|
1 /* |
|
2 ******************************************************************************* |
|
3 * |
|
4 * Copyright (C) 2005-2012, International Business Machines |
|
5 * Corporation and others. All Rights Reserved. |
|
6 * |
|
7 ******************************************************************************* |
|
8 * file name: utext.cpp |
|
9 * encoding: US-ASCII |
|
10 * tab size: 8 (not used) |
|
11 * indentation:4 |
|
12 * |
|
13 * created on: 2005apr12 |
|
14 * created by: Markus W. Scherer |
|
15 */ |
|
16 |
|
17 #include "unicode/utypes.h" |
|
18 #include "unicode/ustring.h" |
|
19 #include "unicode/unistr.h" |
|
20 #include "unicode/chariter.h" |
|
21 #include "unicode/utext.h" |
|
22 #include "unicode/utf.h" |
|
23 #include "unicode/utf8.h" |
|
24 #include "unicode/utf16.h" |
|
25 #include "ustr_imp.h" |
|
26 #include "cmemory.h" |
|
27 #include "cstring.h" |
|
28 #include "uassert.h" |
|
29 #include "putilimp.h" |
|
30 |
|
31 U_NAMESPACE_USE |
|
32 |
|
33 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) |
|
34 |
|
35 |
|
36 static UBool |
|
37 utext_access(UText *ut, int64_t index, UBool forward) { |
|
38 return ut->pFuncs->access(ut, index, forward); |
|
39 } |
|
40 |
|
41 |
|
42 |
|
43 U_CAPI UBool U_EXPORT2 |
|
44 utext_moveIndex32(UText *ut, int32_t delta) { |
|
45 UChar32 c; |
|
46 if (delta > 0) { |
|
47 do { |
|
48 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) { |
|
49 return FALSE; |
|
50 } |
|
51 c = ut->chunkContents[ut->chunkOffset]; |
|
52 if (U16_IS_SURROGATE(c)) { |
|
53 c = utext_next32(ut); |
|
54 if (c == U_SENTINEL) { |
|
55 return FALSE; |
|
56 } |
|
57 } else { |
|
58 ut->chunkOffset++; |
|
59 } |
|
60 } while(--delta>0); |
|
61 |
|
62 } else if (delta<0) { |
|
63 do { |
|
64 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) { |
|
65 return FALSE; |
|
66 } |
|
67 c = ut->chunkContents[ut->chunkOffset-1]; |
|
68 if (U16_IS_SURROGATE(c)) { |
|
69 c = utext_previous32(ut); |
|
70 if (c == U_SENTINEL) { |
|
71 return FALSE; |
|
72 } |
|
73 } else { |
|
74 ut->chunkOffset--; |
|
75 } |
|
76 } while(++delta<0); |
|
77 } |
|
78 |
|
79 return TRUE; |
|
80 } |
|
81 |
|
82 |
|
83 U_CAPI int64_t U_EXPORT2 |
|
84 utext_nativeLength(UText *ut) { |
|
85 return ut->pFuncs->nativeLength(ut); |
|
86 } |
|
87 |
|
88 |
|
89 U_CAPI UBool U_EXPORT2 |
|
90 utext_isLengthExpensive(const UText *ut) { |
|
91 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; |
|
92 return r; |
|
93 } |
|
94 |
|
95 |
|
96 U_CAPI int64_t U_EXPORT2 |
|
97 utext_getNativeIndex(const UText *ut) { |
|
98 if(ut->chunkOffset <= ut->nativeIndexingLimit) { |
|
99 return ut->chunkNativeStart+ut->chunkOffset; |
|
100 } else { |
|
101 return ut->pFuncs->mapOffsetToNative(ut); |
|
102 } |
|
103 } |
|
104 |
|
105 |
|
106 U_CAPI void U_EXPORT2 |
|
107 utext_setNativeIndex(UText *ut, int64_t index) { |
|
108 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
|
109 // The desired position is outside of the current chunk. |
|
110 // Access the new position. Assume a forward iteration from here, |
|
111 // which will also be optimimum for a single random access. |
|
112 // Reverse iterations may suffer slightly. |
|
113 ut->pFuncs->access(ut, index, TRUE); |
|
114 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { |
|
115 // utf-16 indexing. |
|
116 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); |
|
117 } else { |
|
118 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
|
119 } |
|
120 // The convention is that the index must always be on a code point boundary. |
|
121 // Adjust the index position if it is in the middle of a surrogate pair. |
|
122 if (ut->chunkOffset<ut->chunkLength) { |
|
123 UChar c= ut->chunkContents[ut->chunkOffset]; |
|
124 if (U16_IS_TRAIL(c)) { |
|
125 if (ut->chunkOffset==0) { |
|
126 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); |
|
127 } |
|
128 if (ut->chunkOffset>0) { |
|
129 UChar lead = ut->chunkContents[ut->chunkOffset-1]; |
|
130 if (U16_IS_LEAD(lead)) { |
|
131 ut->chunkOffset--; |
|
132 } |
|
133 } |
|
134 } |
|
135 } |
|
136 } |
|
137 |
|
138 |
|
139 |
|
140 U_CAPI int64_t U_EXPORT2 |
|
141 utext_getPreviousNativeIndex(UText *ut) { |
|
142 // |
|
143 // Fast-path the common case. |
|
144 // Common means current position is not at the beginning of a chunk |
|
145 // and the preceding character is not supplementary. |
|
146 // |
|
147 int32_t i = ut->chunkOffset - 1; |
|
148 int64_t result; |
|
149 if (i >= 0) { |
|
150 UChar c = ut->chunkContents[i]; |
|
151 if (U16_IS_TRAIL(c) == FALSE) { |
|
152 if (i <= ut->nativeIndexingLimit) { |
|
153 result = ut->chunkNativeStart + i; |
|
154 } else { |
|
155 ut->chunkOffset = i; |
|
156 result = ut->pFuncs->mapOffsetToNative(ut); |
|
157 ut->chunkOffset++; |
|
158 } |
|
159 return result; |
|
160 } |
|
161 } |
|
162 |
|
163 // If at the start of text, simply return 0. |
|
164 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { |
|
165 return 0; |
|
166 } |
|
167 |
|
168 // Harder, less common cases. We are at a chunk boundary, or on a surrogate. |
|
169 // Keep it simple, use other functions to handle the edges. |
|
170 // |
|
171 utext_previous32(ut); |
|
172 result = UTEXT_GETNATIVEINDEX(ut); |
|
173 utext_next32(ut); |
|
174 return result; |
|
175 } |
|
176 |
|
177 |
|
178 // |
|
179 // utext_current32. Get the UChar32 at the current position. |
|
180 // UText iteration position is always on a code point boundary, |
|
181 // never on the trail half of a surrogate pair. |
|
182 // |
|
183 U_CAPI UChar32 U_EXPORT2 |
|
184 utext_current32(UText *ut) { |
|
185 UChar32 c; |
|
186 if (ut->chunkOffset==ut->chunkLength) { |
|
187 // Current position is just off the end of the chunk. |
|
188 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
|
189 // Off the end of the text. |
|
190 return U_SENTINEL; |
|
191 } |
|
192 } |
|
193 |
|
194 c = ut->chunkContents[ut->chunkOffset]; |
|
195 if (U16_IS_LEAD(c) == FALSE) { |
|
196 // Normal, non-supplementary case. |
|
197 return c; |
|
198 } |
|
199 |
|
200 // |
|
201 // Possible supplementary char. |
|
202 // |
|
203 UChar32 trail = 0; |
|
204 UChar32 supplementaryC = c; |
|
205 if ((ut->chunkOffset+1) < ut->chunkLength) { |
|
206 // The trail surrogate is in the same chunk. |
|
207 trail = ut->chunkContents[ut->chunkOffset+1]; |
|
208 } else { |
|
209 // The trail surrogate is in a different chunk. |
|
210 // Because we must maintain the iteration position, we need to switch forward |
|
211 // into the new chunk, get the trail surrogate, then revert the chunk back to the |
|
212 // original one. |
|
213 // An edge case to be careful of: the entire text may end with an unpaired |
|
214 // leading surrogate. The attempt to access the trail will fail, but |
|
215 // the original position before the unpaired lead still needs to be restored. |
|
216 int64_t nativePosition = ut->chunkNativeLimit; |
|
217 int32_t originalOffset = ut->chunkOffset; |
|
218 if (ut->pFuncs->access(ut, nativePosition, TRUE)) { |
|
219 trail = ut->chunkContents[ut->chunkOffset]; |
|
220 } |
|
221 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk |
|
222 U_ASSERT(r==TRUE); |
|
223 ut->chunkOffset = originalOffset; |
|
224 if(!r) { |
|
225 return U_SENTINEL; |
|
226 } |
|
227 } |
|
228 |
|
229 if (U16_IS_TRAIL(trail)) { |
|
230 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); |
|
231 } |
|
232 return supplementaryC; |
|
233 |
|
234 } |
|
235 |
|
236 |
|
237 U_CAPI UChar32 U_EXPORT2 |
|
238 utext_char32At(UText *ut, int64_t nativeIndex) { |
|
239 UChar32 c = U_SENTINEL; |
|
240 |
|
241 // Fast path the common case. |
|
242 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { |
|
243 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); |
|
244 c = ut->chunkContents[ut->chunkOffset]; |
|
245 if (U16_IS_SURROGATE(c) == FALSE) { |
|
246 return c; |
|
247 } |
|
248 } |
|
249 |
|
250 |
|
251 utext_setNativeIndex(ut, nativeIndex); |
|
252 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { |
|
253 c = ut->chunkContents[ut->chunkOffset]; |
|
254 if (U16_IS_SURROGATE(c)) { |
|
255 // For surrogates, let current32() deal with the complications |
|
256 // of supplementaries that may span chunk boundaries. |
|
257 c = utext_current32(ut); |
|
258 } |
|
259 } |
|
260 return c; |
|
261 } |
|
262 |
|
263 |
|
264 U_CAPI UChar32 U_EXPORT2 |
|
265 utext_next32(UText *ut) { |
|
266 UChar32 c; |
|
267 |
|
268 if (ut->chunkOffset >= ut->chunkLength) { |
|
269 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
|
270 return U_SENTINEL; |
|
271 } |
|
272 } |
|
273 |
|
274 c = ut->chunkContents[ut->chunkOffset++]; |
|
275 if (U16_IS_LEAD(c) == FALSE) { |
|
276 // Normal case, not supplementary. |
|
277 // (A trail surrogate seen here is just returned as is, as a surrogate value. |
|
278 // It cannot be part of a pair.) |
|
279 return c; |
|
280 } |
|
281 |
|
282 if (ut->chunkOffset >= ut->chunkLength) { |
|
283 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
|
284 // c is an unpaired lead surrogate at the end of the text. |
|
285 // return it as it is. |
|
286 return c; |
|
287 } |
|
288 } |
|
289 UChar32 trail = ut->chunkContents[ut->chunkOffset]; |
|
290 if (U16_IS_TRAIL(trail) == FALSE) { |
|
291 // c was an unpaired lead surrogate, not at the end of the text. |
|
292 // return it as it is (unpaired). Iteration position is on the |
|
293 // following character, possibly in the next chunk, where the |
|
294 // trail surrogate would have been if it had existed. |
|
295 return c; |
|
296 } |
|
297 |
|
298 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); |
|
299 ut->chunkOffset++; // move iteration position over the trail surrogate. |
|
300 return supplementary; |
|
301 } |
|
302 |
|
303 |
|
304 U_CAPI UChar32 U_EXPORT2 |
|
305 utext_previous32(UText *ut) { |
|
306 UChar32 c; |
|
307 |
|
308 if (ut->chunkOffset <= 0) { |
|
309 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
|
310 return U_SENTINEL; |
|
311 } |
|
312 } |
|
313 ut->chunkOffset--; |
|
314 c = ut->chunkContents[ut->chunkOffset]; |
|
315 if (U16_IS_TRAIL(c) == FALSE) { |
|
316 // Normal case, not supplementary. |
|
317 // (A lead surrogate seen here is just returned as is, as a surrogate value. |
|
318 // It cannot be part of a pair.) |
|
319 return c; |
|
320 } |
|
321 |
|
322 if (ut->chunkOffset <= 0) { |
|
323 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
|
324 // c is an unpaired trail surrogate at the start of the text. |
|
325 // return it as it is. |
|
326 return c; |
|
327 } |
|
328 } |
|
329 |
|
330 UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; |
|
331 if (U16_IS_LEAD(lead) == FALSE) { |
|
332 // c was an unpaired trail surrogate, not at the end of the text. |
|
333 // return it as it is (unpaired). Iteration position is at c |
|
334 return c; |
|
335 } |
|
336 |
|
337 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); |
|
338 ut->chunkOffset--; // move iteration position over the lead surrogate. |
|
339 return supplementary; |
|
340 } |
|
341 |
|
342 |
|
343 |
|
344 U_CAPI UChar32 U_EXPORT2 |
|
345 utext_next32From(UText *ut, int64_t index) { |
|
346 UChar32 c = U_SENTINEL; |
|
347 |
|
348 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
|
349 // Desired position is outside of the current chunk. |
|
350 if(!ut->pFuncs->access(ut, index, TRUE)) { |
|
351 // no chunk available here |
|
352 return U_SENTINEL; |
|
353 } |
|
354 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
|
355 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing |
|
356 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
|
357 } else { |
|
358 // Desired position is in chunk, with non-UTF16 indexing. |
|
359 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
|
360 } |
|
361 |
|
362 c = ut->chunkContents[ut->chunkOffset++]; |
|
363 if (U16_IS_SURROGATE(c)) { |
|
364 // Surrogates. Many edge cases. Use other functions that already |
|
365 // deal with the problems. |
|
366 utext_setNativeIndex(ut, index); |
|
367 c = utext_next32(ut); |
|
368 } |
|
369 return c; |
|
370 } |
|
371 |
|
372 |
|
373 U_CAPI UChar32 U_EXPORT2 |
|
374 utext_previous32From(UText *ut, int64_t index) { |
|
375 // |
|
376 // Return the character preceding the specified index. |
|
377 // Leave the iteration position at the start of the character that was returned. |
|
378 // |
|
379 UChar32 cPrev; // The character preceding cCurr, which is what we will return. |
|
380 |
|
381 // Address the chunk containg the position preceding the incoming index |
|
382 // A tricky edge case: |
|
383 // We try to test the requested native index against the chunkNativeStart to determine |
|
384 // whether the character preceding the one at the index is in the current chunk. |
|
385 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the |
|
386 // requested index is on something other than the first position of the first char. |
|
387 // |
|
388 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { |
|
389 // Requested native index is outside of the current chunk. |
|
390 if(!ut->pFuncs->access(ut, index, FALSE)) { |
|
391 // no chunk available here |
|
392 return U_SENTINEL; |
|
393 } |
|
394 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
|
395 // Direct UTF-16 indexing. |
|
396 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
|
397 } else { |
|
398 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
|
399 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { |
|
400 // no chunk available here |
|
401 return U_SENTINEL; |
|
402 } |
|
403 } |
|
404 |
|
405 // |
|
406 // Simple case with no surrogates. |
|
407 // |
|
408 ut->chunkOffset--; |
|
409 cPrev = ut->chunkContents[ut->chunkOffset]; |
|
410 |
|
411 if (U16_IS_SURROGATE(cPrev)) { |
|
412 // Possible supplementary. Many edge cases. |
|
413 // Let other functions do the heavy lifting. |
|
414 utext_setNativeIndex(ut, index); |
|
415 cPrev = utext_previous32(ut); |
|
416 } |
|
417 return cPrev; |
|
418 } |
|
419 |
|
420 |
|
421 U_CAPI int32_t U_EXPORT2 |
|
422 utext_extract(UText *ut, |
|
423 int64_t start, int64_t limit, |
|
424 UChar *dest, int32_t destCapacity, |
|
425 UErrorCode *status) { |
|
426 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); |
|
427 } |
|
428 |
|
429 |
|
430 |
|
431 U_CAPI UBool U_EXPORT2 |
|
432 utext_equals(const UText *a, const UText *b) { |
|
433 if (a==NULL || b==NULL || |
|
434 a->magic != UTEXT_MAGIC || |
|
435 b->magic != UTEXT_MAGIC) { |
|
436 // Null or invalid arguments don't compare equal to anything. |
|
437 return FALSE; |
|
438 } |
|
439 |
|
440 if (a->pFuncs != b->pFuncs) { |
|
441 // Different types of text providers. |
|
442 return FALSE; |
|
443 } |
|
444 |
|
445 if (a->context != b->context) { |
|
446 // Different sources (different strings) |
|
447 return FALSE; |
|
448 } |
|
449 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { |
|
450 // Different current position in the string. |
|
451 return FALSE; |
|
452 } |
|
453 |
|
454 return TRUE; |
|
455 } |
|
456 |
|
457 U_CAPI UBool U_EXPORT2 |
|
458 utext_isWritable(const UText *ut) |
|
459 { |
|
460 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; |
|
461 return b; |
|
462 } |
|
463 |
|
464 |
|
465 U_CAPI void U_EXPORT2 |
|
466 utext_freeze(UText *ut) { |
|
467 // Zero out the WRITABLE flag. |
|
468 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); |
|
469 } |
|
470 |
|
471 |
|
472 U_CAPI UBool U_EXPORT2 |
|
473 utext_hasMetaData(const UText *ut) |
|
474 { |
|
475 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; |
|
476 return b; |
|
477 } |
|
478 |
|
479 |
|
480 |
|
481 U_CAPI int32_t U_EXPORT2 |
|
482 utext_replace(UText *ut, |
|
483 int64_t nativeStart, int64_t nativeLimit, |
|
484 const UChar *replacementText, int32_t replacementLength, |
|
485 UErrorCode *status) |
|
486 { |
|
487 if (U_FAILURE(*status)) { |
|
488 return 0; |
|
489 } |
|
490 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
|
491 *status = U_NO_WRITE_PERMISSION; |
|
492 return 0; |
|
493 } |
|
494 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); |
|
495 return i; |
|
496 } |
|
497 |
|
498 U_CAPI void U_EXPORT2 |
|
499 utext_copy(UText *ut, |
|
500 int64_t nativeStart, int64_t nativeLimit, |
|
501 int64_t destIndex, |
|
502 UBool move, |
|
503 UErrorCode *status) |
|
504 { |
|
505 if (U_FAILURE(*status)) { |
|
506 return; |
|
507 } |
|
508 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
|
509 *status = U_NO_WRITE_PERMISSION; |
|
510 return; |
|
511 } |
|
512 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); |
|
513 } |
|
514 |
|
515 |
|
516 |
|
517 U_CAPI UText * U_EXPORT2 |
|
518 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { |
|
519 UText *result; |
|
520 result = src->pFuncs->clone(dest, src, deep, status); |
|
521 if (readOnly) { |
|
522 utext_freeze(result); |
|
523 } |
|
524 return result; |
|
525 } |
|
526 |
|
527 |
|
528 |
|
529 //------------------------------------------------------------------------------ |
|
530 // |
|
531 // UText common functions implementation |
|
532 // |
|
533 //------------------------------------------------------------------------------ |
|
534 |
|
535 // |
|
536 // UText.flags bit definitions |
|
537 // |
|
538 enum { |
|
539 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. |
|
540 // 0 if caller provided storage for the UText. |
|
541 |
|
542 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate |
|
543 // heap block. |
|
544 // 0 if there is no separate allocation. Either no extra |
|
545 // storage was requested, or it is appended to the end |
|
546 // of the main UText storage. |
|
547 |
|
548 UTEXT_OPEN = 4 // 1 if this UText is currently open |
|
549 // 0 if this UText is not open. |
|
550 }; |
|
551 |
|
552 |
|
553 // |
|
554 // Extended form of a UText. The purpose is to aid in computing the total size required |
|
555 // when a provider asks for a UText to be allocated with extra storage. |
|
556 |
|
557 struct ExtendedUText { |
|
558 UText ut; |
|
559 UAlignedMemory extension; |
|
560 }; |
|
561 |
|
562 static const UText emptyText = UTEXT_INITIALIZER; |
|
563 |
|
564 U_CAPI UText * U_EXPORT2 |
|
565 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { |
|
566 if (U_FAILURE(*status)) { |
|
567 return ut; |
|
568 } |
|
569 |
|
570 if (ut == NULL) { |
|
571 // We need to heap-allocate storage for the new UText |
|
572 int32_t spaceRequired = sizeof(UText); |
|
573 if (extraSpace > 0) { |
|
574 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory); |
|
575 } |
|
576 ut = (UText *)uprv_malloc(spaceRequired); |
|
577 if (ut == NULL) { |
|
578 *status = U_MEMORY_ALLOCATION_ERROR; |
|
579 return NULL; |
|
580 } else { |
|
581 *ut = emptyText; |
|
582 ut->flags |= UTEXT_HEAP_ALLOCATED; |
|
583 if (spaceRequired>0) { |
|
584 ut->extraSize = extraSpace; |
|
585 ut->pExtra = &((ExtendedUText *)ut)->extension; |
|
586 } |
|
587 } |
|
588 } else { |
|
589 // We have been supplied with an already existing UText. |
|
590 // Verify that it really appears to be a UText. |
|
591 if (ut->magic != UTEXT_MAGIC) { |
|
592 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
593 return ut; |
|
594 } |
|
595 // If the ut is already open and there's a provider supplied close |
|
596 // function, call it. |
|
597 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { |
|
598 ut->pFuncs->close(ut); |
|
599 } |
|
600 ut->flags &= ~UTEXT_OPEN; |
|
601 |
|
602 // If extra space was requested by our caller, check whether |
|
603 // sufficient already exists, and allocate new if needed. |
|
604 if (extraSpace > ut->extraSize) { |
|
605 // Need more space. If there is existing separately allocated space, |
|
606 // delete it first, then allocate new space. |
|
607 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
|
608 uprv_free(ut->pExtra); |
|
609 ut->extraSize = 0; |
|
610 } |
|
611 ut->pExtra = uprv_malloc(extraSpace); |
|
612 if (ut->pExtra == NULL) { |
|
613 *status = U_MEMORY_ALLOCATION_ERROR; |
|
614 } else { |
|
615 ut->extraSize = extraSpace; |
|
616 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; |
|
617 } |
|
618 } |
|
619 } |
|
620 if (U_SUCCESS(*status)) { |
|
621 ut->flags |= UTEXT_OPEN; |
|
622 |
|
623 // Initialize all remaining fields of the UText. |
|
624 // |
|
625 ut->context = NULL; |
|
626 ut->chunkContents = NULL; |
|
627 ut->p = NULL; |
|
628 ut->q = NULL; |
|
629 ut->r = NULL; |
|
630 ut->a = 0; |
|
631 ut->b = 0; |
|
632 ut->c = 0; |
|
633 ut->chunkOffset = 0; |
|
634 ut->chunkLength = 0; |
|
635 ut->chunkNativeStart = 0; |
|
636 ut->chunkNativeLimit = 0; |
|
637 ut->nativeIndexingLimit = 0; |
|
638 ut->providerProperties = 0; |
|
639 ut->privA = 0; |
|
640 ut->privB = 0; |
|
641 ut->privC = 0; |
|
642 ut->privP = NULL; |
|
643 if (ut->pExtra!=NULL && ut->extraSize>0) |
|
644 uprv_memset(ut->pExtra, 0, ut->extraSize); |
|
645 |
|
646 } |
|
647 return ut; |
|
648 } |
|
649 |
|
650 |
|
651 U_CAPI UText * U_EXPORT2 |
|
652 utext_close(UText *ut) { |
|
653 if (ut==NULL || |
|
654 ut->magic != UTEXT_MAGIC || |
|
655 (ut->flags & UTEXT_OPEN) == 0) |
|
656 { |
|
657 // The supplied ut is not an open UText. |
|
658 // Do nothing. |
|
659 return ut; |
|
660 } |
|
661 |
|
662 // If the provider gave us a close function, call it now. |
|
663 // This will clean up anything allocated specifically by the provider. |
|
664 if (ut->pFuncs->close != NULL) { |
|
665 ut->pFuncs->close(ut); |
|
666 } |
|
667 ut->flags &= ~UTEXT_OPEN; |
|
668 |
|
669 // If we (the framework) allocated the UText or subsidiary storage, |
|
670 // delete it. |
|
671 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
|
672 uprv_free(ut->pExtra); |
|
673 ut->pExtra = NULL; |
|
674 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; |
|
675 ut->extraSize = 0; |
|
676 } |
|
677 |
|
678 // Zero out function table of the closed UText. This is a defensive move, |
|
679 // inteded to cause applications that inadvertantly use a closed |
|
680 // utext to crash with null pointer errors. |
|
681 ut->pFuncs = NULL; |
|
682 |
|
683 if (ut->flags & UTEXT_HEAP_ALLOCATED) { |
|
684 // This UText was allocated by UText setup. We need to free it. |
|
685 // Clear magic, so we can detect if the user messes up and immediately |
|
686 // tries to reopen another UText using the deleted storage. |
|
687 ut->magic = 0; |
|
688 uprv_free(ut); |
|
689 ut = NULL; |
|
690 } |
|
691 return ut; |
|
692 } |
|
693 |
|
694 |
|
695 |
|
696 |
|
697 // |
|
698 // invalidateChunk Reset a chunk to have no contents, so that the next call |
|
699 // to access will cause new data to load. |
|
700 // This is needed when copy/move/replace operate directly on the |
|
701 // backing text, potentially putting it out of sync with the |
|
702 // contents in the chunk. |
|
703 // |
|
704 static void |
|
705 invalidateChunk(UText *ut) { |
|
706 ut->chunkLength = 0; |
|
707 ut->chunkNativeLimit = 0; |
|
708 ut->chunkNativeStart = 0; |
|
709 ut->chunkOffset = 0; |
|
710 ut->nativeIndexingLimit = 0; |
|
711 } |
|
712 |
|
713 // |
|
714 // pinIndex Do range pinning on a native index parameter. |
|
715 // 64 bit pinning is done in place. |
|
716 // 32 bit truncated result is returned as a convenience for |
|
717 // use in providers that don't need 64 bits. |
|
718 static int32_t |
|
719 pinIndex(int64_t &index, int64_t limit) { |
|
720 if (index<0) { |
|
721 index = 0; |
|
722 } else if (index > limit) { |
|
723 index = limit; |
|
724 } |
|
725 return (int32_t)index; |
|
726 } |
|
727 |
|
728 |
|
729 U_CDECL_BEGIN |
|
730 |
|
731 // |
|
732 // Pointer relocation function, |
|
733 // a utility used by shallow clone. |
|
734 // Adjust a pointer that refers to something within one UText (the source) |
|
735 // to refer to the same relative offset within a another UText (the target) |
|
736 // |
|
737 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { |
|
738 // convert all pointers to (char *) so that byte address arithmetic will work. |
|
739 char *dptr = (char *)*destPtr; |
|
740 char *dUText = (char *)dest; |
|
741 char *sUText = (char *)src; |
|
742 |
|
743 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { |
|
744 // target ptr was to something within the src UText's pExtra storage. |
|
745 // relocate it into the target UText's pExtra region. |
|
746 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); |
|
747 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { |
|
748 // target ptr was pointing to somewhere within the source UText itself. |
|
749 // Move it to the same offset within the target UText. |
|
750 *destPtr = dUText + (dptr-sUText); |
|
751 } |
|
752 } |
|
753 |
|
754 |
|
755 // |
|
756 // Clone. This is a generic copy-the-utext-by-value clone function that can be |
|
757 // used as-is with some utext types, and as a helper by other clones. |
|
758 // |
|
759 static UText * U_CALLCONV |
|
760 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { |
|
761 if (U_FAILURE(*status)) { |
|
762 return NULL; |
|
763 } |
|
764 int32_t srcExtraSize = src->extraSize; |
|
765 |
|
766 // |
|
767 // Use the generic text_setup to allocate storage if required. |
|
768 // |
|
769 dest = utext_setup(dest, srcExtraSize, status); |
|
770 if (U_FAILURE(*status)) { |
|
771 return dest; |
|
772 } |
|
773 |
|
774 // |
|
775 // flags (how the UText was allocated) and the pointer to the |
|
776 // extra storage must retain the values in the cloned utext that |
|
777 // were set up by utext_setup. Save them separately before |
|
778 // copying the whole struct. |
|
779 // |
|
780 void *destExtra = dest->pExtra; |
|
781 int32_t flags = dest->flags; |
|
782 |
|
783 |
|
784 // |
|
785 // Copy the whole UText struct by value. |
|
786 // Any "Extra" storage is copied also. |
|
787 // |
|
788 int sizeToCopy = src->sizeOfStruct; |
|
789 if (sizeToCopy > dest->sizeOfStruct) { |
|
790 sizeToCopy = dest->sizeOfStruct; |
|
791 } |
|
792 uprv_memcpy(dest, src, sizeToCopy); |
|
793 dest->pExtra = destExtra; |
|
794 dest->flags = flags; |
|
795 if (srcExtraSize > 0) { |
|
796 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); |
|
797 } |
|
798 |
|
799 // |
|
800 // Relocate any pointers in the target that refer to the UText itself |
|
801 // to point to the cloned copy rather than the original source. |
|
802 // |
|
803 adjustPointer(dest, &dest->context, src); |
|
804 adjustPointer(dest, &dest->p, src); |
|
805 adjustPointer(dest, &dest->q, src); |
|
806 adjustPointer(dest, &dest->r, src); |
|
807 adjustPointer(dest, (const void **)&dest->chunkContents, src); |
|
808 |
|
809 return dest; |
|
810 } |
|
811 |
|
812 |
|
813 U_CDECL_END |
|
814 |
|
815 |
|
816 |
|
817 //------------------------------------------------------------------------------ |
|
818 // |
|
819 // UText implementation for UTF-8 char * strings (read-only) |
|
820 // Limitation: string length must be <= 0x7fffffff in length. |
|
821 // (length must for in an int32_t variable) |
|
822 // |
|
823 // Use of UText data members: |
|
824 // context pointer to UTF-8 string |
|
825 // utext.b is the input string length (bytes). |
|
826 // utext.c Length scanned so far in string |
|
827 // (for optimizing finding length of zero terminated strings.) |
|
828 // utext.p pointer to the current buffer |
|
829 // utext.q pointer to the other buffer. |
|
830 // |
|
831 //------------------------------------------------------------------------------ |
|
832 |
|
833 // Chunk size. |
|
834 // Must be less than 85, because of byte mapping from UChar indexes to native indexes. |
|
835 // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes |
|
836 // to two UChars.) |
|
837 // |
|
838 enum { UTF8_TEXT_CHUNK_SIZE=32 }; |
|
839 |
|
840 // |
|
841 // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. |
|
842 // Each contains the UChar chunk buffer, the to and from native maps, and |
|
843 // header info. |
|
844 // |
|
845 // because backwards iteration fills the buffers starting at the end and |
|
846 // working towards the front, the filled part of the buffers may not begin |
|
847 // at the start of the available storage for the buffers. |
|
848 // |
|
849 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for |
|
850 // the last character added being a supplementary, and thus requiring a surrogate |
|
851 // pair. Doing this is simpler than checking for the edge case. |
|
852 // |
|
853 |
|
854 struct UTF8Buf { |
|
855 int32_t bufNativeStart; // Native index of first char in UChar buf |
|
856 int32_t bufNativeLimit; // Native index following last char in buf. |
|
857 int32_t bufStartIdx; // First filled position in buf. |
|
858 int32_t bufLimitIdx; // Limit of filled range in buf. |
|
859 int32_t bufNILimit; // Limit of native indexing part of buf |
|
860 int32_t toUCharsMapStart; // Native index corresponding to |
|
861 // mapToUChars[0]. |
|
862 // Set to bufNativeStart when filling forwards. |
|
863 // Set to computed value when filling backwards. |
|
864 |
|
865 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the |
|
866 // the chunk size, to allow for surrogate at the end. |
|
867 // Length must be identical to mapToNative array, below, |
|
868 // because of the way indexing works when the array is |
|
869 // filled backwards during a reverse iteration. Thus, |
|
870 // the additional extra size. |
|
871 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to |
|
872 // native offset from bufNativeStart. |
|
873 // Requires two extra slots, |
|
874 // one for a supplementary starting in the last normal position, |
|
875 // and one for an entry for the buffer limit position. |
|
876 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to |
|
877 // correspoding offset in filled part of buf. |
|
878 int32_t align; |
|
879 }; |
|
880 |
|
881 U_CDECL_BEGIN |
|
882 |
|
883 // |
|
884 // utf8TextLength |
|
885 // |
|
886 // Get the length of the string. If we don't already know it, |
|
887 // we'll need to scan for the trailing nul. |
|
888 // |
|
889 static int64_t U_CALLCONV |
|
890 utf8TextLength(UText *ut) { |
|
891 if (ut->b < 0) { |
|
892 // Zero terminated string, and we haven't scanned to the end yet. |
|
893 // Scan it now. |
|
894 const char *r = (const char *)ut->context + ut->c; |
|
895 while (*r != 0) { |
|
896 r++; |
|
897 } |
|
898 if ((r - (const char *)ut->context) < 0x7fffffff) { |
|
899 ut->b = (int32_t)(r - (const char *)ut->context); |
|
900 } else { |
|
901 // Actual string was bigger (more than 2 gig) than we |
|
902 // can handle. Clip it to 2 GB. |
|
903 ut->b = 0x7fffffff; |
|
904 } |
|
905 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
906 } |
|
907 return ut->b; |
|
908 } |
|
909 |
|
910 |
|
911 |
|
912 |
|
913 |
|
914 |
|
915 static UBool U_CALLCONV |
|
916 utf8TextAccess(UText *ut, int64_t index, UBool forward) { |
|
917 // |
|
918 // Apologies to those who are allergic to goto statements. |
|
919 // Consider each goto to a labelled block to be the equivalent of |
|
920 // call the named block as if it were a function(); |
|
921 // return; |
|
922 // |
|
923 const uint8_t *s8=(const uint8_t *)ut->context; |
|
924 UTF8Buf *u8b = NULL; |
|
925 int32_t length = ut->b; // Length of original utf-8 |
|
926 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. |
|
927 int32_t mapIndex = 0; |
|
928 if (index<0) { |
|
929 ix=0; |
|
930 } else if (index > 0x7fffffff) { |
|
931 // Strings with 64 bit lengths not supported by this UTF-8 provider. |
|
932 ix = 0x7fffffff; |
|
933 } |
|
934 |
|
935 // Pin requested index to the string length. |
|
936 if (ix>length) { |
|
937 if (length>=0) { |
|
938 ix=length; |
|
939 } else if (ix>=ut->c) { |
|
940 // Zero terminated string, and requested index is beyond |
|
941 // the region that has already been scanned. |
|
942 // Scan up to either the end of the string or to the |
|
943 // requested position, whichever comes first. |
|
944 while (ut->c<ix && s8[ut->c]!=0) { |
|
945 ut->c++; |
|
946 } |
|
947 // TODO: support for null terminated string length > 32 bits. |
|
948 if (s8[ut->c] == 0) { |
|
949 // We just found the actual length of the string. |
|
950 // Trim the requested index back to that. |
|
951 ix = ut->c; |
|
952 ut->b = ut->c; |
|
953 length = ut->c; |
|
954 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
955 } |
|
956 } |
|
957 } |
|
958 |
|
959 // |
|
960 // Dispatch to the appropriate action for a forward iteration request. |
|
961 // |
|
962 if (forward) { |
|
963 if (ix==ut->chunkNativeLimit) { |
|
964 // Check for normal sequential iteration cases first. |
|
965 if (ix==length) { |
|
966 // Just reached end of string |
|
967 // Don't swap buffers, but do set the |
|
968 // current buffer position. |
|
969 ut->chunkOffset = ut->chunkLength; |
|
970 return FALSE; |
|
971 } else { |
|
972 // End of current buffer. |
|
973 // check whether other buffer already has what we need. |
|
974 UTF8Buf *altB = (UTF8Buf *)ut->q; |
|
975 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { |
|
976 goto swapBuffers; |
|
977 } |
|
978 } |
|
979 } |
|
980 |
|
981 // A random access. Desired index could be in either or niether buf. |
|
982 // For optimizing the order of testing, first check for the index |
|
983 // being in the other buffer. This will be the case for uses that |
|
984 // move back and forth over a fairly limited range |
|
985 { |
|
986 u8b = (UTF8Buf *)ut->q; // the alternate buffer |
|
987 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { |
|
988 // Requested index is in the other buffer. |
|
989 goto swapBuffers; |
|
990 } |
|
991 if (ix == length) { |
|
992 // Requested index is end-of-string. |
|
993 // (this is the case of randomly seeking to the end. |
|
994 // The case of iterating off the end is handled earlier.) |
|
995 if (ix == ut->chunkNativeLimit) { |
|
996 // Current buffer extends up to the end of the string. |
|
997 // Leave it as the current buffer. |
|
998 ut->chunkOffset = ut->chunkLength; |
|
999 return FALSE; |
|
1000 } |
|
1001 if (ix == u8b->bufNativeLimit) { |
|
1002 // Alternate buffer extends to the end of string. |
|
1003 // Swap it in as the current buffer. |
|
1004 goto swapBuffersAndFail; |
|
1005 } |
|
1006 |
|
1007 // Neither existing buffer extends to the end of the string. |
|
1008 goto makeStubBuffer; |
|
1009 } |
|
1010 |
|
1011 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { |
|
1012 // Requested index is in neither buffer. |
|
1013 goto fillForward; |
|
1014 } |
|
1015 |
|
1016 // Requested index is in this buffer. |
|
1017 u8b = (UTF8Buf *)ut->p; // the current buffer |
|
1018 mapIndex = ix - u8b->toUCharsMapStart; |
|
1019 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
|
1020 return TRUE; |
|
1021 |
|
1022 } |
|
1023 } |
|
1024 |
|
1025 |
|
1026 // |
|
1027 // Dispatch to the appropriate action for a |
|
1028 // Backwards Diretion iteration request. |
|
1029 // |
|
1030 if (ix==ut->chunkNativeStart) { |
|
1031 // Check for normal sequential iteration cases first. |
|
1032 if (ix==0) { |
|
1033 // Just reached the start of string |
|
1034 // Don't swap buffers, but do set the |
|
1035 // current buffer position. |
|
1036 ut->chunkOffset = 0; |
|
1037 return FALSE; |
|
1038 } else { |
|
1039 // Start of current buffer. |
|
1040 // check whether other buffer already has what we need. |
|
1041 UTF8Buf *altB = (UTF8Buf *)ut->q; |
|
1042 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { |
|
1043 goto swapBuffers; |
|
1044 } |
|
1045 } |
|
1046 } |
|
1047 |
|
1048 // A random access. Desired index could be in either or niether buf. |
|
1049 // For optimizing the order of testing, |
|
1050 // Most likely case: in the other buffer. |
|
1051 // Second most likely: in neither buffer. |
|
1052 // Unlikely, but must work: in the current buffer. |
|
1053 u8b = (UTF8Buf *)ut->q; // the alternate buffer |
|
1054 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { |
|
1055 // Requested index is in the other buffer. |
|
1056 goto swapBuffers; |
|
1057 } |
|
1058 // Requested index is start-of-string. |
|
1059 // (this is the case of randomly seeking to the start. |
|
1060 // The case of iterating off the start is handled earlier.) |
|
1061 if (ix==0) { |
|
1062 if (u8b->bufNativeStart==0) { |
|
1063 // Alternate buffer contains the data for the start string. |
|
1064 // Make it be the current buffer. |
|
1065 goto swapBuffersAndFail; |
|
1066 } else { |
|
1067 // Request for data before the start of string, |
|
1068 // neither buffer is usable. |
|
1069 // set up a zero-length buffer. |
|
1070 goto makeStubBuffer; |
|
1071 } |
|
1072 } |
|
1073 |
|
1074 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { |
|
1075 // Requested index is in neither buffer. |
|
1076 goto fillReverse; |
|
1077 } |
|
1078 |
|
1079 // Requested index is in this buffer. |
|
1080 // Set the utf16 buffer index. |
|
1081 u8b = (UTF8Buf *)ut->p; |
|
1082 mapIndex = ix - u8b->toUCharsMapStart; |
|
1083 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
|
1084 if (ut->chunkOffset==0) { |
|
1085 // This occurs when the first character in the text is |
|
1086 // a multi-byte UTF-8 char, and the requested index is to |
|
1087 // one of the trailing bytes. Because there is no preceding , |
|
1088 // character, this access fails. We can't pick up on the |
|
1089 // situation sooner because the requested index is not zero. |
|
1090 return FALSE; |
|
1091 } else { |
|
1092 return TRUE; |
|
1093 } |
|
1094 |
|
1095 |
|
1096 |
|
1097 swapBuffers: |
|
1098 // The alternate buffer (ut->q) has the string data that was requested. |
|
1099 // Swap the primary and alternate buffers, and set the |
|
1100 // chunk index into the new primary buffer. |
|
1101 { |
|
1102 u8b = (UTF8Buf *)ut->q; |
|
1103 ut->q = ut->p; |
|
1104 ut->p = u8b; |
|
1105 ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
|
1106 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
|
1107 ut->chunkNativeStart = u8b->bufNativeStart; |
|
1108 ut->chunkNativeLimit = u8b->bufNativeLimit; |
|
1109 ut->nativeIndexingLimit = u8b->bufNILimit; |
|
1110 |
|
1111 // Index into the (now current) chunk |
|
1112 // Use the map to set the chunk index. It's more trouble than it's worth |
|
1113 // to check whether native indexing can be used. |
|
1114 U_ASSERT(ix>=u8b->bufNativeStart); |
|
1115 U_ASSERT(ix<=u8b->bufNativeLimit); |
|
1116 mapIndex = ix - u8b->toUCharsMapStart; |
|
1117 U_ASSERT(mapIndex>=0); |
|
1118 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); |
|
1119 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
|
1120 |
|
1121 return TRUE; |
|
1122 } |
|
1123 |
|
1124 |
|
1125 swapBuffersAndFail: |
|
1126 // We got a request for either the start or end of the string, |
|
1127 // with iteration continuing in the out-of-bounds direction. |
|
1128 // The alternate buffer already contains the data up to the |
|
1129 // start/end. |
|
1130 // Swap the buffers, then return failure, indicating that we couldn't |
|
1131 // make things correct for continuing the iteration in the requested |
|
1132 // direction. The position & buffer are correct should the |
|
1133 // user decide to iterate in the opposite direction. |
|
1134 u8b = (UTF8Buf *)ut->q; |
|
1135 ut->q = ut->p; |
|
1136 ut->p = u8b; |
|
1137 ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
|
1138 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
|
1139 ut->chunkNativeStart = u8b->bufNativeStart; |
|
1140 ut->chunkNativeLimit = u8b->bufNativeLimit; |
|
1141 ut->nativeIndexingLimit = u8b->bufNILimit; |
|
1142 |
|
1143 // Index into the (now current) chunk |
|
1144 // For this function (swapBuffersAndFail), the requested index |
|
1145 // will always be at either the start or end of the chunk. |
|
1146 if (ix==u8b->bufNativeLimit) { |
|
1147 ut->chunkOffset = ut->chunkLength; |
|
1148 } else { |
|
1149 ut->chunkOffset = 0; |
|
1150 U_ASSERT(ix == u8b->bufNativeStart); |
|
1151 } |
|
1152 return FALSE; |
|
1153 |
|
1154 makeStubBuffer: |
|
1155 // The user has done a seek/access past the start or end |
|
1156 // of the string. Rather than loading data that is likely |
|
1157 // to never be used, just set up a zero-length buffer at |
|
1158 // the position. |
|
1159 u8b = (UTF8Buf *)ut->q; |
|
1160 u8b->bufNativeStart = ix; |
|
1161 u8b->bufNativeLimit = ix; |
|
1162 u8b->bufStartIdx = 0; |
|
1163 u8b->bufLimitIdx = 0; |
|
1164 u8b->bufNILimit = 0; |
|
1165 u8b->toUCharsMapStart = ix; |
|
1166 u8b->mapToNative[0] = 0; |
|
1167 u8b->mapToUChars[0] = 0; |
|
1168 goto swapBuffersAndFail; |
|
1169 |
|
1170 |
|
1171 |
|
1172 fillForward: |
|
1173 { |
|
1174 // Move the incoming index to a code point boundary. |
|
1175 U8_SET_CP_START(s8, 0, ix); |
|
1176 |
|
1177 // Swap the UText buffers. |
|
1178 // We want to fill what was previously the alternate buffer, |
|
1179 // and make what was the current buffer be the new alternate. |
|
1180 UTF8Buf *u8b = (UTF8Buf *)ut->q; |
|
1181 ut->q = ut->p; |
|
1182 ut->p = u8b; |
|
1183 |
|
1184 int32_t strLen = ut->b; |
|
1185 UBool nulTerminated = FALSE; |
|
1186 if (strLen < 0) { |
|
1187 strLen = 0x7fffffff; |
|
1188 nulTerminated = TRUE; |
|
1189 } |
|
1190 |
|
1191 UChar *buf = u8b->buf; |
|
1192 uint8_t *mapToNative = u8b->mapToNative; |
|
1193 uint8_t *mapToUChars = u8b->mapToUChars; |
|
1194 int32_t destIx = 0; |
|
1195 int32_t srcIx = ix; |
|
1196 UBool seenNonAscii = FALSE; |
|
1197 UChar32 c = 0; |
|
1198 |
|
1199 // Fill the chunk buffer and mapping arrays. |
|
1200 while (destIx<UTF8_TEXT_CHUNK_SIZE) { |
|
1201 c = s8[srcIx]; |
|
1202 if (c>0 && c<0x80) { |
|
1203 // Special case ASCII range for speed. |
|
1204 // zero is excluded to simplify bounds checking. |
|
1205 buf[destIx] = (UChar)c; |
|
1206 mapToNative[destIx] = (uint8_t)(srcIx - ix); |
|
1207 mapToUChars[srcIx-ix] = (uint8_t)destIx; |
|
1208 srcIx++; |
|
1209 destIx++; |
|
1210 } else { |
|
1211 // General case, handle everything. |
|
1212 if (seenNonAscii == FALSE) { |
|
1213 seenNonAscii = TRUE; |
|
1214 u8b->bufNILimit = destIx; |
|
1215 } |
|
1216 |
|
1217 int32_t cIx = srcIx; |
|
1218 int32_t dIx = destIx; |
|
1219 int32_t dIxSaved = destIx; |
|
1220 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c); |
|
1221 if (c==0 && nulTerminated) { |
|
1222 srcIx--; |
|
1223 break; |
|
1224 } |
|
1225 |
|
1226 U16_APPEND_UNSAFE(buf, destIx, c); |
|
1227 do { |
|
1228 mapToNative[dIx++] = (uint8_t)(cIx - ix); |
|
1229 } while (dIx < destIx); |
|
1230 |
|
1231 do { |
|
1232 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
|
1233 } while (cIx < srcIx); |
|
1234 } |
|
1235 if (srcIx>=strLen) { |
|
1236 break; |
|
1237 } |
|
1238 |
|
1239 } |
|
1240 |
|
1241 // store Native <--> Chunk Map entries for the end of the buffer. |
|
1242 // There is no actual character here, but the index position is valid. |
|
1243 mapToNative[destIx] = (uint8_t)(srcIx - ix); |
|
1244 mapToUChars[srcIx - ix] = (uint8_t)destIx; |
|
1245 |
|
1246 // fill in Buffer descriptor |
|
1247 u8b->bufNativeStart = ix; |
|
1248 u8b->bufNativeLimit = srcIx; |
|
1249 u8b->bufStartIdx = 0; |
|
1250 u8b->bufLimitIdx = destIx; |
|
1251 if (seenNonAscii == FALSE) { |
|
1252 u8b->bufNILimit = destIx; |
|
1253 } |
|
1254 u8b->toUCharsMapStart = u8b->bufNativeStart; |
|
1255 |
|
1256 // Set UText chunk to refer to this buffer. |
|
1257 ut->chunkContents = buf; |
|
1258 ut->chunkOffset = 0; |
|
1259 ut->chunkLength = u8b->bufLimitIdx; |
|
1260 ut->chunkNativeStart = u8b->bufNativeStart; |
|
1261 ut->chunkNativeLimit = u8b->bufNativeLimit; |
|
1262 ut->nativeIndexingLimit = u8b->bufNILimit; |
|
1263 |
|
1264 // For zero terminated strings, keep track of the maximum point |
|
1265 // scanned so far. |
|
1266 if (nulTerminated && srcIx>ut->c) { |
|
1267 ut->c = srcIx; |
|
1268 if (c==0) { |
|
1269 // We scanned to the end. |
|
1270 // Remember the actual length. |
|
1271 ut->b = srcIx; |
|
1272 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
1273 } |
|
1274 } |
|
1275 return TRUE; |
|
1276 } |
|
1277 |
|
1278 |
|
1279 fillReverse: |
|
1280 { |
|
1281 // Move the incoming index to a code point boundary. |
|
1282 // Can only do this if the incoming index is somewhere in the interior of the string. |
|
1283 // If index is at the end, there is no character there to look at. |
|
1284 if (ix != ut->b) { |
|
1285 U8_SET_CP_START(s8, 0, ix); |
|
1286 } |
|
1287 |
|
1288 // Swap the UText buffers. |
|
1289 // We want to fill what was previously the alternate buffer, |
|
1290 // and make what was the current buffer be the new alternate. |
|
1291 UTF8Buf *u8b = (UTF8Buf *)ut->q; |
|
1292 ut->q = ut->p; |
|
1293 ut->p = u8b; |
|
1294 |
|
1295 UChar *buf = u8b->buf; |
|
1296 uint8_t *mapToNative = u8b->mapToNative; |
|
1297 uint8_t *mapToUChars = u8b->mapToUChars; |
|
1298 int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1); |
|
1299 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region |
|
1300 // at end of buffer to leave room |
|
1301 // for a surrogate pair at the |
|
1302 // buffer start. |
|
1303 int32_t srcIx = ix; |
|
1304 int32_t bufNILimit = destIx; |
|
1305 UChar32 c; |
|
1306 |
|
1307 // Map to/from Native Indexes, fill in for the position at the end of |
|
1308 // the buffer. |
|
1309 // |
|
1310 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
|
1311 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
|
1312 |
|
1313 // Fill the chunk buffer |
|
1314 // Work backwards, filling from the end of the buffer towards the front. |
|
1315 // |
|
1316 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { |
|
1317 srcIx--; |
|
1318 destIx--; |
|
1319 |
|
1320 // Get last byte of the UTF-8 character |
|
1321 c = s8[srcIx]; |
|
1322 if (c<0x80) { |
|
1323 // Special case ASCII range for speed. |
|
1324 buf[destIx] = (UChar)c; |
|
1325 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
|
1326 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
|
1327 } else { |
|
1328 // General case, handle everything non-ASCII. |
|
1329 |
|
1330 int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char |
|
1331 |
|
1332 // Get the full character from the UTF8 string. |
|
1333 // use code derived from tbe macros in utf8.h |
|
1334 // Leaves srcIx pointing at the first byte of the UTF-8 char. |
|
1335 // |
|
1336 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3); |
|
1337 // leaves srcIx at first byte of the multi-byte char. |
|
1338 |
|
1339 // Store the character in UTF-16 buffer. |
|
1340 if (c<0x10000) { |
|
1341 buf[destIx] = (UChar)c; |
|
1342 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
|
1343 } else { |
|
1344 buf[destIx] = U16_TRAIL(c); |
|
1345 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
|
1346 buf[--destIx] = U16_LEAD(c); |
|
1347 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
|
1348 } |
|
1349 |
|
1350 // Fill in the map from native indexes to UChars buf index. |
|
1351 do { |
|
1352 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
|
1353 } while (sIx >= srcIx); |
|
1354 |
|
1355 // Set native indexing limit to be the current position. |
|
1356 // We are processing a non-ascii, non-native-indexing char now; |
|
1357 // the limit will be here if the rest of the chars to be |
|
1358 // added to this buffer are ascii. |
|
1359 bufNILimit = destIx; |
|
1360 } |
|
1361 } |
|
1362 u8b->bufNativeStart = srcIx; |
|
1363 u8b->bufNativeLimit = ix; |
|
1364 u8b->bufStartIdx = destIx; |
|
1365 u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; |
|
1366 u8b->bufNILimit = bufNILimit - u8b->bufStartIdx; |
|
1367 u8b->toUCharsMapStart = toUCharsMapStart; |
|
1368 |
|
1369 ut->chunkContents = &buf[u8b->bufStartIdx]; |
|
1370 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
|
1371 ut->chunkOffset = ut->chunkLength; |
|
1372 ut->chunkNativeStart = u8b->bufNativeStart; |
|
1373 ut->chunkNativeLimit = u8b->bufNativeLimit; |
|
1374 ut->nativeIndexingLimit = u8b->bufNILimit; |
|
1375 return TRUE; |
|
1376 } |
|
1377 |
|
1378 } |
|
1379 |
|
1380 |
|
1381 |
|
1382 // |
|
1383 // This is a slightly modified copy of u_strFromUTF8, |
|
1384 // Inserts a Replacement Char rather than failing on invalid UTF-8 |
|
1385 // Removes unnecessary features. |
|
1386 // |
|
1387 static UChar* |
|
1388 utext_strFromUTF8(UChar *dest, |
|
1389 int32_t destCapacity, |
|
1390 int32_t *pDestLength, |
|
1391 const char* src, |
|
1392 int32_t srcLength, // required. NUL terminated not supported. |
|
1393 UErrorCode *pErrorCode |
|
1394 ) |
|
1395 { |
|
1396 |
|
1397 UChar *pDest = dest; |
|
1398 UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL; |
|
1399 UChar32 ch=0; |
|
1400 int32_t index = 0; |
|
1401 int32_t reqLength = 0; |
|
1402 uint8_t* pSrc = (uint8_t*) src; |
|
1403 |
|
1404 |
|
1405 while((index < srcLength)&&(pDest<pDestLimit)){ |
|
1406 ch = pSrc[index++]; |
|
1407 if(ch <=0x7f){ |
|
1408 *pDest++=(UChar)ch; |
|
1409 }else{ |
|
1410 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
|
1411 if(U_IS_BMP(ch)){ |
|
1412 *(pDest++)=(UChar)ch; |
|
1413 }else{ |
|
1414 *(pDest++)=U16_LEAD(ch); |
|
1415 if(pDest<pDestLimit){ |
|
1416 *(pDest++)=U16_TRAIL(ch); |
|
1417 }else{ |
|
1418 reqLength++; |
|
1419 break; |
|
1420 } |
|
1421 } |
|
1422 } |
|
1423 } |
|
1424 /* donot fill the dest buffer just count the UChars needed */ |
|
1425 while(index < srcLength){ |
|
1426 ch = pSrc[index++]; |
|
1427 if(ch <= 0x7f){ |
|
1428 reqLength++; |
|
1429 }else{ |
|
1430 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
|
1431 reqLength+=U16_LENGTH(ch); |
|
1432 } |
|
1433 } |
|
1434 |
|
1435 reqLength+=(int32_t)(pDest - dest); |
|
1436 |
|
1437 if(pDestLength){ |
|
1438 *pDestLength = reqLength; |
|
1439 } |
|
1440 |
|
1441 /* Terminate the buffer */ |
|
1442 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); |
|
1443 |
|
1444 return dest; |
|
1445 } |
|
1446 |
|
1447 |
|
1448 |
|
1449 static int32_t U_CALLCONV |
|
1450 utf8TextExtract(UText *ut, |
|
1451 int64_t start, int64_t limit, |
|
1452 UChar *dest, int32_t destCapacity, |
|
1453 UErrorCode *pErrorCode) { |
|
1454 if(U_FAILURE(*pErrorCode)) { |
|
1455 return 0; |
|
1456 } |
|
1457 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
|
1458 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
1459 return 0; |
|
1460 } |
|
1461 int32_t length = ut->b; |
|
1462 int32_t start32 = pinIndex(start, length); |
|
1463 int32_t limit32 = pinIndex(limit, length); |
|
1464 |
|
1465 if(start32>limit32) { |
|
1466 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
1467 return 0; |
|
1468 } |
|
1469 |
|
1470 |
|
1471 // adjust the incoming indexes to land on code point boundaries if needed. |
|
1472 // adjust by no more than three, because that is the largest number of trail bytes |
|
1473 // in a well formed UTF8 character. |
|
1474 const uint8_t *buf = (const uint8_t *)ut->context; |
|
1475 int i; |
|
1476 if (start32 < ut->chunkNativeLimit) { |
|
1477 for (i=0; i<3; i++) { |
|
1478 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { |
|
1479 break; |
|
1480 } |
|
1481 start32--; |
|
1482 } |
|
1483 } |
|
1484 |
|
1485 if (limit32 < ut->chunkNativeLimit) { |
|
1486 for (i=0; i<3; i++) { |
|
1487 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { |
|
1488 break; |
|
1489 } |
|
1490 limit32--; |
|
1491 } |
|
1492 } |
|
1493 |
|
1494 // Do the actual extract. |
|
1495 int32_t destLength=0; |
|
1496 utext_strFromUTF8(dest, destCapacity, &destLength, |
|
1497 (const char *)ut->context+start32, limit32-start32, |
|
1498 pErrorCode); |
|
1499 utf8TextAccess(ut, limit32, TRUE); |
|
1500 return destLength; |
|
1501 } |
|
1502 |
|
1503 // |
|
1504 // utf8TextMapOffsetToNative |
|
1505 // |
|
1506 // Map a chunk (UTF-16) offset to a native index. |
|
1507 static int64_t U_CALLCONV |
|
1508 utf8TextMapOffsetToNative(const UText *ut) { |
|
1509 // |
|
1510 UTF8Buf *u8b = (UTF8Buf *)ut->p; |
|
1511 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); |
|
1512 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; |
|
1513 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); |
|
1514 return nativeOffset; |
|
1515 } |
|
1516 |
|
1517 // |
|
1518 // Map a native index to the corrsponding chunk offset |
|
1519 // |
|
1520 static int32_t U_CALLCONV |
|
1521 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { |
|
1522 U_ASSERT(index64 <= 0x7fffffff); |
|
1523 int32_t index = (int32_t)index64; |
|
1524 UTF8Buf *u8b = (UTF8Buf *)ut->p; |
|
1525 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); |
|
1526 U_ASSERT(index<=ut->chunkNativeLimit); |
|
1527 int32_t mapIndex = index - u8b->toUCharsMapStart; |
|
1528 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
|
1529 U_ASSERT(offset>=0 && offset<=ut->chunkLength); |
|
1530 return offset; |
|
1531 } |
|
1532 |
|
1533 static UText * U_CALLCONV |
|
1534 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) |
|
1535 { |
|
1536 // First do a generic shallow clone. Does everything needed for the UText struct itself. |
|
1537 dest = shallowTextClone(dest, src, status); |
|
1538 |
|
1539 // For deep clones, make a copy of the string. |
|
1540 // The copied storage is owned by the newly created clone. |
|
1541 // |
|
1542 // TODO: There is an isssue with using utext_nativeLength(). |
|
1543 // That function is non-const in cases where the input was NUL terminated |
|
1544 // and the length has not yet been determined. |
|
1545 // This function (clone()) is const. |
|
1546 // There potentially a thread safety issue lurking here. |
|
1547 // |
|
1548 if (deep && U_SUCCESS(*status)) { |
|
1549 int32_t len = (int32_t)utext_nativeLength((UText *)src); |
|
1550 char *copyStr = (char *)uprv_malloc(len+1); |
|
1551 if (copyStr == NULL) { |
|
1552 *status = U_MEMORY_ALLOCATION_ERROR; |
|
1553 } else { |
|
1554 uprv_memcpy(copyStr, src->context, len+1); |
|
1555 dest->context = copyStr; |
|
1556 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
|
1557 } |
|
1558 } |
|
1559 return dest; |
|
1560 } |
|
1561 |
|
1562 |
|
1563 static void U_CALLCONV |
|
1564 utf8TextClose(UText *ut) { |
|
1565 // Most of the work of close is done by the generic UText framework close. |
|
1566 // All that needs to be done here is to delete the UTF8 string if the UText |
|
1567 // owns it. This occurs if the UText was created by cloning. |
|
1568 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
|
1569 char *s = (char *)ut->context; |
|
1570 uprv_free(s); |
|
1571 ut->context = NULL; |
|
1572 } |
|
1573 } |
|
1574 |
|
1575 U_CDECL_END |
|
1576 |
|
1577 |
|
1578 static const struct UTextFuncs utf8Funcs = |
|
1579 { |
|
1580 sizeof(UTextFuncs), |
|
1581 0, 0, 0, // Reserved alignment padding |
|
1582 utf8TextClone, |
|
1583 utf8TextLength, |
|
1584 utf8TextAccess, |
|
1585 utf8TextExtract, |
|
1586 NULL, /* replace*/ |
|
1587 NULL, /* copy */ |
|
1588 utf8TextMapOffsetToNative, |
|
1589 utf8TextMapIndexToUTF16, |
|
1590 utf8TextClose, |
|
1591 NULL, // spare 1 |
|
1592 NULL, // spare 2 |
|
1593 NULL // spare 3 |
|
1594 }; |
|
1595 |
|
1596 |
|
1597 static const char gEmptyString[] = {0}; |
|
1598 |
|
1599 U_CAPI UText * U_EXPORT2 |
|
1600 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
|
1601 if(U_FAILURE(*status)) { |
|
1602 return NULL; |
|
1603 } |
|
1604 if(s==NULL && length==0) { |
|
1605 s = gEmptyString; |
|
1606 } |
|
1607 |
|
1608 if(s==NULL || length<-1 || length>INT32_MAX) { |
|
1609 *status=U_ILLEGAL_ARGUMENT_ERROR; |
|
1610 return NULL; |
|
1611 } |
|
1612 |
|
1613 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); |
|
1614 if (U_FAILURE(*status)) { |
|
1615 return ut; |
|
1616 } |
|
1617 |
|
1618 ut->pFuncs = &utf8Funcs; |
|
1619 ut->context = s; |
|
1620 ut->b = (int32_t)length; |
|
1621 ut->c = (int32_t)length; |
|
1622 if (ut->c < 0) { |
|
1623 ut->c = 0; |
|
1624 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
1625 } |
|
1626 ut->p = ut->pExtra; |
|
1627 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); |
|
1628 return ut; |
|
1629 |
|
1630 } |
|
1631 |
|
1632 |
|
1633 |
|
1634 |
|
1635 |
|
1636 |
|
1637 |
|
1638 |
|
1639 //------------------------------------------------------------------------------ |
|
1640 // |
|
1641 // UText implementation wrapper for Replaceable (read/write) |
|
1642 // |
|
1643 // Use of UText data members: |
|
1644 // context pointer to Replaceable. |
|
1645 // p pointer to Replaceable if it is owned by the UText. |
|
1646 // |
|
1647 //------------------------------------------------------------------------------ |
|
1648 |
|
1649 |
|
1650 |
|
1651 // minimum chunk size for this implementation: 3 |
|
1652 // to allow for possible trimming for code point boundaries |
|
1653 enum { REP_TEXT_CHUNK_SIZE=10 }; |
|
1654 |
|
1655 struct ReplExtra { |
|
1656 /* |
|
1657 * Chunk UChars. |
|
1658 * +1 to simplify filling with surrogate pair at the end. |
|
1659 */ |
|
1660 UChar s[REP_TEXT_CHUNK_SIZE+1]; |
|
1661 }; |
|
1662 |
|
1663 |
|
1664 U_CDECL_BEGIN |
|
1665 |
|
1666 static UText * U_CALLCONV |
|
1667 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
|
1668 // First do a generic shallow clone. Does everything needed for the UText struct itself. |
|
1669 dest = shallowTextClone(dest, src, status); |
|
1670 |
|
1671 // For deep clones, make a copy of the Replaceable. |
|
1672 // The copied Replaceable storage is owned by the newly created UText clone. |
|
1673 // A non-NULL pointer in UText.p is the signal to the close() function to delete |
|
1674 // it. |
|
1675 // |
|
1676 if (deep && U_SUCCESS(*status)) { |
|
1677 const Replaceable *replSrc = (const Replaceable *)src->context; |
|
1678 dest->context = replSrc->clone(); |
|
1679 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
|
1680 |
|
1681 // with deep clone, the copy is writable, even when the source is not. |
|
1682 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
|
1683 } |
|
1684 return dest; |
|
1685 } |
|
1686 |
|
1687 |
|
1688 static void U_CALLCONV |
|
1689 repTextClose(UText *ut) { |
|
1690 // Most of the work of close is done by the generic UText framework close. |
|
1691 // All that needs to be done here is delete the Replaceable if the UText |
|
1692 // owns it. This occurs if the UText was created by cloning. |
|
1693 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
|
1694 Replaceable *rep = (Replaceable *)ut->context; |
|
1695 delete rep; |
|
1696 ut->context = NULL; |
|
1697 } |
|
1698 } |
|
1699 |
|
1700 |
|
1701 static int64_t U_CALLCONV |
|
1702 repTextLength(UText *ut) { |
|
1703 const Replaceable *replSrc = (const Replaceable *)ut->context; |
|
1704 int32_t len = replSrc->length(); |
|
1705 return len; |
|
1706 } |
|
1707 |
|
1708 |
|
1709 static UBool U_CALLCONV |
|
1710 repTextAccess(UText *ut, int64_t index, UBool forward) { |
|
1711 const Replaceable *rep=(const Replaceable *)ut->context; |
|
1712 int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) |
|
1713 |
|
1714 // clip the requested index to the limits of the text. |
|
1715 int32_t index32 = pinIndex(index, length); |
|
1716 U_ASSERT(index<=INT32_MAX); |
|
1717 |
|
1718 |
|
1719 /* |
|
1720 * Compute start/limit boundaries around index, for a segment of text |
|
1721 * to be extracted. |
|
1722 * To allow for the possibility that our user gave an index to the trailing |
|
1723 * half of a surrogate pair, we must request one extra preceding UChar when |
|
1724 * going in the forward direction. This will ensure that the buffer has the |
|
1725 * entire code point at the specified index. |
|
1726 */ |
|
1727 if(forward) { |
|
1728 |
|
1729 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { |
|
1730 // Buffer already contains the requested position. |
|
1731 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
|
1732 return TRUE; |
|
1733 } |
|
1734 if (index32>=length && ut->chunkNativeLimit==length) { |
|
1735 // Request for end of string, and buffer already extends up to it. |
|
1736 // Can't get the data, but don't change the buffer. |
|
1737 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; |
|
1738 return FALSE; |
|
1739 } |
|
1740 |
|
1741 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; |
|
1742 // Going forward, so we want to have the buffer with stuff at and beyond |
|
1743 // the requested index. The -1 gets us one code point before the |
|
1744 // requested index also, to handle the case of the index being on |
|
1745 // a trail surrogate of a surrogate pair. |
|
1746 if(ut->chunkNativeLimit > length) { |
|
1747 ut->chunkNativeLimit = length; |
|
1748 } |
|
1749 // unless buffer ran off end, start is index-1. |
|
1750 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; |
|
1751 if(ut->chunkNativeStart < 0) { |
|
1752 ut->chunkNativeStart = 0; |
|
1753 } |
|
1754 } else { |
|
1755 // Reverse iteration. Fill buffer with data preceding the requested index. |
|
1756 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { |
|
1757 // Requested position already in buffer. |
|
1758 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; |
|
1759 return TRUE; |
|
1760 } |
|
1761 if (index32==0 && ut->chunkNativeStart==0) { |
|
1762 // Request for start, buffer already begins at start. |
|
1763 // No data, but keep the buffer as is. |
|
1764 ut->chunkOffset = 0; |
|
1765 return FALSE; |
|
1766 } |
|
1767 |
|
1768 // Figure out the bounds of the chunk to extract for reverse iteration. |
|
1769 // Need to worry about chunk not splitting surrogate pairs, and while still |
|
1770 // containing the data we need. |
|
1771 // Fix by requesting a chunk that includes an extra UChar at the end. |
|
1772 // If this turns out to be a lead surrogate, we can lop it off and still have |
|
1773 // the data we wanted. |
|
1774 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; |
|
1775 if (ut->chunkNativeStart < 0) { |
|
1776 ut->chunkNativeStart = 0; |
|
1777 } |
|
1778 |
|
1779 ut->chunkNativeLimit = index32 + 1; |
|
1780 if (ut->chunkNativeLimit > length) { |
|
1781 ut->chunkNativeLimit = length; |
|
1782 } |
|
1783 } |
|
1784 |
|
1785 // Extract the new chunk of text from the Replaceable source. |
|
1786 ReplExtra *ex = (ReplExtra *)ut->pExtra; |
|
1787 // UnicodeString with its buffer a writable alias to the chunk buffer |
|
1788 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); |
|
1789 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); |
|
1790 |
|
1791 ut->chunkContents = ex->s; |
|
1792 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); |
|
1793 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); |
|
1794 |
|
1795 // Surrogate pairs from the input text must not span chunk boundaries. |
|
1796 // If end of chunk could be the start of a surrogate, trim it off. |
|
1797 if (ut->chunkNativeLimit < length && |
|
1798 U16_IS_LEAD(ex->s[ut->chunkLength-1])) { |
|
1799 ut->chunkLength--; |
|
1800 ut->chunkNativeLimit--; |
|
1801 if (ut->chunkOffset > ut->chunkLength) { |
|
1802 ut->chunkOffset = ut->chunkLength; |
|
1803 } |
|
1804 } |
|
1805 |
|
1806 // if the first UChar in the chunk could be the trailing half of a surrogate pair, |
|
1807 // trim it off. |
|
1808 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { |
|
1809 ++(ut->chunkContents); |
|
1810 ++(ut->chunkNativeStart); |
|
1811 --(ut->chunkLength); |
|
1812 --(ut->chunkOffset); |
|
1813 } |
|
1814 |
|
1815 // adjust the index/chunkOffset to a code point boundary |
|
1816 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); |
|
1817 |
|
1818 // Use fast indexing for get/setNativeIndex() |
|
1819 ut->nativeIndexingLimit = ut->chunkLength; |
|
1820 |
|
1821 return TRUE; |
|
1822 } |
|
1823 |
|
1824 |
|
1825 |
|
1826 static int32_t U_CALLCONV |
|
1827 repTextExtract(UText *ut, |
|
1828 int64_t start, int64_t limit, |
|
1829 UChar *dest, int32_t destCapacity, |
|
1830 UErrorCode *status) { |
|
1831 const Replaceable *rep=(const Replaceable *)ut->context; |
|
1832 int32_t length=rep->length(); |
|
1833 |
|
1834 if(U_FAILURE(*status)) { |
|
1835 return 0; |
|
1836 } |
|
1837 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
|
1838 *status=U_ILLEGAL_ARGUMENT_ERROR; |
|
1839 } |
|
1840 if(start>limit) { |
|
1841 *status=U_INDEX_OUTOFBOUNDS_ERROR; |
|
1842 return 0; |
|
1843 } |
|
1844 |
|
1845 int32_t start32 = pinIndex(start, length); |
|
1846 int32_t limit32 = pinIndex(limit, length); |
|
1847 |
|
1848 // adjust start, limit if they point to trail half of surrogates |
|
1849 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && |
|
1850 U_IS_SUPPLEMENTARY(rep->char32At(start32))){ |
|
1851 start32--; |
|
1852 } |
|
1853 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && |
|
1854 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ |
|
1855 limit32--; |
|
1856 } |
|
1857 |
|
1858 length=limit32-start32; |
|
1859 if(length>destCapacity) { |
|
1860 limit32 = start32 + destCapacity; |
|
1861 } |
|
1862 UnicodeString buffer(dest, 0, destCapacity); // writable alias |
|
1863 rep->extractBetween(start32, limit32, buffer); |
|
1864 repTextAccess(ut, limit32, TRUE); |
|
1865 |
|
1866 return u_terminateUChars(dest, destCapacity, length, status); |
|
1867 } |
|
1868 |
|
1869 static int32_t U_CALLCONV |
|
1870 repTextReplace(UText *ut, |
|
1871 int64_t start, int64_t limit, |
|
1872 const UChar *src, int32_t length, |
|
1873 UErrorCode *status) { |
|
1874 Replaceable *rep=(Replaceable *)ut->context; |
|
1875 int32_t oldLength; |
|
1876 |
|
1877 if(U_FAILURE(*status)) { |
|
1878 return 0; |
|
1879 } |
|
1880 if(src==NULL && length!=0) { |
|
1881 *status=U_ILLEGAL_ARGUMENT_ERROR; |
|
1882 return 0; |
|
1883 } |
|
1884 oldLength=rep->length(); // will subtract from new length |
|
1885 if(start>limit ) { |
|
1886 *status=U_INDEX_OUTOFBOUNDS_ERROR; |
|
1887 return 0; |
|
1888 } |
|
1889 |
|
1890 int32_t start32 = pinIndex(start, oldLength); |
|
1891 int32_t limit32 = pinIndex(limit, oldLength); |
|
1892 |
|
1893 // Snap start & limit to code point boundaries. |
|
1894 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && |
|
1895 start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) |
|
1896 { |
|
1897 start32--; |
|
1898 } |
|
1899 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && |
|
1900 U16_IS_TRAIL(rep->charAt(limit32))) |
|
1901 { |
|
1902 limit32++; |
|
1903 } |
|
1904 |
|
1905 // Do the actual replace operation using methods of the Replaceable class |
|
1906 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias |
|
1907 rep->handleReplaceBetween(start32, limit32, replStr); |
|
1908 int32_t newLength = rep->length(); |
|
1909 int32_t lengthDelta = newLength - oldLength; |
|
1910 |
|
1911 // Is the UText chunk buffer OK? |
|
1912 if (ut->chunkNativeLimit > start32) { |
|
1913 // this replace operation may have impacted the current chunk. |
|
1914 // invalidate it, which will force a reload on the next access. |
|
1915 invalidateChunk(ut); |
|
1916 } |
|
1917 |
|
1918 // set the iteration position to the end of the newly inserted replacement text. |
|
1919 int32_t newIndexPos = limit32 + lengthDelta; |
|
1920 repTextAccess(ut, newIndexPos, TRUE); |
|
1921 |
|
1922 return lengthDelta; |
|
1923 } |
|
1924 |
|
1925 |
|
1926 static void U_CALLCONV |
|
1927 repTextCopy(UText *ut, |
|
1928 int64_t start, int64_t limit, |
|
1929 int64_t destIndex, |
|
1930 UBool move, |
|
1931 UErrorCode *status) |
|
1932 { |
|
1933 Replaceable *rep=(Replaceable *)ut->context; |
|
1934 int32_t length=rep->length(); |
|
1935 |
|
1936 if(U_FAILURE(*status)) { |
|
1937 return; |
|
1938 } |
|
1939 if (start>limit || (start<destIndex && destIndex<limit)) |
|
1940 { |
|
1941 *status=U_INDEX_OUTOFBOUNDS_ERROR; |
|
1942 return; |
|
1943 } |
|
1944 |
|
1945 int32_t start32 = pinIndex(start, length); |
|
1946 int32_t limit32 = pinIndex(limit, length); |
|
1947 int32_t destIndex32 = pinIndex(destIndex, length); |
|
1948 |
|
1949 // TODO: snap input parameters to code point boundaries. |
|
1950 |
|
1951 if(move) { |
|
1952 // move: copy to destIndex, then replace original with nothing |
|
1953 int32_t segLength=limit32-start32; |
|
1954 rep->copy(start32, limit32, destIndex32); |
|
1955 if(destIndex32<start32) { |
|
1956 start32+=segLength; |
|
1957 limit32+=segLength; |
|
1958 } |
|
1959 rep->handleReplaceBetween(start32, limit32, UnicodeString()); |
|
1960 } else { |
|
1961 // copy |
|
1962 rep->copy(start32, limit32, destIndex32); |
|
1963 } |
|
1964 |
|
1965 // If the change to the text touched the region in the chunk buffer, |
|
1966 // invalidate the buffer. |
|
1967 int32_t firstAffectedIndex = destIndex32; |
|
1968 if (move && start32<firstAffectedIndex) { |
|
1969 firstAffectedIndex = start32; |
|
1970 } |
|
1971 if (firstAffectedIndex < ut->chunkNativeLimit) { |
|
1972 // changes may have affected range covered by the chunk |
|
1973 invalidateChunk(ut); |
|
1974 } |
|
1975 |
|
1976 // Put iteration position at the newly inserted (moved) block, |
|
1977 int32_t nativeIterIndex = destIndex32 + limit32 - start32; |
|
1978 if (move && destIndex32>start32) { |
|
1979 // moved a block of text towards the end of the string. |
|
1980 nativeIterIndex = destIndex32; |
|
1981 } |
|
1982 |
|
1983 // Set position, reload chunk if needed. |
|
1984 repTextAccess(ut, nativeIterIndex, TRUE); |
|
1985 } |
|
1986 |
|
1987 static const struct UTextFuncs repFuncs = |
|
1988 { |
|
1989 sizeof(UTextFuncs), |
|
1990 0, 0, 0, // Reserved alignment padding |
|
1991 repTextClone, |
|
1992 repTextLength, |
|
1993 repTextAccess, |
|
1994 repTextExtract, |
|
1995 repTextReplace, |
|
1996 repTextCopy, |
|
1997 NULL, // MapOffsetToNative, |
|
1998 NULL, // MapIndexToUTF16, |
|
1999 repTextClose, |
|
2000 NULL, // spare 1 |
|
2001 NULL, // spare 2 |
|
2002 NULL // spare 3 |
|
2003 }; |
|
2004 |
|
2005 |
|
2006 U_CAPI UText * U_EXPORT2 |
|
2007 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
|
2008 { |
|
2009 if(U_FAILURE(*status)) { |
|
2010 return NULL; |
|
2011 } |
|
2012 if(rep==NULL) { |
|
2013 *status=U_ILLEGAL_ARGUMENT_ERROR; |
|
2014 return NULL; |
|
2015 } |
|
2016 ut = utext_setup(ut, sizeof(ReplExtra), status); |
|
2017 |
|
2018 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
|
2019 if(rep->hasMetaData()) { |
|
2020 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); |
|
2021 } |
|
2022 |
|
2023 ut->pFuncs = &repFuncs; |
|
2024 ut->context = rep; |
|
2025 return ut; |
|
2026 } |
|
2027 |
|
2028 U_CDECL_END |
|
2029 |
|
2030 |
|
2031 |
|
2032 |
|
2033 |
|
2034 |
|
2035 |
|
2036 |
|
2037 //------------------------------------------------------------------------------ |
|
2038 // |
|
2039 // UText implementation for UnicodeString (read/write) and |
|
2040 // for const UnicodeString (read only) |
|
2041 // (same implementation, only the flags are different) |
|
2042 // |
|
2043 // Use of UText data members: |
|
2044 // context pointer to UnicodeString |
|
2045 // p pointer to UnicodeString IF this UText owns the string |
|
2046 // and it must be deleted on close(). NULL otherwise. |
|
2047 // |
|
2048 //------------------------------------------------------------------------------ |
|
2049 |
|
2050 U_CDECL_BEGIN |
|
2051 |
|
2052 |
|
2053 static UText * U_CALLCONV |
|
2054 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
|
2055 // First do a generic shallow clone. Does everything needed for the UText struct itself. |
|
2056 dest = shallowTextClone(dest, src, status); |
|
2057 |
|
2058 // For deep clones, make a copy of the UnicodeSring. |
|
2059 // The copied UnicodeString storage is owned by the newly created UText clone. |
|
2060 // A non-NULL pointer in UText.p is the signal to the close() function to delete |
|
2061 // the UText. |
|
2062 // |
|
2063 if (deep && U_SUCCESS(*status)) { |
|
2064 const UnicodeString *srcString = (const UnicodeString *)src->context; |
|
2065 dest->context = new UnicodeString(*srcString); |
|
2066 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
|
2067 |
|
2068 // with deep clone, the copy is writable, even when the source is not. |
|
2069 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
|
2070 } |
|
2071 return dest; |
|
2072 } |
|
2073 |
|
2074 static void U_CALLCONV |
|
2075 unistrTextClose(UText *ut) { |
|
2076 // Most of the work of close is done by the generic UText framework close. |
|
2077 // All that needs to be done here is delete the UnicodeString if the UText |
|
2078 // owns it. This occurs if the UText was created by cloning. |
|
2079 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
|
2080 UnicodeString *str = (UnicodeString *)ut->context; |
|
2081 delete str; |
|
2082 ut->context = NULL; |
|
2083 } |
|
2084 } |
|
2085 |
|
2086 |
|
2087 static int64_t U_CALLCONV |
|
2088 unistrTextLength(UText *t) { |
|
2089 return ((const UnicodeString *)t->context)->length(); |
|
2090 } |
|
2091 |
|
2092 |
|
2093 static UBool U_CALLCONV |
|
2094 unistrTextAccess(UText *ut, int64_t index, UBool forward) { |
|
2095 int32_t length = ut->chunkLength; |
|
2096 ut->chunkOffset = pinIndex(index, length); |
|
2097 |
|
2098 // Check whether request is at the start or end |
|
2099 UBool retVal = (forward && index<length) || (!forward && index>0); |
|
2100 return retVal; |
|
2101 } |
|
2102 |
|
2103 |
|
2104 |
|
2105 static int32_t U_CALLCONV |
|
2106 unistrTextExtract(UText *t, |
|
2107 int64_t start, int64_t limit, |
|
2108 UChar *dest, int32_t destCapacity, |
|
2109 UErrorCode *pErrorCode) { |
|
2110 const UnicodeString *us=(const UnicodeString *)t->context; |
|
2111 int32_t length=us->length(); |
|
2112 |
|
2113 if(U_FAILURE(*pErrorCode)) { |
|
2114 return 0; |
|
2115 } |
|
2116 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
|
2117 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
2118 } |
|
2119 if(start<0 || start>limit) { |
|
2120 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
2121 return 0; |
|
2122 } |
|
2123 |
|
2124 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; |
|
2125 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; |
|
2126 |
|
2127 length=limit32-start32; |
|
2128 if (destCapacity>0 && dest!=NULL) { |
|
2129 int32_t trimmedLength = length; |
|
2130 if(trimmedLength>destCapacity) { |
|
2131 trimmedLength=destCapacity; |
|
2132 } |
|
2133 us->extract(start32, trimmedLength, dest); |
|
2134 t->chunkOffset = start32+trimmedLength; |
|
2135 } else { |
|
2136 t->chunkOffset = start32; |
|
2137 } |
|
2138 u_terminateUChars(dest, destCapacity, length, pErrorCode); |
|
2139 return length; |
|
2140 } |
|
2141 |
|
2142 static int32_t U_CALLCONV |
|
2143 unistrTextReplace(UText *ut, |
|
2144 int64_t start, int64_t limit, |
|
2145 const UChar *src, int32_t length, |
|
2146 UErrorCode *pErrorCode) { |
|
2147 UnicodeString *us=(UnicodeString *)ut->context; |
|
2148 int32_t oldLength; |
|
2149 |
|
2150 if(U_FAILURE(*pErrorCode)) { |
|
2151 return 0; |
|
2152 } |
|
2153 if(src==NULL && length!=0) { |
|
2154 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
2155 } |
|
2156 if(start>limit) { |
|
2157 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
2158 return 0; |
|
2159 } |
|
2160 oldLength=us->length(); |
|
2161 int32_t start32 = pinIndex(start, oldLength); |
|
2162 int32_t limit32 = pinIndex(limit, oldLength); |
|
2163 if (start32 < oldLength) { |
|
2164 start32 = us->getChar32Start(start32); |
|
2165 } |
|
2166 if (limit32 < oldLength) { |
|
2167 limit32 = us->getChar32Start(limit32); |
|
2168 } |
|
2169 |
|
2170 // replace |
|
2171 us->replace(start32, limit32-start32, src, length); |
|
2172 int32_t newLength = us->length(); |
|
2173 |
|
2174 // Update the chunk description. |
|
2175 ut->chunkContents = us->getBuffer(); |
|
2176 ut->chunkLength = newLength; |
|
2177 ut->chunkNativeLimit = newLength; |
|
2178 ut->nativeIndexingLimit = newLength; |
|
2179 |
|
2180 // Set iteration position to the point just following the newly inserted text. |
|
2181 int32_t lengthDelta = newLength - oldLength; |
|
2182 ut->chunkOffset = limit32 + lengthDelta; |
|
2183 |
|
2184 return lengthDelta; |
|
2185 } |
|
2186 |
|
2187 static void U_CALLCONV |
|
2188 unistrTextCopy(UText *ut, |
|
2189 int64_t start, int64_t limit, |
|
2190 int64_t destIndex, |
|
2191 UBool move, |
|
2192 UErrorCode *pErrorCode) { |
|
2193 UnicodeString *us=(UnicodeString *)ut->context; |
|
2194 int32_t length=us->length(); |
|
2195 |
|
2196 if(U_FAILURE(*pErrorCode)) { |
|
2197 return; |
|
2198 } |
|
2199 int32_t start32 = pinIndex(start, length); |
|
2200 int32_t limit32 = pinIndex(limit, length); |
|
2201 int32_t destIndex32 = pinIndex(destIndex, length); |
|
2202 |
|
2203 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { |
|
2204 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
|
2205 return; |
|
2206 } |
|
2207 |
|
2208 if(move) { |
|
2209 // move: copy to destIndex, then replace original with nothing |
|
2210 int32_t segLength=limit32-start32; |
|
2211 us->copy(start32, limit32, destIndex32); |
|
2212 if(destIndex32<start32) { |
|
2213 start32+=segLength; |
|
2214 } |
|
2215 us->replace(start32, segLength, NULL, 0); |
|
2216 } else { |
|
2217 // copy |
|
2218 us->copy(start32, limit32, destIndex32); |
|
2219 } |
|
2220 |
|
2221 // update chunk description, set iteration position. |
|
2222 ut->chunkContents = us->getBuffer(); |
|
2223 if (move==FALSE) { |
|
2224 // copy operation, string length grows |
|
2225 ut->chunkLength += limit32-start32; |
|
2226 ut->chunkNativeLimit = ut->chunkLength; |
|
2227 ut->nativeIndexingLimit = ut->chunkLength; |
|
2228 } |
|
2229 |
|
2230 // Iteration position to end of the newly inserted text. |
|
2231 ut->chunkOffset = destIndex32+limit32-start32; |
|
2232 if (move && destIndex32>start32) { |
|
2233 ut->chunkOffset = destIndex32; |
|
2234 } |
|
2235 |
|
2236 } |
|
2237 |
|
2238 static const struct UTextFuncs unistrFuncs = |
|
2239 { |
|
2240 sizeof(UTextFuncs), |
|
2241 0, 0, 0, // Reserved alignment padding |
|
2242 unistrTextClone, |
|
2243 unistrTextLength, |
|
2244 unistrTextAccess, |
|
2245 unistrTextExtract, |
|
2246 unistrTextReplace, |
|
2247 unistrTextCopy, |
|
2248 NULL, // MapOffsetToNative, |
|
2249 NULL, // MapIndexToUTF16, |
|
2250 unistrTextClose, |
|
2251 NULL, // spare 1 |
|
2252 NULL, // spare 2 |
|
2253 NULL // spare 3 |
|
2254 }; |
|
2255 |
|
2256 |
|
2257 |
|
2258 U_CDECL_END |
|
2259 |
|
2260 |
|
2261 U_CAPI UText * U_EXPORT2 |
|
2262 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
|
2263 ut = utext_openConstUnicodeString(ut, s, status); |
|
2264 if (U_SUCCESS(*status)) { |
|
2265 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
|
2266 } |
|
2267 return ut; |
|
2268 } |
|
2269 |
|
2270 |
|
2271 |
|
2272 U_CAPI UText * U_EXPORT2 |
|
2273 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { |
|
2274 if (U_SUCCESS(*status) && s->isBogus()) { |
|
2275 // The UnicodeString is bogus, but we still need to detach the UText |
|
2276 // from whatever it was hooked to before, if anything. |
|
2277 utext_openUChars(ut, NULL, 0, status); |
|
2278 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
2279 return ut; |
|
2280 } |
|
2281 ut = utext_setup(ut, 0, status); |
|
2282 // note: use the standard (writable) function table for UnicodeString. |
|
2283 // The flag settings disable writing, so having the functions in |
|
2284 // the table is harmless. |
|
2285 if (U_SUCCESS(*status)) { |
|
2286 ut->pFuncs = &unistrFuncs; |
|
2287 ut->context = s; |
|
2288 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
|
2289 ut->chunkContents = s->getBuffer(); |
|
2290 ut->chunkLength = s->length(); |
|
2291 ut->chunkNativeStart = 0; |
|
2292 ut->chunkNativeLimit = ut->chunkLength; |
|
2293 ut->nativeIndexingLimit = ut->chunkLength; |
|
2294 } |
|
2295 return ut; |
|
2296 } |
|
2297 |
|
2298 //------------------------------------------------------------------------------ |
|
2299 // |
|
2300 // UText implementation for const UChar * strings |
|
2301 // |
|
2302 // Use of UText data members: |
|
2303 // context pointer to UnicodeString |
|
2304 // a length. -1 if not yet known. |
|
2305 // |
|
2306 // TODO: support 64 bit lengths. |
|
2307 // |
|
2308 //------------------------------------------------------------------------------ |
|
2309 |
|
2310 U_CDECL_BEGIN |
|
2311 |
|
2312 |
|
2313 static UText * U_CALLCONV |
|
2314 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { |
|
2315 // First do a generic shallow clone. |
|
2316 dest = shallowTextClone(dest, src, status); |
|
2317 |
|
2318 // For deep clones, make a copy of the string. |
|
2319 // The copied storage is owned by the newly created clone. |
|
2320 // A non-NULL pointer in UText.p is the signal to the close() function to delete |
|
2321 // it. |
|
2322 // |
|
2323 if (deep && U_SUCCESS(*status)) { |
|
2324 U_ASSERT(utext_nativeLength(dest) < INT32_MAX); |
|
2325 int32_t len = (int32_t)utext_nativeLength(dest); |
|
2326 |
|
2327 // The cloned string IS going to be NUL terminated, whether or not the original was. |
|
2328 const UChar *srcStr = (const UChar *)src->context; |
|
2329 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); |
|
2330 if (copyStr == NULL) { |
|
2331 *status = U_MEMORY_ALLOCATION_ERROR; |
|
2332 } else { |
|
2333 int64_t i; |
|
2334 for (i=0; i<len; i++) { |
|
2335 copyStr[i] = srcStr[i]; |
|
2336 } |
|
2337 copyStr[len] = 0; |
|
2338 dest->context = copyStr; |
|
2339 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
|
2340 } |
|
2341 } |
|
2342 return dest; |
|
2343 } |
|
2344 |
|
2345 |
|
2346 static void U_CALLCONV |
|
2347 ucstrTextClose(UText *ut) { |
|
2348 // Most of the work of close is done by the generic UText framework close. |
|
2349 // All that needs to be done here is delete the string if the UText |
|
2350 // owns it. This occurs if the UText was created by cloning. |
|
2351 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
|
2352 UChar *s = (UChar *)ut->context; |
|
2353 uprv_free(s); |
|
2354 ut->context = NULL; |
|
2355 } |
|
2356 } |
|
2357 |
|
2358 |
|
2359 |
|
2360 static int64_t U_CALLCONV |
|
2361 ucstrTextLength(UText *ut) { |
|
2362 if (ut->a < 0) { |
|
2363 // null terminated, we don't yet know the length. Scan for it. |
|
2364 // Access is not convenient for doing this |
|
2365 // because the current interation postion can't be changed. |
|
2366 const UChar *str = (const UChar *)ut->context; |
|
2367 for (;;) { |
|
2368 if (str[ut->chunkNativeLimit] == 0) { |
|
2369 break; |
|
2370 } |
|
2371 ut->chunkNativeLimit++; |
|
2372 } |
|
2373 ut->a = ut->chunkNativeLimit; |
|
2374 ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
|
2375 ut->nativeIndexingLimit = ut->chunkLength; |
|
2376 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
2377 } |
|
2378 return ut->a; |
|
2379 } |
|
2380 |
|
2381 |
|
2382 static UBool U_CALLCONV |
|
2383 ucstrTextAccess(UText *ut, int64_t index, UBool forward) { |
|
2384 const UChar *str = (const UChar *)ut->context; |
|
2385 |
|
2386 // pin the requested index to the bounds of the string, |
|
2387 // and set current iteration position. |
|
2388 if (index<0) { |
|
2389 index = 0; |
|
2390 } else if (index < ut->chunkNativeLimit) { |
|
2391 // The request data is within the chunk as it is known so far. |
|
2392 // Put index on a code point boundary. |
|
2393 U16_SET_CP_START(str, 0, index); |
|
2394 } else if (ut->a >= 0) { |
|
2395 // We know the length of this string, and the user is requesting something |
|
2396 // at or beyond the length. Pin the requested index to the length. |
|
2397 index = ut->a; |
|
2398 } else { |
|
2399 // Null terminated string, length not yet known, and the requested index |
|
2400 // is beyond where we have scanned so far. |
|
2401 // Scan to 32 UChars beyond the requested index. The strategy here is |
|
2402 // to avoid fully scanning a long string when the caller only wants to |
|
2403 // see a few characters at its beginning. |
|
2404 int32_t scanLimit = (int32_t)index + 32; |
|
2405 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression |
|
2406 scanLimit = INT32_MAX; |
|
2407 } |
|
2408 |
|
2409 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; |
|
2410 for (; chunkLimit<scanLimit; chunkLimit++) { |
|
2411 if (str[chunkLimit] == 0) { |
|
2412 // We found the end of the string. Remember it, pin the requested index to it, |
|
2413 // and bail out of here. |
|
2414 ut->a = chunkLimit; |
|
2415 ut->chunkLength = chunkLimit; |
|
2416 ut->nativeIndexingLimit = chunkLimit; |
|
2417 if (index >= chunkLimit) { |
|
2418 index = chunkLimit; |
|
2419 } else { |
|
2420 U16_SET_CP_START(str, 0, index); |
|
2421 } |
|
2422 |
|
2423 ut->chunkNativeLimit = chunkLimit; |
|
2424 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
2425 goto breakout; |
|
2426 } |
|
2427 } |
|
2428 // We scanned through the next batch of UChars without finding the end. |
|
2429 U16_SET_CP_START(str, 0, index); |
|
2430 if (chunkLimit == INT32_MAX) { |
|
2431 // Scanned to the limit of a 32 bit length. |
|
2432 // Forceably trim the overlength string back so length fits in int32 |
|
2433 // TODO: add support for 64 bit strings. |
|
2434 ut->a = chunkLimit; |
|
2435 ut->chunkLength = chunkLimit; |
|
2436 ut->nativeIndexingLimit = chunkLimit; |
|
2437 if (index > chunkLimit) { |
|
2438 index = chunkLimit; |
|
2439 } |
|
2440 ut->chunkNativeLimit = chunkLimit; |
|
2441 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
2442 } else { |
|
2443 // The endpoint of a chunk must not be left in the middle of a surrogate pair. |
|
2444 // If the current end is on a lead surrogate, back the end up by one. |
|
2445 // It doesn't matter if the end char happens to be an unpaired surrogate, |
|
2446 // and it's simpler not to worry about it. |
|
2447 if (U16_IS_LEAD(str[chunkLimit-1])) { |
|
2448 --chunkLimit; |
|
2449 } |
|
2450 // Null-terminated chunk with end still unknown. |
|
2451 // Update the chunk length to reflect what has been scanned thus far. |
|
2452 // That the full length is still unknown is (still) flagged by |
|
2453 // ut->a being < 0. |
|
2454 ut->chunkNativeLimit = chunkLimit; |
|
2455 ut->nativeIndexingLimit = chunkLimit; |
|
2456 ut->chunkLength = chunkLimit; |
|
2457 } |
|
2458 |
|
2459 } |
|
2460 breakout: |
|
2461 U_ASSERT(index<=INT32_MAX); |
|
2462 ut->chunkOffset = (int32_t)index; |
|
2463 |
|
2464 // Check whether request is at the start or end |
|
2465 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); |
|
2466 return retVal; |
|
2467 } |
|
2468 |
|
2469 |
|
2470 |
|
2471 static int32_t U_CALLCONV |
|
2472 ucstrTextExtract(UText *ut, |
|
2473 int64_t start, int64_t limit, |
|
2474 UChar *dest, int32_t destCapacity, |
|
2475 UErrorCode *pErrorCode) |
|
2476 { |
|
2477 if(U_FAILURE(*pErrorCode)) { |
|
2478 return 0; |
|
2479 } |
|
2480 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
|
2481 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
|
2482 return 0; |
|
2483 } |
|
2484 |
|
2485 //const UChar *s=(const UChar *)ut->context; |
|
2486 int32_t si, di; |
|
2487 |
|
2488 int32_t start32; |
|
2489 int32_t limit32; |
|
2490 |
|
2491 // Access the start. Does two things we need: |
|
2492 // Pins 'start' to the length of the string, if it came in out-of-bounds. |
|
2493 // Snaps 'start' to the beginning of a code point. |
|
2494 ucstrTextAccess(ut, start, TRUE); |
|
2495 const UChar *s=ut->chunkContents; |
|
2496 start32 = ut->chunkOffset; |
|
2497 |
|
2498 int32_t strLength=(int32_t)ut->a; |
|
2499 if (strLength >= 0) { |
|
2500 limit32 = pinIndex(limit, strLength); |
|
2501 } else { |
|
2502 limit32 = pinIndex(limit, INT32_MAX); |
|
2503 } |
|
2504 di = 0; |
|
2505 for (si=start32; si<limit32; si++) { |
|
2506 if (strLength<0 && s[si]==0) { |
|
2507 // Just hit the end of a null-terminated string. |
|
2508 ut->a = si; // set string length for this UText |
|
2509 ut->chunkNativeLimit = si; |
|
2510 ut->chunkLength = si; |
|
2511 ut->nativeIndexingLimit = si; |
|
2512 strLength = si; |
|
2513 break; |
|
2514 } |
|
2515 U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */ |
|
2516 if (di<destCapacity) { |
|
2517 // only store if there is space. |
|
2518 dest[di] = s[si]; |
|
2519 } else { |
|
2520 if (strLength>=0) { |
|
2521 // We have filled the destination buffer, and the string length is known. |
|
2522 // Cut the loop short. There is no need to scan string termination. |
|
2523 di = limit32 - start32; |
|
2524 si = limit32; |
|
2525 break; |
|
2526 } |
|
2527 } |
|
2528 di++; |
|
2529 } |
|
2530 |
|
2531 // If the limit index points to a lead surrogate of a pair, |
|
2532 // add the corresponding trail surrogate to the destination. |
|
2533 if (si>0 && U16_IS_LEAD(s[si-1]) && |
|
2534 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
|
2535 { |
|
2536 if (di<destCapacity) { |
|
2537 // store only if there is space in the output buffer. |
|
2538 dest[di++] = s[si++]; |
|
2539 } |
|
2540 } |
|
2541 |
|
2542 // Put iteration position at the point just following the extracted text |
|
2543 ut->chunkOffset = uprv_min(strLength, start32 + destCapacity); |
|
2544 |
|
2545 // Add a terminating NUL if space in the buffer permits, |
|
2546 // and set the error status as required. |
|
2547 u_terminateUChars(dest, destCapacity, di, pErrorCode); |
|
2548 return di; |
|
2549 } |
|
2550 |
|
2551 static const struct UTextFuncs ucstrFuncs = |
|
2552 { |
|
2553 sizeof(UTextFuncs), |
|
2554 0, 0, 0, // Reserved alignment padding |
|
2555 ucstrTextClone, |
|
2556 ucstrTextLength, |
|
2557 ucstrTextAccess, |
|
2558 ucstrTextExtract, |
|
2559 NULL, // Replace |
|
2560 NULL, // Copy |
|
2561 NULL, // MapOffsetToNative, |
|
2562 NULL, // MapIndexToUTF16, |
|
2563 ucstrTextClose, |
|
2564 NULL, // spare 1 |
|
2565 NULL, // spare 2 |
|
2566 NULL, // spare 3 |
|
2567 }; |
|
2568 |
|
2569 U_CDECL_END |
|
2570 |
|
2571 static const UChar gEmptyUString[] = {0}; |
|
2572 |
|
2573 U_CAPI UText * U_EXPORT2 |
|
2574 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) { |
|
2575 if (U_FAILURE(*status)) { |
|
2576 return NULL; |
|
2577 } |
|
2578 if(s==NULL && length==0) { |
|
2579 s = gEmptyUString; |
|
2580 } |
|
2581 if (s==NULL || length < -1 || length>INT32_MAX) { |
|
2582 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
2583 return NULL; |
|
2584 } |
|
2585 ut = utext_setup(ut, 0, status); |
|
2586 if (U_SUCCESS(*status)) { |
|
2587 ut->pFuncs = &ucstrFuncs; |
|
2588 ut->context = s; |
|
2589 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
|
2590 if (length==-1) { |
|
2591 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
|
2592 } |
|
2593 ut->a = length; |
|
2594 ut->chunkContents = s; |
|
2595 ut->chunkNativeStart = 0; |
|
2596 ut->chunkNativeLimit = length>=0? length : 0; |
|
2597 ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
|
2598 ut->chunkOffset = 0; |
|
2599 ut->nativeIndexingLimit = ut->chunkLength; |
|
2600 } |
|
2601 return ut; |
|
2602 } |
|
2603 |
|
2604 |
|
2605 //------------------------------------------------------------------------------ |
|
2606 // |
|
2607 // UText implementation for text from ICU CharacterIterators |
|
2608 // |
|
2609 // Use of UText data members: |
|
2610 // context pointer to the CharacterIterator |
|
2611 // a length of the full text. |
|
2612 // p pointer to buffer 1 |
|
2613 // b start index of local buffer 1 contents |
|
2614 // q pointer to buffer 2 |
|
2615 // c start index of local buffer 2 contents |
|
2616 // r pointer to the character iterator if the UText owns it. |
|
2617 // Null otherwise. |
|
2618 // |
|
2619 //------------------------------------------------------------------------------ |
|
2620 #define CIBufSize 16 |
|
2621 |
|
2622 U_CDECL_BEGIN |
|
2623 static void U_CALLCONV |
|
2624 charIterTextClose(UText *ut) { |
|
2625 // Most of the work of close is done by the generic UText framework close. |
|
2626 // All that needs to be done here is delete the CharacterIterator if the UText |
|
2627 // owns it. This occurs if the UText was created by cloning. |
|
2628 CharacterIterator *ci = (CharacterIterator *)ut->r; |
|
2629 delete ci; |
|
2630 ut->r = NULL; |
|
2631 } |
|
2632 |
|
2633 static int64_t U_CALLCONV |
|
2634 charIterTextLength(UText *ut) { |
|
2635 return (int32_t)ut->a; |
|
2636 } |
|
2637 |
|
2638 static UBool U_CALLCONV |
|
2639 charIterTextAccess(UText *ut, int64_t index, UBool forward) { |
|
2640 CharacterIterator *ci = (CharacterIterator *)ut->context; |
|
2641 |
|
2642 int32_t clippedIndex = (int32_t)index; |
|
2643 if (clippedIndex<0) { |
|
2644 clippedIndex=0; |
|
2645 } else if (clippedIndex>=ut->a) { |
|
2646 clippedIndex=(int32_t)ut->a; |
|
2647 } |
|
2648 int32_t neededIndex = clippedIndex; |
|
2649 if (!forward && neededIndex>0) { |
|
2650 // reverse iteration, want the position just before what was asked for. |
|
2651 neededIndex--; |
|
2652 } else if (forward && neededIndex==ut->a && neededIndex>0) { |
|
2653 // Forward iteration, don't ask for something past the end of the text. |
|
2654 neededIndex--; |
|
2655 } |
|
2656 |
|
2657 // Find the native index of the start of the buffer containing what we want. |
|
2658 neededIndex -= neededIndex % CIBufSize; |
|
2659 |
|
2660 UChar *buf = NULL; |
|
2661 UBool needChunkSetup = TRUE; |
|
2662 int i; |
|
2663 if (ut->chunkNativeStart == neededIndex) { |
|
2664 // The buffer we want is already the current chunk. |
|
2665 needChunkSetup = FALSE; |
|
2666 } else if (ut->b == neededIndex) { |
|
2667 // The first buffer (buffer p) has what we need. |
|
2668 buf = (UChar *)ut->p; |
|
2669 } else if (ut->c == neededIndex) { |
|
2670 // The second buffer (buffer q) has what we need. |
|
2671 buf = (UChar *)ut->q; |
|
2672 } else { |
|
2673 // Neither buffer already has what we need. |
|
2674 // Load new data from the character iterator. |
|
2675 // Use the buf that is not the current buffer. |
|
2676 buf = (UChar *)ut->p; |
|
2677 if (ut->p == ut->chunkContents) { |
|
2678 buf = (UChar *)ut->q; |
|
2679 } |
|
2680 ci->setIndex(neededIndex); |
|
2681 for (i=0; i<CIBufSize; i++) { |
|
2682 buf[i] = ci->nextPostInc(); |
|
2683 if (i+neededIndex > ut->a) { |
|
2684 break; |
|
2685 } |
|
2686 } |
|
2687 } |
|
2688 |
|
2689 // We have a buffer with the data we need. |
|
2690 // Set it up as the current chunk, if it wasn't already. |
|
2691 if (needChunkSetup) { |
|
2692 ut->chunkContents = buf; |
|
2693 ut->chunkLength = CIBufSize; |
|
2694 ut->chunkNativeStart = neededIndex; |
|
2695 ut->chunkNativeLimit = neededIndex + CIBufSize; |
|
2696 if (ut->chunkNativeLimit > ut->a) { |
|
2697 ut->chunkNativeLimit = ut->a; |
|
2698 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); |
|
2699 } |
|
2700 ut->nativeIndexingLimit = ut->chunkLength; |
|
2701 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); |
|
2702 } |
|
2703 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; |
|
2704 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0); |
|
2705 return success; |
|
2706 } |
|
2707 |
|
2708 static UText * U_CALLCONV |
|
2709 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { |
|
2710 if (U_FAILURE(*status)) { |
|
2711 return NULL; |
|
2712 } |
|
2713 |
|
2714 if (deep) { |
|
2715 // There is no CharacterIterator API for cloning the underlying text storage. |
|
2716 *status = U_UNSUPPORTED_ERROR; |
|
2717 return NULL; |
|
2718 } else { |
|
2719 CharacterIterator *srcCI =(CharacterIterator *)src->context; |
|
2720 srcCI = srcCI->clone(); |
|
2721 dest = utext_openCharacterIterator(dest, srcCI, status); |
|
2722 // cast off const on getNativeIndex. |
|
2723 // For CharacterIterator based UTexts, this is safe, the operation is const. |
|
2724 int64_t ix = utext_getNativeIndex((UText *)src); |
|
2725 utext_setNativeIndex(dest, ix); |
|
2726 dest->r = srcCI; // flags that this UText owns the CharacterIterator |
|
2727 } |
|
2728 return dest; |
|
2729 } |
|
2730 |
|
2731 static int32_t U_CALLCONV |
|
2732 charIterTextExtract(UText *ut, |
|
2733 int64_t start, int64_t limit, |
|
2734 UChar *dest, int32_t destCapacity, |
|
2735 UErrorCode *status) |
|
2736 { |
|
2737 if(U_FAILURE(*status)) { |
|
2738 return 0; |
|
2739 } |
|
2740 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
|
2741 *status=U_ILLEGAL_ARGUMENT_ERROR; |
|
2742 return 0; |
|
2743 } |
|
2744 int32_t length = (int32_t)ut->a; |
|
2745 int32_t start32 = pinIndex(start, length); |
|
2746 int32_t limit32 = pinIndex(limit, length); |
|
2747 int32_t desti = 0; |
|
2748 int32_t srci; |
|
2749 int32_t copyLimit; |
|
2750 |
|
2751 CharacterIterator *ci = (CharacterIterator *)ut->context; |
|
2752 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. |
|
2753 srci = ci->getIndex(); |
|
2754 copyLimit = srci; |
|
2755 while (srci<limit32) { |
|
2756 UChar32 c = ci->next32PostInc(); |
|
2757 int32_t len = U16_LENGTH(c); |
|
2758 U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */ |
|
2759 if (desti+len <= destCapacity) { |
|
2760 U16_APPEND_UNSAFE(dest, desti, c); |
|
2761 copyLimit = srci+len; |
|
2762 } else { |
|
2763 desti += len; |
|
2764 *status = U_BUFFER_OVERFLOW_ERROR; |
|
2765 } |
|
2766 srci += len; |
|
2767 } |
|
2768 |
|
2769 charIterTextAccess(ut, copyLimit, TRUE); |
|
2770 |
|
2771 u_terminateUChars(dest, destCapacity, desti, status); |
|
2772 return desti; |
|
2773 } |
|
2774 |
|
2775 static const struct UTextFuncs charIterFuncs = |
|
2776 { |
|
2777 sizeof(UTextFuncs), |
|
2778 0, 0, 0, // Reserved alignment padding |
|
2779 charIterTextClone, |
|
2780 charIterTextLength, |
|
2781 charIterTextAccess, |
|
2782 charIterTextExtract, |
|
2783 NULL, // Replace |
|
2784 NULL, // Copy |
|
2785 NULL, // MapOffsetToNative, |
|
2786 NULL, // MapIndexToUTF16, |
|
2787 charIterTextClose, |
|
2788 NULL, // spare 1 |
|
2789 NULL, // spare 2 |
|
2790 NULL // spare 3 |
|
2791 }; |
|
2792 U_CDECL_END |
|
2793 |
|
2794 |
|
2795 U_CAPI UText * U_EXPORT2 |
|
2796 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { |
|
2797 if (U_FAILURE(*status)) { |
|
2798 return NULL; |
|
2799 } |
|
2800 |
|
2801 if (ci->startIndex() > 0) { |
|
2802 // No support for CharacterIterators that do not start indexing from zero. |
|
2803 *status = U_UNSUPPORTED_ERROR; |
|
2804 return NULL; |
|
2805 } |
|
2806 |
|
2807 // Extra space in UText for 2 buffers of CIBufSize UChars each. |
|
2808 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar); |
|
2809 ut = utext_setup(ut, extraSpace, status); |
|
2810 if (U_SUCCESS(*status)) { |
|
2811 ut->pFuncs = &charIterFuncs; |
|
2812 ut->context = ci; |
|
2813 ut->providerProperties = 0; |
|
2814 ut->a = ci->endIndex(); // Length of text |
|
2815 ut->p = ut->pExtra; // First buffer |
|
2816 ut->b = -1; // Native index of first buffer contents |
|
2817 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer |
|
2818 ut->c = -1; // Native index of second buffer contents |
|
2819 |
|
2820 // Initialize current chunk contents to be empty. |
|
2821 // First access will fault something in. |
|
2822 // Note: The initial nativeStart and chunkOffset must sum to zero |
|
2823 // so that getNativeIndex() will correctly compute to zero |
|
2824 // if no call to Access() has ever been made. They can't be both |
|
2825 // zero without Access() thinking that the chunk is valid. |
|
2826 ut->chunkContents = (UChar *)ut->p; |
|
2827 ut->chunkNativeStart = -1; |
|
2828 ut->chunkOffset = 1; |
|
2829 ut->chunkNativeLimit = 0; |
|
2830 ut->chunkLength = 0; |
|
2831 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing |
|
2832 } |
|
2833 return ut; |
|
2834 } |
|
2835 |
|
2836 |
|
2837 |