|
1 /* |
|
2 ******************************************************************************* |
|
3 * Copyright (C) 1997-2013, International Business Machines Corporation and |
|
4 * others. All Rights Reserved. |
|
5 ******************************************************************************* |
|
6 * |
|
7 * File GREGOCAL.CPP |
|
8 * |
|
9 * Modification History: |
|
10 * |
|
11 * Date Name Description |
|
12 * 02/05/97 clhuang Creation. |
|
13 * 03/28/97 aliu Made highly questionable fix to computeFields to |
|
14 * handle DST correctly. |
|
15 * 04/22/97 aliu Cleaned up code drastically. Added monthLength(). |
|
16 * Finished unimplemented parts of computeTime() for |
|
17 * week-based date determination. Removed quetionable |
|
18 * fix and wrote correct fix for computeFields() and |
|
19 * daylight time handling. Rewrote inDaylightTime() |
|
20 * and computeFields() to handle sensitive Daylight to |
|
21 * Standard time transitions correctly. |
|
22 * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to |
|
23 * not cutover. |
|
24 * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated |
|
25 * add() from Java source. |
|
26 * 07/28/98 stephen Sync up with JDK 1.2 |
|
27 * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double. |
|
28 * Fixed bug in roll() |
|
29 * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation. |
|
30 * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD. |
|
31 * {JDK bug 4210209 4209272} |
|
32 * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation |
|
33 * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues |
|
34 * 12/09/99 aliu Fixed j81, calculation errors and roll bugs |
|
35 * in year of cutover. |
|
36 * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY. |
|
37 ******************************************************************************** |
|
38 */ |
|
39 |
|
40 #include "unicode/utypes.h" |
|
41 #include <float.h> |
|
42 |
|
43 #if !UCONFIG_NO_FORMATTING |
|
44 |
|
45 #include "unicode/gregocal.h" |
|
46 #include "gregoimp.h" |
|
47 #include "umutex.h" |
|
48 #include "uassert.h" |
|
49 |
|
50 // ***************************************************************************** |
|
51 // class GregorianCalendar |
|
52 // ***************************************************************************** |
|
53 |
|
54 /** |
|
55 * Note that the Julian date used here is not a true Julian date, since |
|
56 * it is measured from midnight, not noon. This value is the Julian |
|
57 * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU] |
|
58 */ |
|
59 |
|
60 static const int16_t kNumDays[] |
|
61 = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year |
|
62 static const int16_t kLeapNumDays[] |
|
63 = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year |
|
64 static const int8_t kMonthLength[] |
|
65 = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based |
|
66 static const int8_t kLeapMonthLength[] |
|
67 = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based |
|
68 |
|
69 // setTimeInMillis() limits the Julian day range to +/-7F000000. |
|
70 // This would seem to limit the year range to: |
|
71 // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD |
|
72 // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC |
|
73 // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual |
|
74 // range limit on the year field is smaller (~ +/-140000). [alan 3.0] |
|
75 |
|
76 static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = { |
|
77 // Minimum Greatest Least Maximum |
|
78 // Minimum Maximum |
|
79 { 0, 0, 1, 1}, // ERA |
|
80 { 1, 1, 140742, 144683}, // YEAR |
|
81 { 0, 0, 11, 11}, // MONTH |
|
82 { 1, 1, 52, 53}, // WEEK_OF_YEAR |
|
83 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
|
84 { 1, 1, 28, 31}, // DAY_OF_MONTH |
|
85 { 1, 1, 365, 366}, // DAY_OF_YEAR |
|
86 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
|
87 { -1, -1, 4, 5}, // DAY_OF_WEEK_IN_MONTH |
|
88 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
|
89 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
|
90 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
|
91 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
|
92 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
|
93 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
|
94 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
|
95 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
|
96 { -140742, -140742, 140742, 144683}, // YEAR_WOY |
|
97 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
|
98 { -140742, -140742, 140742, 144683}, // EXTENDED_YEAR |
|
99 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
|
100 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
|
101 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
|
102 }; |
|
103 |
|
104 /* |
|
105 * <pre> |
|
106 * Greatest Least |
|
107 * Field name Minimum Minimum Maximum Maximum |
|
108 * ---------- ------- ------- ------- ------- |
|
109 * ERA 0 0 1 1 |
|
110 * YEAR 1 1 140742 144683 |
|
111 * MONTH 0 0 11 11 |
|
112 * WEEK_OF_YEAR 1 1 52 53 |
|
113 * WEEK_OF_MONTH 0 0 4 6 |
|
114 * DAY_OF_MONTH 1 1 28 31 |
|
115 * DAY_OF_YEAR 1 1 365 366 |
|
116 * DAY_OF_WEEK 1 1 7 7 |
|
117 * DAY_OF_WEEK_IN_MONTH -1 -1 4 5 |
|
118 * AM_PM 0 0 1 1 |
|
119 * HOUR 0 0 11 11 |
|
120 * HOUR_OF_DAY 0 0 23 23 |
|
121 * MINUTE 0 0 59 59 |
|
122 * SECOND 0 0 59 59 |
|
123 * MILLISECOND 0 0 999 999 |
|
124 * ZONE_OFFSET -12* -12* 12* 12* |
|
125 * DST_OFFSET 0 0 1* 1* |
|
126 * YEAR_WOY 1 1 140742 144683 |
|
127 * DOW_LOCAL 1 1 7 7 |
|
128 * </pre> |
|
129 * (*) In units of one-hour |
|
130 */ |
|
131 |
|
132 #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL) |
|
133 #include <stdio.h> |
|
134 #endif |
|
135 |
|
136 U_NAMESPACE_BEGIN |
|
137 |
|
138 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar) |
|
139 |
|
140 // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch. |
|
141 // Note that only Italy and other Catholic countries actually |
|
142 // observed this cutover. Most other countries followed in |
|
143 // the next few centuries, some as late as 1928. [LIU] |
|
144 // in Java, -12219292800000L |
|
145 //const UDate GregorianCalendar::kPapalCutover = -12219292800000L; |
|
146 static const uint32_t kCutoverJulianDay = 2299161; |
|
147 static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY; |
|
148 //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay); |
|
149 |
|
150 // ------------------------------------- |
|
151 |
|
152 GregorianCalendar::GregorianCalendar(UErrorCode& status) |
|
153 : Calendar(status), |
|
154 fGregorianCutover(kPapalCutover), |
|
155 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
156 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
157 { |
|
158 setTimeInMillis(getNow(), status); |
|
159 } |
|
160 |
|
161 // ------------------------------------- |
|
162 |
|
163 GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status) |
|
164 : Calendar(zone, Locale::getDefault(), status), |
|
165 fGregorianCutover(kPapalCutover), |
|
166 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
167 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
168 { |
|
169 setTimeInMillis(getNow(), status); |
|
170 } |
|
171 |
|
172 // ------------------------------------- |
|
173 |
|
174 GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status) |
|
175 : Calendar(zone, Locale::getDefault(), status), |
|
176 fGregorianCutover(kPapalCutover), |
|
177 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
178 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
179 { |
|
180 setTimeInMillis(getNow(), status); |
|
181 } |
|
182 |
|
183 // ------------------------------------- |
|
184 |
|
185 GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status) |
|
186 : Calendar(TimeZone::createDefault(), aLocale, status), |
|
187 fGregorianCutover(kPapalCutover), |
|
188 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
189 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
190 { |
|
191 setTimeInMillis(getNow(), status); |
|
192 } |
|
193 |
|
194 // ------------------------------------- |
|
195 |
|
196 GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale, |
|
197 UErrorCode& status) |
|
198 : Calendar(zone, aLocale, status), |
|
199 fGregorianCutover(kPapalCutover), |
|
200 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
201 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
202 { |
|
203 setTimeInMillis(getNow(), status); |
|
204 } |
|
205 |
|
206 // ------------------------------------- |
|
207 |
|
208 GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale, |
|
209 UErrorCode& status) |
|
210 : Calendar(zone, aLocale, status), |
|
211 fGregorianCutover(kPapalCutover), |
|
212 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
213 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
214 { |
|
215 setTimeInMillis(getNow(), status); |
|
216 } |
|
217 |
|
218 // ------------------------------------- |
|
219 |
|
220 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
|
221 UErrorCode& status) |
|
222 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), |
|
223 fGregorianCutover(kPapalCutover), |
|
224 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
225 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
226 { |
|
227 set(UCAL_ERA, AD); |
|
228 set(UCAL_YEAR, year); |
|
229 set(UCAL_MONTH, month); |
|
230 set(UCAL_DATE, date); |
|
231 } |
|
232 |
|
233 // ------------------------------------- |
|
234 |
|
235 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
|
236 int32_t hour, int32_t minute, UErrorCode& status) |
|
237 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), |
|
238 fGregorianCutover(kPapalCutover), |
|
239 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
240 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
241 { |
|
242 set(UCAL_ERA, AD); |
|
243 set(UCAL_YEAR, year); |
|
244 set(UCAL_MONTH, month); |
|
245 set(UCAL_DATE, date); |
|
246 set(UCAL_HOUR_OF_DAY, hour); |
|
247 set(UCAL_MINUTE, minute); |
|
248 } |
|
249 |
|
250 // ------------------------------------- |
|
251 |
|
252 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
|
253 int32_t hour, int32_t minute, int32_t second, |
|
254 UErrorCode& status) |
|
255 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), |
|
256 fGregorianCutover(kPapalCutover), |
|
257 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
|
258 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
|
259 { |
|
260 set(UCAL_ERA, AD); |
|
261 set(UCAL_YEAR, year); |
|
262 set(UCAL_MONTH, month); |
|
263 set(UCAL_DATE, date); |
|
264 set(UCAL_HOUR_OF_DAY, hour); |
|
265 set(UCAL_MINUTE, minute); |
|
266 set(UCAL_SECOND, second); |
|
267 } |
|
268 |
|
269 // ------------------------------------- |
|
270 |
|
271 GregorianCalendar::~GregorianCalendar() |
|
272 { |
|
273 } |
|
274 |
|
275 // ------------------------------------- |
|
276 |
|
277 GregorianCalendar::GregorianCalendar(const GregorianCalendar &source) |
|
278 : Calendar(source), |
|
279 fGregorianCutover(source.fGregorianCutover), |
|
280 fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear), |
|
281 fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian) |
|
282 { |
|
283 } |
|
284 |
|
285 // ------------------------------------- |
|
286 |
|
287 Calendar* GregorianCalendar::clone() const |
|
288 { |
|
289 return new GregorianCalendar(*this); |
|
290 } |
|
291 |
|
292 // ------------------------------------- |
|
293 |
|
294 GregorianCalendar & |
|
295 GregorianCalendar::operator=(const GregorianCalendar &right) |
|
296 { |
|
297 if (this != &right) |
|
298 { |
|
299 Calendar::operator=(right); |
|
300 fGregorianCutover = right.fGregorianCutover; |
|
301 fNormalizedGregorianCutover = right.fNormalizedGregorianCutover; |
|
302 fGregorianCutoverYear = right.fGregorianCutoverYear; |
|
303 fCutoverJulianDay = right.fCutoverJulianDay; |
|
304 } |
|
305 return *this; |
|
306 } |
|
307 |
|
308 // ------------------------------------- |
|
309 |
|
310 UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const |
|
311 { |
|
312 // Calendar override. |
|
313 return Calendar::isEquivalentTo(other) && |
|
314 fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover; |
|
315 } |
|
316 |
|
317 // ------------------------------------- |
|
318 |
|
319 void |
|
320 GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status) |
|
321 { |
|
322 if (U_FAILURE(status)) |
|
323 return; |
|
324 |
|
325 fGregorianCutover = date; |
|
326 |
|
327 // Precompute two internal variables which we use to do the actual |
|
328 // cutover computations. These are the normalized cutover, which is the |
|
329 // midnight at or before the cutover, and the cutover year. The |
|
330 // normalized cutover is in pure date milliseconds; it contains no time |
|
331 // of day or timezone component, and it used to compare against other |
|
332 // pure date values. |
|
333 int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (double)kOneDay); |
|
334 fNormalizedGregorianCutover = cutoverDay * kOneDay; |
|
335 |
|
336 // Handle the rare case of numeric overflow. If the user specifies a |
|
337 // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian |
|
338 // calendar, then the epoch day is -106751991168, which when multiplied |
|
339 // by ONE_DAY gives 9223372036794351616 -- the negative value is too |
|
340 // large for 64 bits, and overflows into a positive value. We correct |
|
341 // this by using the next day, which for all intents is semantically |
|
342 // equivalent. |
|
343 if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) { |
|
344 fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay; |
|
345 } |
|
346 |
|
347 // Normalize the year so BC values are represented as 0 and negative |
|
348 // values. |
|
349 GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status); |
|
350 /* test for NULL */ |
|
351 if (cal == 0) { |
|
352 status = U_MEMORY_ALLOCATION_ERROR; |
|
353 return; |
|
354 } |
|
355 if(U_FAILURE(status)) |
|
356 return; |
|
357 cal->setTime(date, status); |
|
358 fGregorianCutoverYear = cal->get(UCAL_YEAR, status); |
|
359 if (cal->get(UCAL_ERA, status) == BC) |
|
360 fGregorianCutoverYear = 1 - fGregorianCutoverYear; |
|
361 fCutoverJulianDay = cutoverDay; |
|
362 delete cal; |
|
363 } |
|
364 |
|
365 |
|
366 void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) { |
|
367 int32_t eyear, month, dayOfMonth, dayOfYear, unusedRemainder; |
|
368 |
|
369 |
|
370 if(U_FAILURE(status)) { |
|
371 return; |
|
372 } |
|
373 |
|
374 #if defined (U_DEBUG_CAL) |
|
375 fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n", |
|
376 __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay); |
|
377 #endif |
|
378 |
|
379 |
|
380 if (julianDay >= fCutoverJulianDay) { |
|
381 month = getGregorianMonth(); |
|
382 dayOfMonth = getGregorianDayOfMonth(); |
|
383 dayOfYear = getGregorianDayOfYear(); |
|
384 eyear = getGregorianYear(); |
|
385 } else { |
|
386 // The Julian epoch day (not the same as Julian Day) |
|
387 // is zero on Saturday December 30, 0 (Gregorian). |
|
388 int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2); |
|
389 eyear = (int32_t) ClockMath::floorDivide((4.0*julianEpochDay) + 1464.0, (int32_t) 1461, unusedRemainder); |
|
390 |
|
391 // Compute the Julian calendar day number for January 1, eyear |
|
392 int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4); |
|
393 dayOfYear = (julianEpochDay - january1); // 0-based |
|
394 |
|
395 // Julian leap years occurred historically every 4 years starting |
|
396 // with 8 AD. Before 8 AD the spacing is irregular; every 3 years |
|
397 // from 45 BC to 9 BC, and then none until 8 AD. However, we don't |
|
398 // implement this historical detail; instead, we implement the |
|
399 // computatinally cleaner proleptic calendar, which assumes |
|
400 // consistent 4-year cycles throughout time. |
|
401 UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0) |
|
402 |
|
403 // Common Julian/Gregorian calculation |
|
404 int32_t correction = 0; |
|
405 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 |
|
406 if (dayOfYear >= march1) { |
|
407 correction = isLeap ? 1 : 2; |
|
408 } |
|
409 month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month |
|
410 dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM |
|
411 ++dayOfYear; |
|
412 #if defined (U_DEBUG_CAL) |
|
413 // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month ); |
|
414 // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n", |
|
415 // __FILE__, __LINE__,julianDay, |
|
416 // eyear,month,dayOfMonth, |
|
417 // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() ); |
|
418 fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n", |
|
419 __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay); |
|
420 #endif |
|
421 |
|
422 } |
|
423 |
|
424 // [j81] if we are after the cutover in its year, shift the day of the year |
|
425 if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) { |
|
426 //from handleComputeMonthStart |
|
427 int32_t gregShift = Grego::gregorianShift(eyear); |
|
428 #if defined (U_DEBUG_CAL) |
|
429 fprintf(stderr, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n", |
|
430 __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay); |
|
431 #endif |
|
432 dayOfYear += gregShift; |
|
433 } |
|
434 |
|
435 internalSet(UCAL_MONTH, month); |
|
436 internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
|
437 internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
|
438 internalSet(UCAL_EXTENDED_YEAR, eyear); |
|
439 int32_t era = AD; |
|
440 if (eyear < 1) { |
|
441 era = BC; |
|
442 eyear = 1 - eyear; |
|
443 } |
|
444 internalSet(UCAL_ERA, era); |
|
445 internalSet(UCAL_YEAR, eyear); |
|
446 } |
|
447 |
|
448 |
|
449 // ------------------------------------- |
|
450 |
|
451 UDate |
|
452 GregorianCalendar::getGregorianChange() const |
|
453 { |
|
454 return fGregorianCutover; |
|
455 } |
|
456 |
|
457 // ------------------------------------- |
|
458 |
|
459 UBool |
|
460 GregorianCalendar::isLeapYear(int32_t year) const |
|
461 { |
|
462 // MSVC complains bitterly if we try to use Grego::isLeapYear here |
|
463 // NOTE: year&0x3 == year%4 |
|
464 return (year >= fGregorianCutoverYear ? |
|
465 (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian |
|
466 ((year&0x3) == 0)); // Julian |
|
467 } |
|
468 |
|
469 // ------------------------------------- |
|
470 |
|
471 int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField) |
|
472 { |
|
473 fInvertGregorian = FALSE; |
|
474 |
|
475 int32_t jd = Calendar::handleComputeJulianDay(bestField); |
|
476 |
|
477 if((bestField == UCAL_WEEK_OF_YEAR) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian* |
|
478 (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) && |
|
479 jd >= fCutoverJulianDay) { |
|
480 fInvertGregorian = TRUE; // So that the Julian Jan 1 will be used in handleComputeMonthStart |
|
481 return Calendar::handleComputeJulianDay(bestField); |
|
482 } |
|
483 |
|
484 |
|
485 // The following check handles portions of the cutover year BEFORE the |
|
486 // cutover itself happens. |
|
487 //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */ |
|
488 if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */ |
|
489 #if defined (U_DEBUG_CAL) |
|
490 fprintf(stderr, "%s:%d: jd [invert] %d\n", |
|
491 __FILE__, __LINE__, jd); |
|
492 #endif |
|
493 fInvertGregorian = TRUE; |
|
494 jd = Calendar::handleComputeJulianDay(bestField); |
|
495 #if defined (U_DEBUG_CAL) |
|
496 fprintf(stderr, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ", |
|
497 __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F"); |
|
498 fprintf(stderr, " jd NOW %d\n", |
|
499 jd); |
|
500 #endif |
|
501 } else { |
|
502 #if defined (U_DEBUG_CAL) |
|
503 fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n", |
|
504 __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField); |
|
505 #endif |
|
506 } |
|
507 |
|
508 if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) { |
|
509 int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR)); |
|
510 if (bestField == UCAL_DAY_OF_YEAR) { |
|
511 #if defined (U_DEBUG_CAL) |
|
512 fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n", |
|
513 __FILE__, __LINE__, fFields[bestField],jd, gregShift); |
|
514 #endif |
|
515 jd -= gregShift; |
|
516 } else if ( bestField == UCAL_WEEK_OF_MONTH ) { |
|
517 int32_t weekShift = 14; |
|
518 #if defined (U_DEBUG_CAL) |
|
519 fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n", |
|
520 __FILE__, __LINE__, jd, weekShift); |
|
521 #endif |
|
522 jd += weekShift; // shift by weeks for week based fields. |
|
523 } |
|
524 } |
|
525 |
|
526 return jd; |
|
527 } |
|
528 |
|
529 int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, |
|
530 |
|
531 UBool /* useMonth */) const |
|
532 { |
|
533 GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const |
|
534 |
|
535 // If the month is out of range, adjust it into range, and |
|
536 // modify the extended year value accordingly. |
|
537 if (month < 0 || month > 11) { |
|
538 eyear += ClockMath::floorDivide(month, 12, month); |
|
539 } |
|
540 |
|
541 UBool isLeap = eyear%4 == 0; |
|
542 int32_t y = eyear-1; |
|
543 int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3); |
|
544 |
|
545 nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear); |
|
546 #if defined (U_DEBUG_CAL) |
|
547 fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n", |
|
548 __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F"); |
|
549 #endif |
|
550 if (fInvertGregorian) { |
|
551 nonConstThis->fIsGregorian = !fIsGregorian; |
|
552 } |
|
553 if (fIsGregorian) { |
|
554 isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0)); |
|
555 // Add 2 because Gregorian calendar starts 2 days after |
|
556 // Julian calendar |
|
557 int32_t gregShift = Grego::gregorianShift(eyear); |
|
558 #if defined (U_DEBUG_CAL) |
|
559 fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n", |
|
560 __FILE__, __LINE__, eyear, month, julianDay, gregShift); |
|
561 #endif |
|
562 julianDay += gregShift; |
|
563 } |
|
564 |
|
565 // At this point julianDay indicates the day BEFORE the first |
|
566 // day of January 1, <eyear> of either the Julian or Gregorian |
|
567 // calendar. |
|
568 |
|
569 if (month != 0) { |
|
570 julianDay += isLeap?kLeapNumDays[month]:kNumDays[month]; |
|
571 } |
|
572 |
|
573 return julianDay; |
|
574 } |
|
575 |
|
576 int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const |
|
577 { |
|
578 // If the month is out of range, adjust it into range, and |
|
579 // modify the extended year value accordingly. |
|
580 if (month < 0 || month > 11) { |
|
581 extendedYear += ClockMath::floorDivide(month, 12, month); |
|
582 } |
|
583 |
|
584 return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month]; |
|
585 } |
|
586 |
|
587 int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const { |
|
588 return isLeapYear(eyear) ? 366 : 365; |
|
589 } |
|
590 |
|
591 |
|
592 int32_t |
|
593 GregorianCalendar::monthLength(int32_t month) const |
|
594 { |
|
595 int32_t year = internalGet(UCAL_EXTENDED_YEAR); |
|
596 return handleGetMonthLength(year, month); |
|
597 } |
|
598 |
|
599 // ------------------------------------- |
|
600 |
|
601 int32_t |
|
602 GregorianCalendar::monthLength(int32_t month, int32_t year) const |
|
603 { |
|
604 return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month]; |
|
605 } |
|
606 |
|
607 // ------------------------------------- |
|
608 |
|
609 int32_t |
|
610 GregorianCalendar::yearLength(int32_t year) const |
|
611 { |
|
612 return isLeapYear(year) ? 366 : 365; |
|
613 } |
|
614 |
|
615 // ------------------------------------- |
|
616 |
|
617 int32_t |
|
618 GregorianCalendar::yearLength() const |
|
619 { |
|
620 return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365; |
|
621 } |
|
622 |
|
623 // ------------------------------------- |
|
624 |
|
625 /** |
|
626 * After adjustments such as add(MONTH), add(YEAR), we don't want the |
|
627 * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar |
|
628 * 3, we want it to go to Feb 28. Adjustments which might run into this |
|
629 * problem call this method to retain the proper month. |
|
630 */ |
|
631 void |
|
632 GregorianCalendar::pinDayOfMonth() |
|
633 { |
|
634 int32_t monthLen = monthLength(internalGet(UCAL_MONTH)); |
|
635 int32_t dom = internalGet(UCAL_DATE); |
|
636 if(dom > monthLen) |
|
637 set(UCAL_DATE, monthLen); |
|
638 } |
|
639 |
|
640 // ------------------------------------- |
|
641 |
|
642 |
|
643 UBool |
|
644 GregorianCalendar::validateFields() const |
|
645 { |
|
646 for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) { |
|
647 // Ignore DATE and DAY_OF_YEAR which are handled below |
|
648 if (field != UCAL_DATE && |
|
649 field != UCAL_DAY_OF_YEAR && |
|
650 isSet((UCalendarDateFields)field) && |
|
651 ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field)) |
|
652 return FALSE; |
|
653 } |
|
654 |
|
655 // Values differ in Least-Maximum and Maximum should be handled |
|
656 // specially. |
|
657 if (isSet(UCAL_DATE)) { |
|
658 int32_t date = internalGet(UCAL_DATE); |
|
659 if (date < getMinimum(UCAL_DATE) || |
|
660 date > monthLength(internalGet(UCAL_MONTH))) { |
|
661 return FALSE; |
|
662 } |
|
663 } |
|
664 |
|
665 if (isSet(UCAL_DAY_OF_YEAR)) { |
|
666 int32_t days = internalGet(UCAL_DAY_OF_YEAR); |
|
667 if (days < 1 || days > yearLength()) { |
|
668 return FALSE; |
|
669 } |
|
670 } |
|
671 |
|
672 // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero. |
|
673 // We've checked against minimum and maximum above already. |
|
674 if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) && |
|
675 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) { |
|
676 return FALSE; |
|
677 } |
|
678 |
|
679 return TRUE; |
|
680 } |
|
681 |
|
682 // ------------------------------------- |
|
683 |
|
684 UBool |
|
685 GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const |
|
686 { |
|
687 return value >= getMinimum(field) && value <= getMaximum(field); |
|
688 } |
|
689 |
|
690 // ------------------------------------- |
|
691 |
|
692 UDate |
|
693 GregorianCalendar::getEpochDay(UErrorCode& status) |
|
694 { |
|
695 complete(status); |
|
696 // Divide by 1000 (convert to seconds) in order to prevent overflow when |
|
697 // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE). |
|
698 double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000; |
|
699 |
|
700 return ClockMath::floorDivide(wallSec, kOneDay/1000.0); |
|
701 } |
|
702 |
|
703 // ------------------------------------- |
|
704 |
|
705 |
|
706 // ------------------------------------- |
|
707 |
|
708 /** |
|
709 * Compute the julian day number of the day BEFORE the first day of |
|
710 * January 1, year 1 of the given calendar. If julianDay == 0, it |
|
711 * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian |
|
712 * or Gregorian). |
|
713 */ |
|
714 double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian, |
|
715 int32_t year, UBool& isLeap) |
|
716 { |
|
717 isLeap = year%4 == 0; |
|
718 int32_t y = year - 1; |
|
719 double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3); |
|
720 |
|
721 if (isGregorian) { |
|
722 isLeap = isLeap && ((year%100 != 0) || (year%400 == 0)); |
|
723 // Add 2 because Gregorian calendar starts 2 days after Julian calendar |
|
724 julianDay += Grego::gregorianShift(year); |
|
725 } |
|
726 |
|
727 return julianDay; |
|
728 } |
|
729 |
|
730 // /** |
|
731 // * Compute the day of week, relative to the first day of week, from |
|
732 // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is |
|
733 // * equivalent to get(DOW_LOCAL) - 1. |
|
734 // */ |
|
735 // int32_t GregorianCalendar::computeRelativeDOW() const { |
|
736 // int32_t relDow = 0; |
|
737 // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) { |
|
738 // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based |
|
739 // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) { |
|
740 // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); |
|
741 // if (relDow < 0) relDow += 7; |
|
742 // } |
|
743 // return relDow; |
|
744 // } |
|
745 |
|
746 // /** |
|
747 // * Compute the day of week, relative to the first day of week, |
|
748 // * from 0..6 of the given julian day. |
|
749 // */ |
|
750 // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const { |
|
751 // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek(); |
|
752 // if (relDow < 0) { |
|
753 // relDow += 7; |
|
754 // } |
|
755 // return relDow; |
|
756 // } |
|
757 |
|
758 // /** |
|
759 // * Compute the DOY using the WEEK_OF_YEAR field and the julian day |
|
760 // * of the day BEFORE January 1 of a year (a return value from |
|
761 // * computeJulianDayOfYear). |
|
762 // */ |
|
763 // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const { |
|
764 // // Compute DOY from day of week plus week of year |
|
765 |
|
766 // // Find the day of the week for the first of this year. This |
|
767 // // is zero-based, with 0 being the locale-specific first day of |
|
768 // // the week. Add 1 to get first day of year. |
|
769 // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1); |
|
770 |
|
771 // return |
|
772 // // Compute doy of first (relative) DOW of WOY 1 |
|
773 // (((7 - fdy) < getMinimalDaysInFirstWeek()) |
|
774 // ? (8 - fdy) : (1 - fdy)) |
|
775 |
|
776 // // Adjust for the week number. |
|
777 // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1)) |
|
778 |
|
779 // // Adjust for the DOW |
|
780 // + computeRelativeDOW(); |
|
781 // } |
|
782 |
|
783 // ------------------------------------- |
|
784 |
|
785 double |
|
786 GregorianCalendar::millisToJulianDay(UDate millis) |
|
787 { |
|
788 return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay); |
|
789 } |
|
790 |
|
791 // ------------------------------------- |
|
792 |
|
793 UDate |
|
794 GregorianCalendar::julianDayToMillis(double julian) |
|
795 { |
|
796 return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay); |
|
797 } |
|
798 |
|
799 // ------------------------------------- |
|
800 |
|
801 int32_t |
|
802 GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b) |
|
803 { |
|
804 return (((stamp_a != kUnset && stamp_b != kUnset) |
|
805 ? uprv_max(stamp_a, stamp_b) |
|
806 : (int32_t)kUnset)); |
|
807 } |
|
808 |
|
809 // ------------------------------------- |
|
810 |
|
811 /** |
|
812 * Roll a field by a signed amount. |
|
813 * Note: This will be made public later. [LIU] |
|
814 */ |
|
815 |
|
816 void |
|
817 GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
|
818 roll((UCalendarDateFields) field, amount, status); |
|
819 } |
|
820 |
|
821 void |
|
822 GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
|
823 { |
|
824 if((amount == 0) || U_FAILURE(status)) { |
|
825 return; |
|
826 } |
|
827 |
|
828 // J81 processing. (gregorian cutover) |
|
829 UBool inCutoverMonth = FALSE; |
|
830 int32_t cMonthLen=0; // 'c' for cutover; in days |
|
831 int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen) |
|
832 double cMonthStart=0.0; // in ms |
|
833 |
|
834 // Common code - see if we're in the cutover month of the cutover year |
|
835 if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) { |
|
836 switch (field) { |
|
837 case UCAL_DAY_OF_MONTH: |
|
838 case UCAL_WEEK_OF_MONTH: |
|
839 { |
|
840 int32_t max = monthLength(internalGet(UCAL_MONTH)); |
|
841 UDate t = internalGetTime(); |
|
842 // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an |
|
843 // additional 10 if we are after the cutover. Thus the monthStart |
|
844 // value will be correct iff we actually are in the cutover month. |
|
845 cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0); |
|
846 cMonthStart = t - ((cDayOfMonth - 1) * kOneDay); |
|
847 // A month containing the cutover is 10 days shorter. |
|
848 if ((cMonthStart < fGregorianCutover) && |
|
849 (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) { |
|
850 inCutoverMonth = TRUE; |
|
851 } |
|
852 } |
|
853 default: |
|
854 ; |
|
855 } |
|
856 } |
|
857 |
|
858 switch (field) { |
|
859 case UCAL_WEEK_OF_YEAR: { |
|
860 // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the |
|
861 // week. Also, rolling the week of the year can have seemingly |
|
862 // strange effects simply because the year of the week of year |
|
863 // may be different from the calendar year. For example, the |
|
864 // date Dec 28, 1997 is the first day of week 1 of 1998 (if |
|
865 // weeks start on Sunday and the minimal days in first week is |
|
866 // <= 3). |
|
867 int32_t woy = get(UCAL_WEEK_OF_YEAR, status); |
|
868 // Get the ISO year, which matches the week of year. This |
|
869 // may be one year before or after the calendar year. |
|
870 int32_t isoYear = get(UCAL_YEAR_WOY, status); |
|
871 int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR); |
|
872 if (internalGet(UCAL_MONTH) == UCAL_JANUARY) { |
|
873 if (woy >= 52) { |
|
874 isoDoy += handleGetYearLength(isoYear); |
|
875 } |
|
876 } else { |
|
877 if (woy == 1) { |
|
878 isoDoy -= handleGetYearLength(isoYear - 1); |
|
879 } |
|
880 } |
|
881 woy += amount; |
|
882 // Do fast checks to avoid unnecessary computation: |
|
883 if (woy < 1 || woy > 52) { |
|
884 // Determine the last week of the ISO year. |
|
885 // We do this using the standard formula we use |
|
886 // everywhere in this file. If we can see that the |
|
887 // days at the end of the year are going to fall into |
|
888 // week 1 of the next year, we drop the last week by |
|
889 // subtracting 7 from the last day of the year. |
|
890 int32_t lastDoy = handleGetYearLength(isoYear); |
|
891 int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) - |
|
892 getFirstDayOfWeek()) % 7; |
|
893 if (lastRelDow < 0) lastRelDow += 7; |
|
894 if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7; |
|
895 int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1); |
|
896 woy = ((woy + lastWoy - 1) % lastWoy) + 1; |
|
897 } |
|
898 set(UCAL_WEEK_OF_YEAR, woy); |
|
899 set(UCAL_YEAR_WOY,isoYear); |
|
900 return; |
|
901 } |
|
902 |
|
903 case UCAL_DAY_OF_MONTH: |
|
904 if( !inCutoverMonth ) { |
|
905 Calendar::roll(field, amount, status); |
|
906 return; |
|
907 } else { |
|
908 // [j81] 1582 special case for DOM |
|
909 // The default computation works except when the current month |
|
910 // contains the Gregorian cutover. We handle this special case |
|
911 // here. [j81 - aliu] |
|
912 double monthLen = cMonthLen * kOneDay; |
|
913 double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart + |
|
914 amount * kOneDay, monthLen); |
|
915 if (msIntoMonth < 0) { |
|
916 msIntoMonth += monthLen; |
|
917 } |
|
918 #if defined (U_DEBUG_CAL) |
|
919 fprintf(stderr, "%s:%d: roll DOM %d -> %.0lf ms \n", |
|
920 __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth); |
|
921 #endif |
|
922 setTimeInMillis(cMonthStart + msIntoMonth, status); |
|
923 return; |
|
924 } |
|
925 |
|
926 case UCAL_WEEK_OF_MONTH: |
|
927 if( !inCutoverMonth ) { |
|
928 Calendar::roll(field, amount, status); |
|
929 return; |
|
930 } else { |
|
931 #if defined (U_DEBUG_CAL) |
|
932 fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n", |
|
933 __FILE__, __LINE__,amount); |
|
934 #endif |
|
935 // NOTE: following copied from the old |
|
936 // GregorianCalendar::roll( WEEK_OF_MONTH ) code |
|
937 |
|
938 // This is tricky, because during the roll we may have to shift |
|
939 // to a different day of the week. For example: |
|
940 |
|
941 // s m t w r f s |
|
942 // 1 2 3 4 5 |
|
943 // 6 7 8 9 10 11 12 |
|
944 |
|
945 // When rolling from the 6th or 7th back one week, we go to the |
|
946 // 1st (assuming that the first partial week counts). The same |
|
947 // thing happens at the end of the month. |
|
948 |
|
949 // The other tricky thing is that we have to figure out whether |
|
950 // the first partial week actually counts or not, based on the |
|
951 // minimal first days in the week. And we have to use the |
|
952 // correct first day of the week to delineate the week |
|
953 // boundaries. |
|
954 |
|
955 // Here's our algorithm. First, we find the real boundaries of |
|
956 // the month. Then we discard the first partial week if it |
|
957 // doesn't count in this locale. Then we fill in the ends with |
|
958 // phantom days, so that the first partial week and the last |
|
959 // partial week are full weeks. We then have a nice square |
|
960 // block of weeks. We do the usual rolling within this block, |
|
961 // as is done elsewhere in this method. If we wind up on one of |
|
962 // the phantom days that we added, we recognize this and pin to |
|
963 // the first or the last day of the month. Easy, eh? |
|
964 |
|
965 // Another wrinkle: To fix jitterbug 81, we have to make all this |
|
966 // work in the oddball month containing the Gregorian cutover. |
|
967 // This month is 10 days shorter than usual, and also contains |
|
968 // a discontinuity in the days; e.g., the default cutover month |
|
969 // is Oct 1582, and goes from day of month 4 to day of month 15. |
|
970 |
|
971 // Normalize the DAY_OF_WEEK so that 0 is the first day of the week |
|
972 // in this locale. We have dow in 0..6. |
|
973 int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); |
|
974 if (dow < 0) |
|
975 dow += 7; |
|
976 |
|
977 // Find the day of month, compensating for cutover discontinuity. |
|
978 int32_t dom = cDayOfMonth; |
|
979 |
|
980 // Find the day of the week (normalized for locale) for the first |
|
981 // of the month. |
|
982 int32_t fdm = (dow - dom + 1) % 7; |
|
983 if (fdm < 0) |
|
984 fdm += 7; |
|
985 |
|
986 // Get the first day of the first full week of the month, |
|
987 // including phantom days, if any. Figure out if the first week |
|
988 // counts or not; if it counts, then fill in phantom days. If |
|
989 // not, advance to the first real full week (skip the partial week). |
|
990 int32_t start; |
|
991 if ((7 - fdm) < getMinimalDaysInFirstWeek()) |
|
992 start = 8 - fdm; // Skip the first partial week |
|
993 else |
|
994 start = 1 - fdm; // This may be zero or negative |
|
995 |
|
996 // Get the day of the week (normalized for locale) for the last |
|
997 // day of the month. |
|
998 int32_t monthLen = cMonthLen; |
|
999 int32_t ldm = (monthLen - dom + dow) % 7; |
|
1000 // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here. |
|
1001 |
|
1002 // Get the limit day for the blocked-off rectangular month; that |
|
1003 // is, the day which is one past the last day of the month, |
|
1004 // after the month has already been filled in with phantom days |
|
1005 // to fill out the last week. This day has a normalized DOW of 0. |
|
1006 int32_t limit = monthLen + 7 - ldm; |
|
1007 |
|
1008 // Now roll between start and (limit - 1). |
|
1009 int32_t gap = limit - start; |
|
1010 int32_t newDom = (dom + amount*7 - start) % gap; |
|
1011 if (newDom < 0) |
|
1012 newDom += gap; |
|
1013 newDom += start; |
|
1014 |
|
1015 // Finally, pin to the real start and end of the month. |
|
1016 if (newDom < 1) |
|
1017 newDom = 1; |
|
1018 if (newDom > monthLen) |
|
1019 newDom = monthLen; |
|
1020 |
|
1021 // Set the DAY_OF_MONTH. We rely on the fact that this field |
|
1022 // takes precedence over everything else (since all other fields |
|
1023 // are also set at this point). If this fact changes (if the |
|
1024 // disambiguation algorithm changes) then we will have to unset |
|
1025 // the appropriate fields here so that DAY_OF_MONTH is attended |
|
1026 // to. |
|
1027 |
|
1028 // If we are in the cutover month, manipulate ms directly. Don't do |
|
1029 // this in general because it doesn't work across DST boundaries |
|
1030 // (details, details). This takes care of the discontinuity. |
|
1031 setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status); |
|
1032 return; |
|
1033 } |
|
1034 |
|
1035 default: |
|
1036 Calendar::roll(field, amount, status); |
|
1037 return; |
|
1038 } |
|
1039 } |
|
1040 |
|
1041 // ------------------------------------- |
|
1042 |
|
1043 |
|
1044 /** |
|
1045 * Return the minimum value that this field could have, given the current date. |
|
1046 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum(). |
|
1047 * @param field the time field. |
|
1048 * @return the minimum value that this field could have, given the current date. |
|
1049 * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead. |
|
1050 */ |
|
1051 int32_t GregorianCalendar::getActualMinimum(EDateFields field) const |
|
1052 { |
|
1053 return getMinimum((UCalendarDateFields)field); |
|
1054 } |
|
1055 |
|
1056 int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const |
|
1057 { |
|
1058 return getMinimum((UCalendarDateFields)field); |
|
1059 } |
|
1060 |
|
1061 /** |
|
1062 * Return the minimum value that this field could have, given the current date. |
|
1063 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum(). |
|
1064 * @param field the time field. |
|
1065 * @return the minimum value that this field could have, given the current date. |
|
1066 * @draft ICU 2.6. |
|
1067 */ |
|
1068 int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const |
|
1069 { |
|
1070 return getMinimum(field); |
|
1071 } |
|
1072 |
|
1073 |
|
1074 // ------------------------------------ |
|
1075 |
|
1076 /** |
|
1077 * Old year limits were least max 292269054, max 292278994. |
|
1078 */ |
|
1079 |
|
1080 /** |
|
1081 * @stable ICU 2.0 |
|
1082 */ |
|
1083 int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
|
1084 return kGregorianCalendarLimits[field][limitType]; |
|
1085 } |
|
1086 |
|
1087 /** |
|
1088 * Return the maximum value that this field could have, given the current date. |
|
1089 * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual |
|
1090 * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar, |
|
1091 * for some years the actual maximum for MONTH is 12, and for others 13. |
|
1092 * @stable ICU 2.0 |
|
1093 */ |
|
1094 int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const |
|
1095 { |
|
1096 /* It is a known limitation that the code here (and in getActualMinimum) |
|
1097 * won't behave properly at the extreme limits of GregorianCalendar's |
|
1098 * representable range (except for the code that handles the YEAR |
|
1099 * field). That's because the ends of the representable range are at |
|
1100 * odd spots in the year. For calendars with the default Gregorian |
|
1101 * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun |
|
1102 * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT |
|
1103 * zones. As a result, if the calendar is set to Aug 1 292278994 AD, |
|
1104 * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar |
|
1105 * 31 in that year, the actual maximum month might be Jul, whereas is |
|
1106 * the date is Mar 15, the actual maximum might be Aug -- depending on |
|
1107 * the precise semantics that are desired. Similar considerations |
|
1108 * affect all fields. Nonetheless, this effect is sufficiently arcane |
|
1109 * that we permit it, rather than complicating the code to handle such |
|
1110 * intricacies. - liu 8/20/98 |
|
1111 |
|
1112 * UPDATE: No longer true, since we have pulled in the limit values on |
|
1113 * the year. - Liu 11/6/00 */ |
|
1114 |
|
1115 switch (field) { |
|
1116 |
|
1117 case UCAL_YEAR: |
|
1118 /* The year computation is no different, in principle, from the |
|
1119 * others, however, the range of possible maxima is large. In |
|
1120 * addition, the way we know we've exceeded the range is different. |
|
1121 * For these reasons, we use the special case code below to handle |
|
1122 * this field. |
|
1123 * |
|
1124 * The actual maxima for YEAR depend on the type of calendar: |
|
1125 * |
|
1126 * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD |
|
1127 * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD |
|
1128 * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD |
|
1129 * |
|
1130 * We know we've exceeded the maximum when either the month, date, |
|
1131 * time, or era changes in response to setting the year. We don't |
|
1132 * check for month, date, and time here because the year and era are |
|
1133 * sufficient to detect an invalid year setting. NOTE: If code is |
|
1134 * added to check the month and date in the future for some reason, |
|
1135 * Feb 29 must be allowed to shift to Mar 1 when setting the year. |
|
1136 */ |
|
1137 { |
|
1138 if(U_FAILURE(status)) return 0; |
|
1139 Calendar *cal = clone(); |
|
1140 if(!cal) { |
|
1141 status = U_MEMORY_ALLOCATION_ERROR; |
|
1142 return 0; |
|
1143 } |
|
1144 |
|
1145 cal->setLenient(TRUE); |
|
1146 |
|
1147 int32_t era = cal->get(UCAL_ERA, status); |
|
1148 UDate d = cal->getTime(status); |
|
1149 |
|
1150 /* Perform a binary search, with the invariant that lowGood is a |
|
1151 * valid year, and highBad is an out of range year. |
|
1152 */ |
|
1153 int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1]; |
|
1154 int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1; |
|
1155 while ((lowGood + 1) < highBad) { |
|
1156 int32_t y = (lowGood + highBad) / 2; |
|
1157 cal->set(UCAL_YEAR, y); |
|
1158 if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) { |
|
1159 lowGood = y; |
|
1160 } else { |
|
1161 highBad = y; |
|
1162 cal->setTime(d, status); // Restore original fields |
|
1163 } |
|
1164 } |
|
1165 |
|
1166 delete cal; |
|
1167 return lowGood; |
|
1168 } |
|
1169 |
|
1170 default: |
|
1171 return Calendar::getActualMaximum(field,status); |
|
1172 } |
|
1173 } |
|
1174 |
|
1175 |
|
1176 int32_t GregorianCalendar::handleGetExtendedYear() { |
|
1177 // the year to return |
|
1178 int32_t year = kEpochYear; |
|
1179 |
|
1180 // year field to use |
|
1181 int32_t yearField = UCAL_EXTENDED_YEAR; |
|
1182 |
|
1183 // There are three separate fields which could be used to |
|
1184 // derive the proper year. Use the one most recently set. |
|
1185 if (fStamp[yearField] < fStamp[UCAL_YEAR]) |
|
1186 yearField = UCAL_YEAR; |
|
1187 if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY]) |
|
1188 yearField = UCAL_YEAR_WOY; |
|
1189 |
|
1190 // based on the "best" year field, get the year |
|
1191 switch(yearField) { |
|
1192 case UCAL_EXTENDED_YEAR: |
|
1193 year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear); |
|
1194 break; |
|
1195 |
|
1196 case UCAL_YEAR: |
|
1197 { |
|
1198 // The year defaults to the epoch start, the era to AD |
|
1199 int32_t era = internalGet(UCAL_ERA, AD); |
|
1200 if (era == BC) { |
|
1201 year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year |
|
1202 } else { |
|
1203 year = internalGet(UCAL_YEAR, kEpochYear); |
|
1204 } |
|
1205 } |
|
1206 break; |
|
1207 |
|
1208 case UCAL_YEAR_WOY: |
|
1209 year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR)); |
|
1210 #if defined (U_DEBUG_CAL) |
|
1211 // if(internalGet(UCAL_YEAR_WOY) != year) { |
|
1212 fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] -> %d\n", |
|
1213 __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year); |
|
1214 //} |
|
1215 #endif |
|
1216 break; |
|
1217 |
|
1218 default: |
|
1219 year = kEpochYear; |
|
1220 } |
|
1221 return year; |
|
1222 } |
|
1223 |
|
1224 int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy) |
|
1225 { |
|
1226 // convert year to extended form |
|
1227 int32_t era = internalGet(UCAL_ERA, AD); |
|
1228 if(era == BC) { |
|
1229 yearWoy = 1 - yearWoy; |
|
1230 } |
|
1231 return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy); |
|
1232 } |
|
1233 |
|
1234 |
|
1235 // ------------------------------------- |
|
1236 |
|
1237 UBool |
|
1238 GregorianCalendar::inDaylightTime(UErrorCode& status) const |
|
1239 { |
|
1240 if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
|
1241 return FALSE; |
|
1242 |
|
1243 // Force an update of the state of the Calendar. |
|
1244 ((GregorianCalendar*)this)->complete(status); // cast away const |
|
1245 |
|
1246 return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
|
1247 } |
|
1248 |
|
1249 // ------------------------------------- |
|
1250 |
|
1251 /** |
|
1252 * Return the ERA. We need a special method for this because the |
|
1253 * default ERA is AD, but a zero (unset) ERA is BC. |
|
1254 */ |
|
1255 int32_t |
|
1256 GregorianCalendar::internalGetEra() const { |
|
1257 return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD; |
|
1258 } |
|
1259 |
|
1260 const char * |
|
1261 GregorianCalendar::getType() const { |
|
1262 //static const char kGregorianType = "gregorian"; |
|
1263 |
|
1264 return "gregorian"; |
|
1265 } |
|
1266 |
|
1267 /** |
|
1268 * The system maintains a static default century start date and Year. They are |
|
1269 * initialized the first time they are used. Once the system default century date |
|
1270 * and year are set, they do not change. |
|
1271 */ |
|
1272 static UDate gSystemDefaultCenturyStart = DBL_MIN; |
|
1273 static int32_t gSystemDefaultCenturyStartYear = -1; |
|
1274 static icu::UInitOnce gSystemDefaultCenturyInit = U_INITONCE_INITIALIZER; |
|
1275 |
|
1276 |
|
1277 UBool GregorianCalendar::haveDefaultCentury() const |
|
1278 { |
|
1279 return TRUE; |
|
1280 } |
|
1281 |
|
1282 static void U_CALLCONV |
|
1283 initializeSystemDefaultCentury() |
|
1284 { |
|
1285 // initialize systemDefaultCentury and systemDefaultCenturyYear based |
|
1286 // on the current time. They'll be set to 80 years before |
|
1287 // the current time. |
|
1288 UErrorCode status = U_ZERO_ERROR; |
|
1289 GregorianCalendar calendar(status); |
|
1290 if (U_SUCCESS(status)) { |
|
1291 calendar.setTime(Calendar::getNow(), status); |
|
1292 calendar.add(UCAL_YEAR, -80, status); |
|
1293 |
|
1294 gSystemDefaultCenturyStart = calendar.getTime(status); |
|
1295 gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); |
|
1296 } |
|
1297 // We have no recourse upon failure unless we want to propagate the failure |
|
1298 // out. |
|
1299 } |
|
1300 |
|
1301 UDate GregorianCalendar::defaultCenturyStart() const { |
|
1302 // lazy-evaluate systemDefaultCenturyStart |
|
1303 umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); |
|
1304 return gSystemDefaultCenturyStart; |
|
1305 } |
|
1306 |
|
1307 int32_t GregorianCalendar::defaultCenturyStartYear() const { |
|
1308 // lazy-evaluate systemDefaultCenturyStartYear |
|
1309 umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); |
|
1310 return gSystemDefaultCenturyStartYear; |
|
1311 } |
|
1312 |
|
1313 U_NAMESPACE_END |
|
1314 |
|
1315 #endif /* #if !UCONFIG_NO_FORMATTING */ |
|
1316 |
|
1317 //eof |