] - [ \ p { N } ] ] |
|
56 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; |
|
57 |
|
58 static const UChar gRuleSet_name_char_pattern[] = { |
|
59 // [ _ \ p { L } \ p { N } ] |
|
60 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; |
|
61 |
|
62 static const UChar gRuleSet_digit_char_pattern[] = { |
|
63 // [ 0 - 9 ] |
|
64 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; |
|
65 |
|
66 static const UChar gRuleSet_name_start_char_pattern[] = { |
|
67 // [ _ \ p { L } ] |
|
68 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; |
|
69 |
|
70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" |
|
71 |
|
72 |
|
73 U_CDECL_BEGIN |
|
74 static void U_CALLCONV RBBISetTable_deleter(void *p) { |
|
75 icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p; |
|
76 delete px->key; |
|
77 // Note: px->val is owned by the linked list "fSetsListHead" in scanner. |
|
78 // Don't delete the value nodes here. |
|
79 uprv_free(px); |
|
80 } |
|
81 U_CDECL_END |
|
82 |
|
83 U_NAMESPACE_BEGIN |
|
84 |
|
85 //------------------------------------------------------------------------------ |
|
86 // |
|
87 // Constructor. |
|
88 // |
|
89 //------------------------------------------------------------------------------ |
|
90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) |
|
91 { |
|
92 fRB = rb; |
|
93 fStackPtr = 0; |
|
94 fStack[fStackPtr] = 0; |
|
95 fNodeStackPtr = 0; |
|
96 fRuleNum = 0; |
|
97 fNodeStack[0] = NULL; |
|
98 |
|
99 fSymbolTable = NULL; |
|
100 fSetTable = NULL; |
|
101 |
|
102 fScanIndex = 0; |
|
103 fNextIndex = 0; |
|
104 |
|
105 fReverseRule = FALSE; |
|
106 fLookAheadRule = FALSE; |
|
107 |
|
108 fLineNum = 1; |
|
109 fCharNum = 0; |
|
110 fQuoteMode = FALSE; |
|
111 |
|
112 // Do not check status until after all critical fields are sufficiently initialized |
|
113 // that the destructor can run cleanly. |
|
114 if (U_FAILURE(*rb->fStatus)) { |
|
115 return; |
|
116 } |
|
117 |
|
118 // |
|
119 // Set up the constant Unicode Sets. |
|
120 // Note: These could be made static, lazily initialized, and shared among |
|
121 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, |
|
122 // and the time to build these few sets should be small compared to a |
|
123 // full break iterator build. |
|
124 fRuleSets[kRuleSet_rule_char-128] |
|
125 = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus); |
|
126 // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:] |
|
127 fRuleSets[kRuleSet_white_space-128]. |
|
128 add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029); |
|
129 fRuleSets[kRuleSet_name_char-128] |
|
130 = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus); |
|
131 fRuleSets[kRuleSet_name_start_char-128] |
|
132 = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus); |
|
133 fRuleSets[kRuleSet_digit_char-128] |
|
134 = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus); |
|
135 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { |
|
136 // This case happens if ICU's data is missing. UnicodeSet tries to look up property |
|
137 // names from the init string, can't find them, and claims an illegal argument. |
|
138 // Change the error so that the actual problem will be clearer to users. |
|
139 *rb->fStatus = U_BRK_INIT_ERROR; |
|
140 } |
|
141 if (U_FAILURE(*rb->fStatus)) { |
|
142 return; |
|
143 } |
|
144 |
|
145 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); |
|
146 if (fSymbolTable == NULL) { |
|
147 *rb->fStatus = U_MEMORY_ALLOCATION_ERROR; |
|
148 return; |
|
149 } |
|
150 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus); |
|
151 if (U_FAILURE(*rb->fStatus)) { |
|
152 return; |
|
153 } |
|
154 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); |
|
155 } |
|
156 |
|
157 |
|
158 |
|
159 //------------------------------------------------------------------------------ |
|
160 // |
|
161 // Destructor |
|
162 // |
|
163 //------------------------------------------------------------------------------ |
|
164 RBBIRuleScanner::~RBBIRuleScanner() { |
|
165 delete fSymbolTable; |
|
166 if (fSetTable != NULL) { |
|
167 uhash_close(fSetTable); |
|
168 fSetTable = NULL; |
|
169 |
|
170 } |
|
171 |
|
172 |
|
173 // Node Stack. |
|
174 // Normally has one entry, which is the entire parse tree for the rules. |
|
175 // If errors occured, there may be additional subtrees left on the stack. |
|
176 while (fNodeStackPtr > 0) { |
|
177 delete fNodeStack[fNodeStackPtr]; |
|
178 fNodeStackPtr--; |
|
179 } |
|
180 |
|
181 } |
|
182 |
|
183 //------------------------------------------------------------------------------ |
|
184 // |
|
185 // doParseAction Do some action during rule parsing. |
|
186 // Called by the parse state machine. |
|
187 // Actions build the parse tree and Unicode Sets, |
|
188 // and maintain the parse stack for nested expressions. |
|
189 // |
|
190 // TODO: unify EParseAction and RBBI_RuleParseAction enum types. |
|
191 // They represent exactly the same thing. They're separate |
|
192 // only to work around enum forward declaration restrictions |
|
193 // in some compilers, while at the same time avoiding multiple |
|
194 // definitions problems. I'm sure that there's a better way. |
|
195 // |
|
196 //------------------------------------------------------------------------------ |
|
197 UBool RBBIRuleScanner::doParseActions(int32_t action) |
|
198 { |
|
199 RBBINode *n = NULL; |
|
200 |
|
201 UBool returnVal = TRUE; |
|
202 |
|
203 switch (action) { |
|
204 |
|
205 case doExprStart: |
|
206 pushNewNode(RBBINode::opStart); |
|
207 fRuleNum++; |
|
208 break; |
|
209 |
|
210 |
|
211 case doExprOrOperator: |
|
212 { |
|
213 fixOpStack(RBBINode::precOpCat); |
|
214 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
|
215 RBBINode *orNode = pushNewNode(RBBINode::opOr); |
|
216 orNode->fLeftChild = operandNode; |
|
217 operandNode->fParent = orNode; |
|
218 } |
|
219 break; |
|
220 |
|
221 case doExprCatOperator: |
|
222 // concatenation operator. |
|
223 // For the implicit concatenation of adjacent terms in an expression that are |
|
224 // not separated by any other operator. Action is invoked between the |
|
225 // actions for the two terms. |
|
226 { |
|
227 fixOpStack(RBBINode::precOpCat); |
|
228 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
|
229 RBBINode *catNode = pushNewNode(RBBINode::opCat); |
|
230 catNode->fLeftChild = operandNode; |
|
231 operandNode->fParent = catNode; |
|
232 } |
|
233 break; |
|
234 |
|
235 case doLParen: |
|
236 // Open Paren. |
|
237 // The openParen node is a dummy operation type with a low precedence, |
|
238 // which has the affect of ensuring that any real binary op that |
|
239 // follows within the parens binds more tightly to the operands than |
|
240 // stuff outside of the parens. |
|
241 pushNewNode(RBBINode::opLParen); |
|
242 break; |
|
243 |
|
244 case doExprRParen: |
|
245 fixOpStack(RBBINode::precLParen); |
|
246 break; |
|
247 |
|
248 case doNOP: |
|
249 break; |
|
250 |
|
251 case doStartAssign: |
|
252 // We've just scanned "$variable = " |
|
253 // The top of the node stack has the $variable ref node. |
|
254 |
|
255 // Save the start position of the RHS text in the StartExpression node |
|
256 // that precedes the $variableReference node on the stack. |
|
257 // This will eventually be used when saving the full $variable replacement |
|
258 // text as a string. |
|
259 n = fNodeStack[fNodeStackPtr-1]; |
|
260 n->fFirstPos = fNextIndex; // move past the '=' |
|
261 |
|
262 // Push a new start-of-expression node; needed to keep parse of the |
|
263 // RHS expression happy. |
|
264 pushNewNode(RBBINode::opStart); |
|
265 break; |
|
266 |
|
267 |
|
268 |
|
269 |
|
270 case doEndAssign: |
|
271 { |
|
272 // We have reached the end of an assignement statement. |
|
273 // Current scan char is the ';' that terminates the assignment. |
|
274 |
|
275 // Terminate expression, leaves expression parse tree rooted in TOS node. |
|
276 fixOpStack(RBBINode::precStart); |
|
277 |
|
278 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; |
|
279 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; |
|
280 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; |
|
281 |
|
282 // Save original text of right side of assignment, excluding the terminating ';' |
|
283 // in the root of the node for the right-hand-side expression. |
|
284 RHSExprNode->fFirstPos = startExprNode->fFirstPos; |
|
285 RHSExprNode->fLastPos = fScanIndex; |
|
286 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); |
|
287 |
|
288 // Expression parse tree becomes l. child of the $variable reference node. |
|
289 varRefNode->fLeftChild = RHSExprNode; |
|
290 RHSExprNode->fParent = varRefNode; |
|
291 |
|
292 // Make a symbol table entry for the $variableRef node. |
|
293 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); |
|
294 if (U_FAILURE(*fRB->fStatus)) { |
|
295 // This is a round-about way to get the parse position set |
|
296 // so that duplicate symbols error messages include a line number. |
|
297 UErrorCode t = *fRB->fStatus; |
|
298 *fRB->fStatus = U_ZERO_ERROR; |
|
299 error(t); |
|
300 } |
|
301 |
|
302 // Clean up the stack. |
|
303 delete startExprNode; |
|
304 fNodeStackPtr-=3; |
|
305 break; |
|
306 } |
|
307 |
|
308 case doEndOfRule: |
|
309 { |
|
310 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression |
|
311 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. |
|
312 break; |
|
313 } |
|
314 #ifdef RBBI_DEBUG |
|
315 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} |
|
316 #endif |
|
317 U_ASSERT(fNodeStackPtr == 1); |
|
318 |
|
319 // If this rule includes a look-ahead '/', add a endMark node to the |
|
320 // expression tree. |
|
321 if (fLookAheadRule) { |
|
322 RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
|
323 RBBINode *endNode = pushNewNode(RBBINode::endMark); |
|
324 RBBINode *catNode = pushNewNode(RBBINode::opCat); |
|
325 fNodeStackPtr -= 2; |
|
326 catNode->fLeftChild = thisRule; |
|
327 catNode->fRightChild = endNode; |
|
328 fNodeStack[fNodeStackPtr] = catNode; |
|
329 endNode->fVal = fRuleNum; |
|
330 endNode->fLookAheadEnd = TRUE; |
|
331 } |
|
332 |
|
333 // All rule expressions are ORed together. |
|
334 // The ';' that terminates an expression really just functions as a '|' with |
|
335 // a low operator prededence. |
|
336 // |
|
337 // Each of the four sets of rules are collected separately. |
|
338 // (forward, reverse, safe_forward, safe_reverse) |
|
339 // OR this rule into the appropriate group of them. |
|
340 // |
|
341 RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree); |
|
342 |
|
343 if (*destRules != NULL) { |
|
344 // This is not the first rule encounted. |
|
345 // OR previous stuff (from *destRules) |
|
346 // with the current rule expression (on the Node Stack) |
|
347 // with the resulting OR expression going to *destRules |
|
348 // |
|
349 RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
|
350 RBBINode *prevRules = *destRules; |
|
351 RBBINode *orNode = pushNewNode(RBBINode::opOr); |
|
352 orNode->fLeftChild = prevRules; |
|
353 prevRules->fParent = orNode; |
|
354 orNode->fRightChild = thisRule; |
|
355 thisRule->fParent = orNode; |
|
356 *destRules = orNode; |
|
357 } |
|
358 else |
|
359 { |
|
360 // This is the first rule encountered (for this direction). |
|
361 // Just move its parse tree from the stack to *destRules. |
|
362 *destRules = fNodeStack[fNodeStackPtr]; |
|
363 } |
|
364 fReverseRule = FALSE; // in preparation for the next rule. |
|
365 fLookAheadRule = FALSE; |
|
366 fNodeStackPtr = 0; |
|
367 } |
|
368 break; |
|
369 |
|
370 |
|
371 case doRuleError: |
|
372 error(U_BRK_RULE_SYNTAX); |
|
373 returnVal = FALSE; |
|
374 break; |
|
375 |
|
376 |
|
377 case doVariableNameExpectedErr: |
|
378 error(U_BRK_RULE_SYNTAX); |
|
379 break; |
|
380 |
|
381 |
|
382 // |
|
383 // Unary operands + ? * |
|
384 // These all appear after the operand to which they apply. |
|
385 // When we hit one, the operand (may be a whole sub expression) |
|
386 // will be on the top of the stack. |
|
387 // Unary Operator becomes TOS, with the old TOS as its one child. |
|
388 case doUnaryOpPlus: |
|
389 { |
|
390 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
|
391 RBBINode *plusNode = pushNewNode(RBBINode::opPlus); |
|
392 plusNode->fLeftChild = operandNode; |
|
393 operandNode->fParent = plusNode; |
|
394 } |
|
395 break; |
|
396 |
|
397 case doUnaryOpQuestion: |
|
398 { |
|
399 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
|
400 RBBINode *qNode = pushNewNode(RBBINode::opQuestion); |
|
401 qNode->fLeftChild = operandNode; |
|
402 operandNode->fParent = qNode; |
|
403 } |
|
404 break; |
|
405 |
|
406 case doUnaryOpStar: |
|
407 { |
|
408 RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
|
409 RBBINode *starNode = pushNewNode(RBBINode::opStar); |
|
410 starNode->fLeftChild = operandNode; |
|
411 operandNode->fParent = starNode; |
|
412 } |
|
413 break; |
|
414 |
|
415 case doRuleChar: |
|
416 // A "Rule Character" is any single character that is a literal part |
|
417 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" |
|
418 // These are pretty uncommon in break rules; the terms are more commonly |
|
419 // sets. To keep things uniform, treat these characters like as |
|
420 // sets that just happen to contain only one character. |
|
421 { |
|
422 n = pushNewNode(RBBINode::setRef); |
|
423 findSetFor(UnicodeString(fC.fChar), n); |
|
424 n->fFirstPos = fScanIndex; |
|
425 n->fLastPos = fNextIndex; |
|
426 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
|
427 break; |
|
428 } |
|
429 |
|
430 case doDotAny: |
|
431 // scanned a ".", meaning match any single character. |
|
432 { |
|
433 n = pushNewNode(RBBINode::setRef); |
|
434 findSetFor(UnicodeString(TRUE, kAny, 3), n); |
|
435 n->fFirstPos = fScanIndex; |
|
436 n->fLastPos = fNextIndex; |
|
437 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
|
438 break; |
|
439 } |
|
440 |
|
441 case doSlash: |
|
442 // Scanned a '/', which identifies a look-ahead break position in a rule. |
|
443 n = pushNewNode(RBBINode::lookAhead); |
|
444 n->fVal = fRuleNum; |
|
445 n->fFirstPos = fScanIndex; |
|
446 n->fLastPos = fNextIndex; |
|
447 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
|
448 fLookAheadRule = TRUE; |
|
449 break; |
|
450 |
|
451 |
|
452 case doStartTagValue: |
|
453 // Scanned a '{', the opening delimiter for a tag value within a rule. |
|
454 n = pushNewNode(RBBINode::tag); |
|
455 n->fVal = 0; |
|
456 n->fFirstPos = fScanIndex; |
|
457 n->fLastPos = fNextIndex; |
|
458 break; |
|
459 |
|
460 case doTagDigit: |
|
461 // Just scanned a decimal digit that's part of a tag value |
|
462 { |
|
463 n = fNodeStack[fNodeStackPtr]; |
|
464 uint32_t v = u_charDigitValue(fC.fChar); |
|
465 U_ASSERT(v < 10); |
|
466 n->fVal = n->fVal*10 + v; |
|
467 break; |
|
468 } |
|
469 |
|
470 case doTagValue: |
|
471 n = fNodeStack[fNodeStackPtr]; |
|
472 n->fLastPos = fNextIndex; |
|
473 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
|
474 break; |
|
475 |
|
476 case doTagExpectedError: |
|
477 error(U_BRK_MALFORMED_RULE_TAG); |
|
478 returnVal = FALSE; |
|
479 break; |
|
480 |
|
481 case doOptionStart: |
|
482 // Scanning a !!option. At the start of string. |
|
483 fOptionStart = fScanIndex; |
|
484 break; |
|
485 |
|
486 case doOptionEnd: |
|
487 { |
|
488 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart); |
|
489 if (opt == UNICODE_STRING("chain", 5)) { |
|
490 fRB->fChainRules = TRUE; |
|
491 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) { |
|
492 fRB->fLBCMNoChain = TRUE; |
|
493 } else if (opt == UNICODE_STRING("forward", 7)) { |
|
494 fRB->fDefaultTree = &fRB->fForwardTree; |
|
495 } else if (opt == UNICODE_STRING("reverse", 7)) { |
|
496 fRB->fDefaultTree = &fRB->fReverseTree; |
|
497 } else if (opt == UNICODE_STRING("safe_forward", 12)) { |
|
498 fRB->fDefaultTree = &fRB->fSafeFwdTree; |
|
499 } else if (opt == UNICODE_STRING("safe_reverse", 12)) { |
|
500 fRB->fDefaultTree = &fRB->fSafeRevTree; |
|
501 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) { |
|
502 fRB->fLookAheadHardBreak = TRUE; |
|
503 } else { |
|
504 error(U_BRK_UNRECOGNIZED_OPTION); |
|
505 } |
|
506 } |
|
507 break; |
|
508 |
|
509 case doReverseDir: |
|
510 fReverseRule = TRUE; |
|
511 break; |
|
512 |
|
513 case doStartVariableName: |
|
514 n = pushNewNode(RBBINode::varRef); |
|
515 if (U_FAILURE(*fRB->fStatus)) { |
|
516 break; |
|
517 } |
|
518 n->fFirstPos = fScanIndex; |
|
519 break; |
|
520 |
|
521 case doEndVariableName: |
|
522 n = fNodeStack[fNodeStackPtr]; |
|
523 if (n==NULL || n->fType != RBBINode::varRef) { |
|
524 error(U_BRK_INTERNAL_ERROR); |
|
525 break; |
|
526 } |
|
527 n->fLastPos = fScanIndex; |
|
528 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); |
|
529 // Look the newly scanned name up in the symbol table |
|
530 // If there's an entry, set the l. child of the var ref to the replacement expression. |
|
531 // (We also pass through here when scanning assignments, but no harm is done, other |
|
532 // than a slight wasted effort that seems hard to avoid. Lookup will be null) |
|
533 n->fLeftChild = fSymbolTable->lookupNode(n->fText); |
|
534 break; |
|
535 |
|
536 case doCheckVarDef: |
|
537 n = fNodeStack[fNodeStackPtr]; |
|
538 if (n->fLeftChild == NULL) { |
|
539 error(U_BRK_UNDEFINED_VARIABLE); |
|
540 returnVal = FALSE; |
|
541 } |
|
542 break; |
|
543 |
|
544 case doExprFinished: |
|
545 break; |
|
546 |
|
547 case doRuleErrorAssignExpr: |
|
548 error(U_BRK_ASSIGN_ERROR); |
|
549 returnVal = FALSE; |
|
550 break; |
|
551 |
|
552 case doExit: |
|
553 returnVal = FALSE; |
|
554 break; |
|
555 |
|
556 case doScanUnicodeSet: |
|
557 scanSet(); |
|
558 break; |
|
559 |
|
560 default: |
|
561 error(U_BRK_INTERNAL_ERROR); |
|
562 returnVal = FALSE; |
|
563 break; |
|
564 } |
|
565 return returnVal; |
|
566 } |
|
567 |
|
568 |
|
569 |
|
570 |
|
571 //------------------------------------------------------------------------------ |
|
572 // |
|
573 // Error Report a rule parse error. |
|
574 // Only report it if no previous error has been recorded. |
|
575 // |
|
576 //------------------------------------------------------------------------------ |
|
577 void RBBIRuleScanner::error(UErrorCode e) { |
|
578 if (U_SUCCESS(*fRB->fStatus)) { |
|
579 *fRB->fStatus = e; |
|
580 if (fRB->fParseError) { |
|
581 fRB->fParseError->line = fLineNum; |
|
582 fRB->fParseError->offset = fCharNum; |
|
583 fRB->fParseError->preContext[0] = 0; |
|
584 fRB->fParseError->preContext[0] = 0; |
|
585 } |
|
586 } |
|
587 } |
|
588 |
|
589 |
|
590 |
|
591 |
|
592 //------------------------------------------------------------------------------ |
|
593 // |
|
594 // fixOpStack The parse stack holds partially assembled chunks of the parse tree. |
|
595 // An entry on the stack may be as small as a single setRef node, |
|
596 // or as large as the parse tree |
|
597 // for an entire expression (this will be the one item left on the stack |
|
598 // when the parsing of an RBBI rule completes. |
|
599 // |
|
600 // This function is called when a binary operator is encountered. |
|
601 // It looks back up the stack for operators that are not yet associated |
|
602 // with a right operand, and if the precedence of the stacked operator >= |
|
603 // the precedence of the current operator, binds the operand left, |
|
604 // to the previously encountered operator. |
|
605 // |
|
606 //------------------------------------------------------------------------------ |
|
607 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { |
|
608 RBBINode *n; |
|
609 // printNodeStack("entering fixOpStack()"); |
|
610 for (;;) { |
|
611 n = fNodeStack[fNodeStackPtr-1]; // an operator node |
|
612 if (n->fPrecedence == 0) { |
|
613 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node"); |
|
614 error(U_BRK_INTERNAL_ERROR); |
|
615 return; |
|
616 } |
|
617 |
|
618 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { |
|
619 // The most recent operand goes with the current operator, |
|
620 // not with the previously stacked one. |
|
621 break; |
|
622 } |
|
623 // Stack operator is a binary op ( '|' or concatenation) |
|
624 // TOS operand becomes right child of this operator. |
|
625 // Resulting subexpression becomes the TOS operand. |
|
626 n->fRightChild = fNodeStack[fNodeStackPtr]; |
|
627 fNodeStack[fNodeStackPtr]->fParent = n; |
|
628 fNodeStackPtr--; |
|
629 // printNodeStack("looping in fixOpStack() "); |
|
630 } |
|
631 |
|
632 if (p <= RBBINode::precLParen) { |
|
633 // Scan is at a right paren or end of expression. |
|
634 // The scanned item must match the stack, or else there was an error. |
|
635 // Discard the left paren (or start expr) node from the stack, |
|
636 // leaving the completed (sub)expression as TOS. |
|
637 if (n->fPrecedence != p) { |
|
638 // Right paren encountered matched start of expression node, or |
|
639 // end of expression matched with a left paren node. |
|
640 error(U_BRK_MISMATCHED_PAREN); |
|
641 } |
|
642 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; |
|
643 fNodeStackPtr--; |
|
644 // Delete the now-discarded LParen or Start node. |
|
645 delete n; |
|
646 } |
|
647 // printNodeStack("leaving fixOpStack()"); |
|
648 } |
|
649 |
|
650 |
|
651 |
|
652 |
|
653 //------------------------------------------------------------------------------ |
|
654 // |
|
655 // findSetFor given a UnicodeString, |
|
656 // - find the corresponding Unicode Set (uset node) |
|
657 // (create one if necessary) |
|
658 // - Set fLeftChild of the caller's node (should be a setRef node) |
|
659 // to the uset node |
|
660 // Maintain a hash table of uset nodes, so the same one is always used |
|
661 // for the same string. |
|
662 // If a "to adopt" set is provided and we haven't seen this key before, |
|
663 // add the provided set to the hash table. |
|
664 // If the string is one (32 bit) char in length, the set contains |
|
665 // just one element which is the char in question. |
|
666 // If the string is "any", return a set containing all chars. |
|
667 // |
|
668 //------------------------------------------------------------------------------ |
|
669 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { |
|
670 |
|
671 RBBISetTableEl *el; |
|
672 |
|
673 // First check whether we've already cached a set for this string. |
|
674 // If so, just use the cached set in the new node. |
|
675 // delete any set provided by the caller, since we own it. |
|
676 el = (RBBISetTableEl *)uhash_get(fSetTable, &s); |
|
677 if (el != NULL) { |
|
678 delete setToAdopt; |
|
679 node->fLeftChild = el->val; |
|
680 U_ASSERT(node->fLeftChild->fType == RBBINode::uset); |
|
681 return; |
|
682 } |
|
683 |
|
684 // Haven't seen this set before. |
|
685 // If the caller didn't provide us with a prebuilt set, |
|
686 // create a new UnicodeSet now. |
|
687 if (setToAdopt == NULL) { |
|
688 if (s.compare(kAny, -1) == 0) { |
|
689 setToAdopt = new UnicodeSet(0x000000, 0x10ffff); |
|
690 } else { |
|
691 UChar32 c; |
|
692 c = s.char32At(0); |
|
693 setToAdopt = new UnicodeSet(c, c); |
|
694 } |
|
695 } |
|
696 |
|
697 // |
|
698 // Make a new uset node to refer to this UnicodeSet |
|
699 // This new uset node becomes the child of the caller's setReference node. |
|
700 // |
|
701 RBBINode *usetNode = new RBBINode(RBBINode::uset); |
|
702 if (usetNode == NULL) { |
|
703 error(U_MEMORY_ALLOCATION_ERROR); |
|
704 return; |
|
705 } |
|
706 usetNode->fInputSet = setToAdopt; |
|
707 usetNode->fParent = node; |
|
708 node->fLeftChild = usetNode; |
|
709 usetNode->fText = s; |
|
710 |
|
711 |
|
712 // |
|
713 // Add the new uset node to the list of all uset nodes. |
|
714 // |
|
715 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); |
|
716 |
|
717 |
|
718 // |
|
719 // Add the new set to the set hash table. |
|
720 // |
|
721 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl)); |
|
722 UnicodeString *tkey = new UnicodeString(s); |
|
723 if (tkey == NULL || el == NULL || setToAdopt == NULL) { |
|
724 // Delete to avoid memory leak |
|
725 delete tkey; |
|
726 tkey = NULL; |
|
727 uprv_free(el); |
|
728 el = NULL; |
|
729 delete setToAdopt; |
|
730 setToAdopt = NULL; |
|
731 |
|
732 error(U_MEMORY_ALLOCATION_ERROR); |
|
733 return; |
|
734 } |
|
735 el->key = tkey; |
|
736 el->val = usetNode; |
|
737 uhash_put(fSetTable, el->key, el, fRB->fStatus); |
|
738 |
|
739 return; |
|
740 } |
|
741 |
|
742 |
|
743 |
|
744 // |
|
745 // Assorted Unicode character constants. |
|
746 // Numeric because there is no portable way to enter them as literals. |
|
747 // (Think EBCDIC). |
|
748 // |
|
749 static const UChar chCR = 0x0d; // New lines, for terminating comments. |
|
750 static const UChar chLF = 0x0a; |
|
751 static const UChar chNEL = 0x85; // NEL newline variant |
|
752 static const UChar chLS = 0x2028; // Unicode Line Separator |
|
753 static const UChar chApos = 0x27; // single quote, for quoted chars. |
|
754 static const UChar chPound = 0x23; // '#', introduces a comment. |
|
755 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape |
|
756 static const UChar chLParen = 0x28; |
|
757 static const UChar chRParen = 0x29; |
|
758 |
|
759 |
|
760 //------------------------------------------------------------------------------ |
|
761 // |
|
762 // stripRules Return a rules string without unnecessary |
|
763 // characters. |
|
764 // |
|
765 //------------------------------------------------------------------------------ |
|
766 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { |
|
767 UnicodeString strippedRules; |
|
768 int rulesLength = rules.length(); |
|
769 for (int idx = 0; idx < rulesLength; ) { |
|
770 UChar ch = rules[idx++]; |
|
771 if (ch == chPound) { |
|
772 while (idx < rulesLength |
|
773 && ch != chCR && ch != chLF && ch != chNEL) |
|
774 { |
|
775 ch = rules[idx++]; |
|
776 } |
|
777 } |
|
778 if (!u_isISOControl(ch)) { |
|
779 strippedRules.append(ch); |
|
780 } |
|
781 } |
|
782 // strippedRules = strippedRules.unescape(); |
|
783 return strippedRules; |
|
784 } |
|
785 |
|
786 |
|
787 //------------------------------------------------------------------------------ |
|
788 // |
|
789 // nextCharLL Low Level Next Char from rule input source. |
|
790 // Get a char from the input character iterator, |
|
791 // keep track of input position for error reporting. |
|
792 // |
|
793 //------------------------------------------------------------------------------ |
|
794 UChar32 RBBIRuleScanner::nextCharLL() { |
|
795 UChar32 ch; |
|
796 |
|
797 if (fNextIndex >= fRB->fRules.length()) { |
|
798 return (UChar32)-1; |
|
799 } |
|
800 ch = fRB->fRules.char32At(fNextIndex); |
|
801 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); |
|
802 |
|
803 if (ch == chCR || |
|
804 ch == chNEL || |
|
805 ch == chLS || |
|
806 (ch == chLF && fLastChar != chCR)) { |
|
807 // Character is starting a new line. Bump up the line number, and |
|
808 // reset the column to 0. |
|
809 fLineNum++; |
|
810 fCharNum=0; |
|
811 if (fQuoteMode) { |
|
812 error(U_BRK_NEW_LINE_IN_QUOTED_STRING); |
|
813 fQuoteMode = FALSE; |
|
814 } |
|
815 } |
|
816 else { |
|
817 // Character is not starting a new line. Except in the case of a |
|
818 // LF following a CR, increment the column position. |
|
819 if (ch != chLF) { |
|
820 fCharNum++; |
|
821 } |
|
822 } |
|
823 fLastChar = ch; |
|
824 return ch; |
|
825 } |
|
826 |
|
827 |
|
828 //------------------------------------------------------------------------------ |
|
829 // |
|
830 // nextChar for rules scanning. At this level, we handle stripping |
|
831 // out comments and processing backslash character escapes. |
|
832 // The rest of the rules grammar is handled at the next level up. |
|
833 // |
|
834 //------------------------------------------------------------------------------ |
|
835 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { |
|
836 |
|
837 // Unicode Character constants needed for the processing done by nextChar(), |
|
838 // in hex because literals wont work on EBCDIC machines. |
|
839 |
|
840 fScanIndex = fNextIndex; |
|
841 c.fChar = nextCharLL(); |
|
842 c.fEscaped = FALSE; |
|
843 |
|
844 // |
|
845 // check for '' sequence. |
|
846 // These are recognized in all contexts, whether in quoted text or not. |
|
847 // |
|
848 if (c.fChar == chApos) { |
|
849 if (fRB->fRules.char32At(fNextIndex) == chApos) { |
|
850 c.fChar = nextCharLL(); // get nextChar officially so character counts |
|
851 c.fEscaped = TRUE; // stay correct. |
|
852 } |
|
853 else |
|
854 { |
|
855 // Single quote, by itself. |
|
856 // Toggle quoting mode. |
|
857 // Return either '(' or ')', because quotes cause a grouping of the quoted text. |
|
858 fQuoteMode = !fQuoteMode; |
|
859 if (fQuoteMode == TRUE) { |
|
860 c.fChar = chLParen; |
|
861 } else { |
|
862 c.fChar = chRParen; |
|
863 } |
|
864 c.fEscaped = FALSE; // The paren that we return is not escaped. |
|
865 return; |
|
866 } |
|
867 } |
|
868 |
|
869 if (fQuoteMode) { |
|
870 c.fEscaped = TRUE; |
|
871 } |
|
872 else |
|
873 { |
|
874 // We are not in a 'quoted region' of the source. |
|
875 // |
|
876 if (c.fChar == chPound) { |
|
877 // Start of a comment. Consume the rest of it. |
|
878 // The new-line char that terminates the comment is always returned. |
|
879 // It will be treated as white-space, and serves to break up anything |
|
880 // that might otherwise incorrectly clump together with a comment in |
|
881 // the middle (a variable name, for example.) |
|
882 for (;;) { |
|
883 c.fChar = nextCharLL(); |
|
884 if (c.fChar == (UChar32)-1 || // EOF |
|
885 c.fChar == chCR || |
|
886 c.fChar == chLF || |
|
887 c.fChar == chNEL || |
|
888 c.fChar == chLS) {break;} |
|
889 } |
|
890 } |
|
891 if (c.fChar == (UChar32)-1) { |
|
892 return; |
|
893 } |
|
894 |
|
895 // |
|
896 // check for backslash escaped characters. |
|
897 // Use UnicodeString::unescapeAt() to handle them. |
|
898 // |
|
899 if (c.fChar == chBackSlash) { |
|
900 c.fEscaped = TRUE; |
|
901 int32_t startX = fNextIndex; |
|
902 c.fChar = fRB->fRules.unescapeAt(fNextIndex); |
|
903 if (fNextIndex == startX) { |
|
904 error(U_BRK_HEX_DIGITS_EXPECTED); |
|
905 } |
|
906 fCharNum += fNextIndex-startX; |
|
907 } |
|
908 } |
|
909 // putc(c.fChar, stdout); |
|
910 } |
|
911 |
|
912 //------------------------------------------------------------------------------ |
|
913 // |
|
914 // Parse RBBI rules. The state machine for rules parsing is here. |
|
915 // The state tables are hand-written in the file rbbirpt.txt, |
|
916 // and converted to the form used here by a perl |
|
917 // script rbbicst.pl |
|
918 // |
|
919 //------------------------------------------------------------------------------ |
|
920 void RBBIRuleScanner::parse() { |
|
921 uint16_t state; |
|
922 const RBBIRuleTableEl *tableEl; |
|
923 |
|
924 if (U_FAILURE(*fRB->fStatus)) { |
|
925 return; |
|
926 } |
|
927 |
|
928 state = 1; |
|
929 nextChar(fC); |
|
930 // |
|
931 // Main loop for the rule parsing state machine. |
|
932 // Runs once per state transition. |
|
933 // Each time through optionally performs, depending on the state table, |
|
934 // - an advance to the the next input char |
|
935 // - an action to be performed. |
|
936 // - pushing or popping a state to/from the local state return stack. |
|
937 // |
|
938 for (;;) { |
|
939 // Bail out if anything has gone wrong. |
|
940 // RBBI rule file parsing stops on the first error encountered. |
|
941 if (U_FAILURE(*fRB->fStatus)) { |
|
942 break; |
|
943 } |
|
944 |
|
945 // Quit if state == 0. This is the normal way to exit the state machine. |
|
946 // |
|
947 if (state == 0) { |
|
948 break; |
|
949 } |
|
950 |
|
951 // Find the state table element that matches the input char from the rule, or the |
|
952 // class of the input character. Start with the first table row for this |
|
953 // state, then linearly scan forward until we find a row that matches the |
|
954 // character. The last row for each state always matches all characters, so |
|
955 // the search will stop there, if not before. |
|
956 // |
|
957 tableEl = &gRuleParseStateTable[state]; |
|
958 #ifdef RBBI_DEBUG |
|
959 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { |
|
960 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", |
|
961 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); |
|
962 } |
|
963 #endif |
|
964 |
|
965 for (;;) { |
|
966 #ifdef RBBI_DEBUG |
|
967 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");} |
|
968 #endif |
|
969 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) { |
|
970 // Table row specified an individual character, not a set, and |
|
971 // the input character is not escaped, and |
|
972 // the input character matched it. |
|
973 break; |
|
974 } |
|
975 if (tableEl->fCharClass == 255) { |
|
976 // Table row specified default, match anything character class. |
|
977 break; |
|
978 } |
|
979 if (tableEl->fCharClass == 254 && fC.fEscaped) { |
|
980 // Table row specified "escaped" and the char was escaped. |
|
981 break; |
|
982 } |
|
983 if (tableEl->fCharClass == 253 && fC.fEscaped && |
|
984 (fC.fChar == 0x50 || fC.fChar == 0x70 )) { |
|
985 // Table row specified "escaped P" and the char is either 'p' or 'P'. |
|
986 break; |
|
987 } |
|
988 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) { |
|
989 // Table row specified eof and we hit eof on the input. |
|
990 break; |
|
991 } |
|
992 |
|
993 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && |
|
994 fC.fEscaped == FALSE && // char is not escaped && |
|
995 fC.fChar != (UChar32)-1) { // char is not EOF |
|
996 U_ASSERT((tableEl->fCharClass-128) < LENGTHOF(fRuleSets)); |
|
997 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
|
998 // Table row specified a character class, or set of characters, |
|
999 // and the current char matches it. |
|
1000 break; |
|
1001 } |
|
1002 } |
|
1003 |
|
1004 // No match on this row, advance to the next row for this state, |
|
1005 tableEl++; |
|
1006 } |
|
1007 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");} |
|
1008 |
|
1009 // |
|
1010 // We've found the row of the state table that matches the current input |
|
1011 // character from the rules string. |
|
1012 // Perform any action specified by this row in the state table. |
|
1013 if (doParseActions((int32_t)tableEl->fAction) == FALSE) { |
|
1014 // Break out of the state machine loop if the |
|
1015 // the action signalled some kind of error, or |
|
1016 // the action was to exit, occurs on normal end-of-rules-input. |
|
1017 break; |
|
1018 } |
|
1019 |
|
1020 if (tableEl->fPushState != 0) { |
|
1021 fStackPtr++; |
|
1022 if (fStackPtr >= kStackSize) { |
|
1023 error(U_BRK_INTERNAL_ERROR); |
|
1024 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow."); |
|
1025 fStackPtr--; |
|
1026 } |
|
1027 fStack[fStackPtr] = tableEl->fPushState; |
|
1028 } |
|
1029 |
|
1030 if (tableEl->fNextChar) { |
|
1031 nextChar(fC); |
|
1032 } |
|
1033 |
|
1034 // Get the next state from the table entry, or from the |
|
1035 // state stack if the next state was specified as "pop". |
|
1036 if (tableEl->fNextState != 255) { |
|
1037 state = tableEl->fNextState; |
|
1038 } else { |
|
1039 state = fStack[fStackPtr]; |
|
1040 fStackPtr--; |
|
1041 if (fStackPtr < 0) { |
|
1042 error(U_BRK_INTERNAL_ERROR); |
|
1043 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow."); |
|
1044 fStackPtr++; |
|
1045 } |
|
1046 } |
|
1047 |
|
1048 } |
|
1049 |
|
1050 // |
|
1051 // If there were NO user specified reverse rules, set up the equivalent of ".*;" |
|
1052 // |
|
1053 if (fRB->fReverseTree == NULL) { |
|
1054 fRB->fReverseTree = pushNewNode(RBBINode::opStar); |
|
1055 RBBINode *operand = pushNewNode(RBBINode::setRef); |
|
1056 findSetFor(UnicodeString(TRUE, kAny, 3), operand); |
|
1057 fRB->fReverseTree->fLeftChild = operand; |
|
1058 operand->fParent = fRB->fReverseTree; |
|
1059 fNodeStackPtr -= 2; |
|
1060 } |
|
1061 |
|
1062 |
|
1063 // |
|
1064 // Parsing of the input RBBI rules is complete. |
|
1065 // We now have a parse tree for the rule expressions |
|
1066 // and a list of all UnicodeSets that are referenced. |
|
1067 // |
|
1068 #ifdef RBBI_DEBUG |
|
1069 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();} |
|
1070 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) |
|
1071 { |
|
1072 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); |
|
1073 fRB->fForwardTree->printTree(TRUE); |
|
1074 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); |
|
1075 fRB->fReverseTree->printTree(TRUE); |
|
1076 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n"); |
|
1077 fRB->fSafeFwdTree->printTree(TRUE); |
|
1078 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n"); |
|
1079 fRB->fSafeRevTree->printTree(TRUE); |
|
1080 } |
|
1081 #endif |
|
1082 } |
|
1083 |
|
1084 |
|
1085 //------------------------------------------------------------------------------ |
|
1086 // |
|
1087 // printNodeStack for debugging... |
|
1088 // |
|
1089 //------------------------------------------------------------------------------ |
|
1090 #ifdef RBBI_DEBUG |
|
1091 void RBBIRuleScanner::printNodeStack(const char *title) { |
|
1092 int i; |
|
1093 RBBIDebugPrintf("%s. Dumping node stack...\n", title); |
|
1094 for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);} |
|
1095 } |
|
1096 #endif |
|
1097 |
|
1098 |
|
1099 |
|
1100 |
|
1101 //------------------------------------------------------------------------------ |
|
1102 // |
|
1103 // pushNewNode create a new RBBINode of the specified type and push it |
|
1104 // onto the stack of nodes. |
|
1105 // |
|
1106 //------------------------------------------------------------------------------ |
|
1107 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { |
|
1108 fNodeStackPtr++; |
|
1109 if (fNodeStackPtr >= kStackSize) { |
|
1110 error(U_BRK_INTERNAL_ERROR); |
|
1111 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow."); |
|
1112 *fRB->fStatus = U_BRK_INTERNAL_ERROR; |
|
1113 return NULL; |
|
1114 } |
|
1115 fNodeStack[fNodeStackPtr] = new RBBINode(t); |
|
1116 if (fNodeStack[fNodeStackPtr] == NULL) { |
|
1117 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; |
|
1118 } |
|
1119 return fNodeStack[fNodeStackPtr]; |
|
1120 } |
|
1121 |
|
1122 |
|
1123 |
|
1124 //------------------------------------------------------------------------------ |
|
1125 // |
|
1126 // scanSet Construct a UnicodeSet from the text at the current scan |
|
1127 // position. Advance the scan position to the first character |
|
1128 // after the set. |
|
1129 // |
|
1130 // A new RBBI setref node referring to the set is pushed onto the node |
|
1131 // stack. |
|
1132 // |
|
1133 // The scan position is normally under the control of the state machine |
|
1134 // that controls rule parsing. UnicodeSets, however, are parsed by |
|
1135 // the UnicodeSet constructor, not by the RBBI rule parser. |
|
1136 // |
|
1137 //------------------------------------------------------------------------------ |
|
1138 void RBBIRuleScanner::scanSet() { |
|
1139 UnicodeSet *uset; |
|
1140 ParsePosition pos; |
|
1141 int startPos; |
|
1142 int i; |
|
1143 |
|
1144 if (U_FAILURE(*fRB->fStatus)) { |
|
1145 return; |
|
1146 } |
|
1147 |
|
1148 pos.setIndex(fScanIndex); |
|
1149 startPos = fScanIndex; |
|
1150 UErrorCode localStatus = U_ZERO_ERROR; |
|
1151 uset = new UnicodeSet(); |
|
1152 if (uset == NULL) { |
|
1153 localStatus = U_MEMORY_ALLOCATION_ERROR; |
|
1154 } else { |
|
1155 uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus); |
|
1156 } |
|
1157 if (U_FAILURE(localStatus)) { |
|
1158 // TODO: Get more accurate position of the error from UnicodeSet's return info. |
|
1159 // UnicodeSet appears to not be reporting correctly at this time. |
|
1160 #ifdef RBBI_DEBUG |
|
1161 RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex()); |
|
1162 #endif |
|
1163 error(localStatus); |
|
1164 delete uset; |
|
1165 return; |
|
1166 } |
|
1167 |
|
1168 // Verify that the set contains at least one code point. |
|
1169 // |
|
1170 U_ASSERT(uset!=NULL); |
|
1171 if (uset->isEmpty()) { |
|
1172 // This set is empty. |
|
1173 // Make it an error, because it almost certainly is not what the user wanted. |
|
1174 // Also, avoids having to think about corner cases in the tree manipulation code |
|
1175 // that occurs later on. |
|
1176 error(U_BRK_RULE_EMPTY_SET); |
|
1177 delete uset; |
|
1178 return; |
|
1179 } |
|
1180 |
|
1181 |
|
1182 // Advance the RBBI parse postion over the UnicodeSet pattern. |
|
1183 // Don't just set fScanIndex because the line/char positions maintained |
|
1184 // for error reporting would be thrown off. |
|
1185 i = pos.getIndex(); |
|
1186 for (;;) { |
|
1187 if (fNextIndex >= i) { |
|
1188 break; |
|
1189 } |
|
1190 nextCharLL(); |
|
1191 } |
|
1192 |
|
1193 if (U_SUCCESS(*fRB->fStatus)) { |
|
1194 RBBINode *n; |
|
1195 |
|
1196 n = pushNewNode(RBBINode::setRef); |
|
1197 n->fFirstPos = startPos; |
|
1198 n->fLastPos = fNextIndex; |
|
1199 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
|
1200 // findSetFor() serves several purposes here: |
|
1201 // - Adopts storage for the UnicodeSet, will be responsible for deleting. |
|
1202 // - Mantains collection of all sets in use, needed later for establishing |
|
1203 // character categories for run time engine. |
|
1204 // - Eliminates mulitiple instances of the same set. |
|
1205 // - Creates a new uset node if necessary (if this isn't a duplicate.) |
|
1206 findSetFor(n->fText, n, uset); |
|
1207 } |
|
1208 |
|
1209 } |
|
1210 |
|
1211 U_NAMESPACE_END |
|
1212 |
|
1213 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |