|
1 /* |
|
2 ******************************************************************************* |
|
3 * Copyright (C) 1996-2013, International Business Machines |
|
4 * Corporation and others. All Rights Reserved. |
|
5 ******************************************************************************* |
|
6 * file name: ucol.cpp |
|
7 * encoding: US-ASCII |
|
8 * tab size: 8 (not used) |
|
9 * indentation:4 |
|
10 * |
|
11 * Modification history |
|
12 * Date Name Comments |
|
13 * 1996-1999 various members of ICU team maintained C API for collation framework |
|
14 * 02/16/2001 synwee Added internal method getPrevSpecialCE |
|
15 * 03/01/2001 synwee Added maxexpansion functionality. |
|
16 * 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant |
|
17 */ |
|
18 |
|
19 #include "unicode/utypes.h" |
|
20 |
|
21 #if !UCONFIG_NO_COLLATION |
|
22 |
|
23 #include "unicode/bytestream.h" |
|
24 #include "unicode/coleitr.h" |
|
25 #include "unicode/unorm.h" |
|
26 #include "unicode/udata.h" |
|
27 #include "unicode/ustring.h" |
|
28 #include "unicode/utf8.h" |
|
29 |
|
30 #include "ucol_imp.h" |
|
31 #include "bocsu.h" |
|
32 |
|
33 #include "normalizer2impl.h" |
|
34 #include "unorm_it.h" |
|
35 #include "umutex.h" |
|
36 #include "cmemory.h" |
|
37 #include "ucln_in.h" |
|
38 #include "cstring.h" |
|
39 #include "utracimp.h" |
|
40 #include "putilimp.h" |
|
41 #include "uassert.h" |
|
42 #include "unicode/coll.h" |
|
43 |
|
44 #ifdef UCOL_DEBUG |
|
45 #include <stdio.h> |
|
46 #endif |
|
47 |
|
48 U_NAMESPACE_USE |
|
49 |
|
50 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
|
51 |
|
52 #define LAST_BYTE_MASK_ 0xFF |
|
53 #define SECOND_LAST_BYTE_SHIFT_ 8 |
|
54 |
|
55 #define ZERO_CC_LIMIT_ 0xC0 |
|
56 |
|
57 // These are static pointers to the NFC/NFD implementation instance. |
|
58 // Each of them is always the same between calls to u_cleanup |
|
59 // and therefore writing to it is not synchronized. |
|
60 // They are cleaned in ucol_cleanup |
|
61 static const Normalizer2 *g_nfd = NULL; |
|
62 static const Normalizer2Impl *g_nfcImpl = NULL; |
|
63 |
|
64 // These are values from UCA required for |
|
65 // implicit generation and supressing sort key compression |
|
66 // they should regularly be in the UCA, but if one |
|
67 // is running without UCA, it could be a problem |
|
68 static const int32_t maxRegularPrimary = 0x7A; |
|
69 static const int32_t minImplicitPrimary = 0xE0; |
|
70 static const int32_t maxImplicitPrimary = 0xE4; |
|
71 |
|
72 U_CDECL_BEGIN |
|
73 static UBool U_CALLCONV |
|
74 ucol_cleanup(void) |
|
75 { |
|
76 g_nfd = NULL; |
|
77 g_nfcImpl = NULL; |
|
78 return TRUE; |
|
79 } |
|
80 |
|
81 static int32_t U_CALLCONV |
|
82 _getFoldingOffset(uint32_t data) { |
|
83 return (int32_t)(data&0xFFFFFF); |
|
84 } |
|
85 |
|
86 U_CDECL_END |
|
87 |
|
88 static inline |
|
89 UBool initializeNFD(UErrorCode *status) { |
|
90 if (g_nfd != NULL) { |
|
91 return TRUE; |
|
92 } else { |
|
93 // The result is constant, until the library is reloaded. |
|
94 g_nfd = Normalizer2Factory::getNFDInstance(*status); |
|
95 ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); |
|
96 return U_SUCCESS(*status); |
|
97 } |
|
98 } |
|
99 |
|
100 // init FCD data |
|
101 static inline |
|
102 UBool initializeFCD(UErrorCode *status) { |
|
103 if (g_nfcImpl != NULL) { |
|
104 return TRUE; |
|
105 } else { |
|
106 // The result is constant, until the library is reloaded. |
|
107 g_nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
|
108 // Note: Alternatively, we could also store this pointer in each collIterate struct, |
|
109 // same as Normalizer2Factory::getImpl(collIterate->nfd). |
|
110 ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); |
|
111 return U_SUCCESS(*status); |
|
112 } |
|
113 } |
|
114 |
|
115 static |
|
116 inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString, |
|
117 int32_t sourceLen, collIterate *s, |
|
118 UErrorCode *status) |
|
119 { |
|
120 (s)->string = (s)->pos = sourceString; |
|
121 (s)->origFlags = 0; |
|
122 (s)->flags = 0; |
|
123 if (sourceLen >= 0) { |
|
124 s->flags |= UCOL_ITER_HASLEN; |
|
125 (s)->endp = (UChar *)sourceString+sourceLen; |
|
126 } |
|
127 else { |
|
128 /* change to enable easier checking for end of string for fcdpositon */ |
|
129 (s)->endp = NULL; |
|
130 } |
|
131 (s)->extendCEs = NULL; |
|
132 (s)->extendCEsSize = 0; |
|
133 (s)->CEpos = (s)->toReturn = (s)->CEs; |
|
134 (s)->offsetBuffer = NULL; |
|
135 (s)->offsetBufferSize = 0; |
|
136 (s)->offsetReturn = (s)->offsetStore = NULL; |
|
137 (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0; |
|
138 (s)->coll = (collator); |
|
139 if (initializeNFD(status)) { |
|
140 (s)->nfd = g_nfd; |
|
141 } else { |
|
142 return; |
|
143 } |
|
144 (s)->fcdPosition = 0; |
|
145 if(collator->normalizationMode == UCOL_ON) { |
|
146 (s)->flags |= UCOL_ITER_NORM; |
|
147 } |
|
148 if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) { |
|
149 (s)->flags |= UCOL_HIRAGANA_Q; |
|
150 } |
|
151 (s)->iterator = NULL; |
|
152 //(s)->iteratorIndex = 0; |
|
153 } |
|
154 |
|
155 U_CAPI void U_EXPORT2 |
|
156 uprv_init_collIterate(const UCollator *collator, const UChar *sourceString, |
|
157 int32_t sourceLen, collIterate *s, |
|
158 UErrorCode *status) { |
|
159 /* Out-of-line version for use from other files. */ |
|
160 IInit_collIterate(collator, sourceString, sourceLen, s, status); |
|
161 } |
|
162 |
|
163 U_CAPI collIterate * U_EXPORT2 |
|
164 uprv_new_collIterate(UErrorCode *status) { |
|
165 if(U_FAILURE(*status)) { |
|
166 return NULL; |
|
167 } |
|
168 collIterate *s = new collIterate; |
|
169 if(s == NULL) { |
|
170 *status = U_MEMORY_ALLOCATION_ERROR; |
|
171 return NULL; |
|
172 } |
|
173 return s; |
|
174 } |
|
175 |
|
176 U_CAPI void U_EXPORT2 |
|
177 uprv_delete_collIterate(collIterate *s) { |
|
178 delete s; |
|
179 } |
|
180 |
|
181 U_CAPI UBool U_EXPORT2 |
|
182 uprv_collIterateAtEnd(collIterate *s) { |
|
183 return s == NULL || s->pos == s->endp; |
|
184 } |
|
185 |
|
186 /** |
|
187 * Backup the state of the collIterate struct data |
|
188 * @param data collIterate to backup |
|
189 * @param backup storage |
|
190 */ |
|
191 static |
|
192 inline void backupState(const collIterate *data, collIterateState *backup) |
|
193 { |
|
194 backup->fcdPosition = data->fcdPosition; |
|
195 backup->flags = data->flags; |
|
196 backup->origFlags = data->origFlags; |
|
197 backup->pos = data->pos; |
|
198 backup->bufferaddress = data->writableBuffer.getBuffer(); |
|
199 backup->buffersize = data->writableBuffer.length(); |
|
200 backup->iteratorMove = 0; |
|
201 backup->iteratorIndex = 0; |
|
202 if(data->iterator != NULL) { |
|
203 //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT); |
|
204 backup->iteratorIndex = data->iterator->getState(data->iterator); |
|
205 // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE |
|
206 if(backup->iteratorIndex == UITER_NO_STATE) { |
|
207 while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) { |
|
208 backup->iteratorMove++; |
|
209 data->iterator->move(data->iterator, -1, UITER_CURRENT); |
|
210 } |
|
211 data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); |
|
212 } |
|
213 } |
|
214 } |
|
215 |
|
216 /** |
|
217 * Loads the state into the collIterate struct data |
|
218 * @param data collIterate to backup |
|
219 * @param backup storage |
|
220 * @param forwards boolean to indicate if forwards iteration is used, |
|
221 * false indicates backwards iteration |
|
222 */ |
|
223 static |
|
224 inline void loadState(collIterate *data, const collIterateState *backup, |
|
225 UBool forwards) |
|
226 { |
|
227 UErrorCode status = U_ZERO_ERROR; |
|
228 data->flags = backup->flags; |
|
229 data->origFlags = backup->origFlags; |
|
230 if(data->iterator != NULL) { |
|
231 //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO); |
|
232 data->iterator->setState(data->iterator, backup->iteratorIndex, &status); |
|
233 if(backup->iteratorMove != 0) { |
|
234 data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); |
|
235 } |
|
236 } |
|
237 data->pos = backup->pos; |
|
238 |
|
239 if ((data->flags & UCOL_ITER_INNORMBUF) && |
|
240 data->writableBuffer.getBuffer() != backup->bufferaddress) { |
|
241 /* |
|
242 this is when a new buffer has been reallocated and we'll have to |
|
243 calculate the new position. |
|
244 note the new buffer has to contain the contents of the old buffer. |
|
245 */ |
|
246 if (forwards) { |
|
247 data->pos = data->writableBuffer.getTerminatedBuffer() + |
|
248 (data->pos - backup->bufferaddress); |
|
249 } |
|
250 else { |
|
251 /* backwards direction */ |
|
252 int32_t temp = backup->buffersize - |
|
253 (int32_t)(data->pos - backup->bufferaddress); |
|
254 data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp); |
|
255 } |
|
256 } |
|
257 if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
|
258 /* |
|
259 this is alittle tricky. |
|
260 if we are initially not in the normalization buffer, even if we |
|
261 normalize in the later stage, the data in the buffer will be |
|
262 ignored, since we skip back up to the data string. |
|
263 however if we are already in the normalization buffer, any |
|
264 further normalization will pull data into the normalization |
|
265 buffer and modify the fcdPosition. |
|
266 since we are keeping the data in the buffer for use, the |
|
267 fcdPosition can not be reverted back. |
|
268 arrgghh.... |
|
269 */ |
|
270 data->fcdPosition = backup->fcdPosition; |
|
271 } |
|
272 } |
|
273 |
|
274 static UBool |
|
275 reallocCEs(collIterate *data, int32_t newCapacity) { |
|
276 uint32_t *oldCEs = data->extendCEs; |
|
277 if(oldCEs == NULL) { |
|
278 oldCEs = data->CEs; |
|
279 } |
|
280 int32_t length = data->CEpos - oldCEs; |
|
281 uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4); |
|
282 if(newCEs == NULL) { |
|
283 return FALSE; |
|
284 } |
|
285 uprv_memcpy(newCEs, oldCEs, length * 4); |
|
286 uprv_free(data->extendCEs); |
|
287 data->extendCEs = newCEs; |
|
288 data->extendCEsSize = newCapacity; |
|
289 data->CEpos = newCEs + length; |
|
290 return TRUE; |
|
291 } |
|
292 |
|
293 static UBool |
|
294 increaseCEsCapacity(collIterate *data) { |
|
295 int32_t oldCapacity; |
|
296 if(data->extendCEs != NULL) { |
|
297 oldCapacity = data->extendCEsSize; |
|
298 } else { |
|
299 oldCapacity = LENGTHOF(data->CEs); |
|
300 } |
|
301 return reallocCEs(data, 2 * oldCapacity); |
|
302 } |
|
303 |
|
304 static UBool |
|
305 ensureCEsCapacity(collIterate *data, int32_t minCapacity) { |
|
306 int32_t oldCapacity; |
|
307 if(data->extendCEs != NULL) { |
|
308 oldCapacity = data->extendCEsSize; |
|
309 } else { |
|
310 oldCapacity = LENGTHOF(data->CEs); |
|
311 } |
|
312 if(minCapacity <= oldCapacity) { |
|
313 return TRUE; |
|
314 } |
|
315 oldCapacity *= 2; |
|
316 return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity); |
|
317 } |
|
318 |
|
319 void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) { |
|
320 if(U_FAILURE(errorCode)) { |
|
321 return; |
|
322 } |
|
323 int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer); |
|
324 U_ASSERT(length >= offsetBufferSize || offsetStore != NULL); |
|
325 if(length >= offsetBufferSize) { |
|
326 int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE; |
|
327 int32_t *newBuffer = static_cast<int32_t *>(uprv_malloc(newCapacity * 4)); |
|
328 if(newBuffer == NULL) { |
|
329 errorCode = U_MEMORY_ALLOCATION_ERROR; |
|
330 return; |
|
331 } |
|
332 if(length > 0) { |
|
333 uprv_memcpy(newBuffer, offsetBuffer, length * 4); |
|
334 } |
|
335 uprv_free(offsetBuffer); |
|
336 offsetBuffer = newBuffer; |
|
337 offsetStore = offsetBuffer + length; |
|
338 offsetBufferSize = newCapacity; |
|
339 } |
|
340 *offsetStore++ = offset; |
|
341 } |
|
342 |
|
343 /* |
|
344 * collIter_eos() |
|
345 * Checks for a collIterate being positioned at the end of |
|
346 * its source string. |
|
347 * |
|
348 */ |
|
349 static |
|
350 inline UBool collIter_eos(collIterate *s) { |
|
351 if(s->flags & UCOL_USE_ITERATOR) { |
|
352 return !(s->iterator->hasNext(s->iterator)); |
|
353 } |
|
354 if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) { |
|
355 // Null terminated string, but not at null, so not at end. |
|
356 // Whether in main or normalization buffer doesn't matter. |
|
357 return FALSE; |
|
358 } |
|
359 |
|
360 // String with length. Can't be in normalization buffer, which is always |
|
361 // null termintated. |
|
362 if (s->flags & UCOL_ITER_HASLEN) { |
|
363 return (s->pos == s->endp); |
|
364 } |
|
365 |
|
366 // We are at a null termination, could be either normalization buffer or main string. |
|
367 if ((s->flags & UCOL_ITER_INNORMBUF) == 0) { |
|
368 // At null at end of main string. |
|
369 return TRUE; |
|
370 } |
|
371 |
|
372 // At null at end of normalization buffer. Need to check whether there there are |
|
373 // any characters left in the main buffer. |
|
374 if(s->origFlags & UCOL_USE_ITERATOR) { |
|
375 return !(s->iterator->hasNext(s->iterator)); |
|
376 } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) { |
|
377 // Null terminated main string. fcdPosition is the 'return' position into main buf. |
|
378 return (*s->fcdPosition == 0); |
|
379 } |
|
380 else { |
|
381 // Main string with an end pointer. |
|
382 return s->fcdPosition == s->endp; |
|
383 } |
|
384 } |
|
385 |
|
386 /* |
|
387 * collIter_bos() |
|
388 * Checks for a collIterate being positioned at the start of |
|
389 * its source string. |
|
390 * |
|
391 */ |
|
392 static |
|
393 inline UBool collIter_bos(collIterate *source) { |
|
394 // if we're going backwards, we need to know whether there is more in the |
|
395 // iterator, even if we are in the side buffer |
|
396 if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { |
|
397 return !source->iterator->hasPrevious(source->iterator); |
|
398 } |
|
399 if (source->pos <= source->string || |
|
400 ((source->flags & UCOL_ITER_INNORMBUF) && |
|
401 *(source->pos - 1) == 0 && source->fcdPosition == NULL)) { |
|
402 return TRUE; |
|
403 } |
|
404 return FALSE; |
|
405 } |
|
406 |
|
407 /*static |
|
408 inline UBool collIter_SimpleBos(collIterate *source) { |
|
409 // if we're going backwards, we need to know whether there is more in the |
|
410 // iterator, even if we are in the side buffer |
|
411 if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { |
|
412 return !source->iterator->hasPrevious(source->iterator); |
|
413 } |
|
414 if (source->pos == source->string) { |
|
415 return TRUE; |
|
416 } |
|
417 return FALSE; |
|
418 }*/ |
|
419 //return (data->pos == data->string) || |
|
420 |
|
421 |
|
422 /****************************************************************************/ |
|
423 /* Following are the open/close functions */ |
|
424 /* */ |
|
425 /****************************************************************************/ |
|
426 |
|
427 static UCollator* |
|
428 ucol_initFromBinary(const uint8_t *bin, int32_t length, |
|
429 const UCollator *base, |
|
430 UCollator *fillIn, |
|
431 UErrorCode *status) |
|
432 { |
|
433 UCollator *result = fillIn; |
|
434 if(U_FAILURE(*status)) { |
|
435 return NULL; |
|
436 } |
|
437 /* |
|
438 if(base == NULL) { |
|
439 // we don't support null base yet |
|
440 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
441 return NULL; |
|
442 } |
|
443 */ |
|
444 // We need these and we could be running without UCA |
|
445 uprv_uca_initImplicitConstants(status); |
|
446 UCATableHeader *colData = (UCATableHeader *)bin; |
|
447 // do we want version check here? We're trying to figure out whether collators are compatible |
|
448 if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 || |
|
449 uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) || |
|
450 colData->version[0] != UCOL_BUILDER_VERSION) |
|
451 { |
|
452 *status = U_COLLATOR_VERSION_MISMATCH; |
|
453 return NULL; |
|
454 } |
|
455 else { |
|
456 if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) { |
|
457 result = ucol_initCollator((const UCATableHeader *)bin, result, base, status); |
|
458 if(U_FAILURE(*status)){ |
|
459 return NULL; |
|
460 } |
|
461 result->hasRealData = TRUE; |
|
462 } |
|
463 else { |
|
464 if(base) { |
|
465 result = ucol_initCollator(base->image, result, base, status); |
|
466 ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status); |
|
467 if(U_FAILURE(*status)){ |
|
468 return NULL; |
|
469 } |
|
470 result->hasRealData = FALSE; |
|
471 } |
|
472 else { |
|
473 *status = U_USELESS_COLLATOR_ERROR; |
|
474 return NULL; |
|
475 } |
|
476 } |
|
477 result->freeImageOnClose = FALSE; |
|
478 } |
|
479 result->actualLocale = NULL; |
|
480 result->validLocale = NULL; |
|
481 result->requestedLocale = NULL; |
|
482 result->rules = NULL; |
|
483 result->rulesLength = 0; |
|
484 result->freeRulesOnClose = FALSE; |
|
485 result->ucaRules = NULL; |
|
486 return result; |
|
487 } |
|
488 |
|
489 U_CAPI UCollator* U_EXPORT2 |
|
490 ucol_openBinary(const uint8_t *bin, int32_t length, |
|
491 const UCollator *base, |
|
492 UErrorCode *status) |
|
493 { |
|
494 return ucol_initFromBinary(bin, length, base, NULL, status); |
|
495 } |
|
496 |
|
497 U_CAPI int32_t U_EXPORT2 |
|
498 ucol_cloneBinary(const UCollator *coll, |
|
499 uint8_t *buffer, int32_t capacity, |
|
500 UErrorCode *status) |
|
501 { |
|
502 int32_t length = 0; |
|
503 if(U_FAILURE(*status)) { |
|
504 return length; |
|
505 } |
|
506 if(capacity < 0) { |
|
507 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
508 return length; |
|
509 } |
|
510 if(coll->hasRealData == TRUE) { |
|
511 length = coll->image->size; |
|
512 if(length <= capacity) { |
|
513 uprv_memcpy(buffer, coll->image, length); |
|
514 } else { |
|
515 *status = U_BUFFER_OVERFLOW_ERROR; |
|
516 } |
|
517 } else { |
|
518 length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); |
|
519 if(length <= capacity) { |
|
520 /* build the UCATableHeader with minimal entries */ |
|
521 /* do not copy the header from the UCA file because its values are wrong! */ |
|
522 /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ |
|
523 |
|
524 /* reset everything */ |
|
525 uprv_memset(buffer, 0, length); |
|
526 |
|
527 /* set the tailoring-specific values */ |
|
528 UCATableHeader *myData = (UCATableHeader *)buffer; |
|
529 myData->size = length; |
|
530 |
|
531 /* offset for the options, the only part of the data that is present after the header */ |
|
532 myData->options = sizeof(UCATableHeader); |
|
533 |
|
534 /* need to always set the expansion value for an upper bound of the options */ |
|
535 myData->expansion = myData->options + sizeof(UColOptionSet); |
|
536 |
|
537 myData->magic = UCOL_HEADER_MAGIC; |
|
538 myData->isBigEndian = U_IS_BIG_ENDIAN; |
|
539 myData->charSetFamily = U_CHARSET_FAMILY; |
|
540 |
|
541 /* copy UCA's version; genrb will override all but the builder version with tailoring data */ |
|
542 uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); |
|
543 |
|
544 uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); |
|
545 uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); |
|
546 uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); |
|
547 myData->jamoSpecial = coll->image->jamoSpecial; |
|
548 |
|
549 /* copy the collator options */ |
|
550 uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); |
|
551 } else { |
|
552 *status = U_BUFFER_OVERFLOW_ERROR; |
|
553 } |
|
554 } |
|
555 return length; |
|
556 } |
|
557 |
|
558 U_CAPI UCollator* U_EXPORT2 |
|
559 ucol_safeClone(const UCollator *coll, void * /*stackBuffer*/, int32_t * pBufferSize, UErrorCode *status) |
|
560 { |
|
561 UCollator * localCollator; |
|
562 int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator); |
|
563 int32_t imageSize = 0; |
|
564 int32_t rulesSize = 0; |
|
565 int32_t rulesPadding = 0; |
|
566 int32_t defaultReorderCodesSize = 0; |
|
567 int32_t reorderCodesSize = 0; |
|
568 uint8_t *image; |
|
569 UChar *rules; |
|
570 int32_t* defaultReorderCodes; |
|
571 int32_t* reorderCodes; |
|
572 uint8_t* leadBytePermutationTable; |
|
573 UBool imageAllocated = FALSE; |
|
574 |
|
575 if (status == NULL || U_FAILURE(*status)){ |
|
576 return NULL; |
|
577 } |
|
578 if (coll == NULL) { |
|
579 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
580 return NULL; |
|
581 } |
|
582 |
|
583 if (coll->rules && coll->freeRulesOnClose) { |
|
584 rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar); |
|
585 rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar)); |
|
586 bufferSizeNeeded += rulesSize + rulesPadding; |
|
587 } |
|
588 // no padding for alignment needed from here since the next two are 4 byte quantities |
|
589 if (coll->defaultReorderCodes) { |
|
590 defaultReorderCodesSize = coll->defaultReorderCodesLength * sizeof(int32_t); |
|
591 bufferSizeNeeded += defaultReorderCodesSize; |
|
592 } |
|
593 if (coll->reorderCodes) { |
|
594 reorderCodesSize = coll->reorderCodesLength * sizeof(int32_t); |
|
595 bufferSizeNeeded += reorderCodesSize; |
|
596 } |
|
597 if (coll->leadBytePermutationTable) { |
|
598 bufferSizeNeeded += 256 * sizeof(uint8_t); |
|
599 } |
|
600 |
|
601 if (pBufferSize != NULL) { |
|
602 int32_t inputSize = *pBufferSize; |
|
603 *pBufferSize = 1; |
|
604 if (inputSize == 0) { |
|
605 return NULL; // preflighting for deprecated functionality |
|
606 } |
|
607 } |
|
608 |
|
609 char *stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded); |
|
610 // Null pointer check. |
|
611 if (stackBufferChars == NULL) { |
|
612 *status = U_MEMORY_ALLOCATION_ERROR; |
|
613 return NULL; |
|
614 } |
|
615 *status = U_SAFECLONE_ALLOCATED_WARNING; |
|
616 |
|
617 localCollator = (UCollator *)stackBufferChars; |
|
618 rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding); |
|
619 defaultReorderCodes = (int32_t*)((uint8_t*)rules + rulesSize); |
|
620 reorderCodes = (int32_t*)((uint8_t*)defaultReorderCodes + defaultReorderCodesSize); |
|
621 leadBytePermutationTable = (uint8_t*)reorderCodes + reorderCodesSize; |
|
622 |
|
623 { |
|
624 UErrorCode tempStatus = U_ZERO_ERROR; |
|
625 imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus); |
|
626 } |
|
627 if (coll->freeImageOnClose) { |
|
628 image = (uint8_t *)uprv_malloc(imageSize); |
|
629 // Null pointer check |
|
630 if (image == NULL) { |
|
631 *status = U_MEMORY_ALLOCATION_ERROR; |
|
632 return NULL; |
|
633 } |
|
634 ucol_cloneBinary(coll, image, imageSize, status); |
|
635 imageAllocated = TRUE; |
|
636 } |
|
637 else { |
|
638 image = (uint8_t *)coll->image; |
|
639 } |
|
640 localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status); |
|
641 if (U_FAILURE(*status)) { |
|
642 return NULL; |
|
643 } |
|
644 |
|
645 if (coll->rules) { |
|
646 if (coll->freeRulesOnClose) { |
|
647 localCollator->rules = u_strcpy(rules, coll->rules); |
|
648 //bufferEnd += rulesSize; |
|
649 } |
|
650 else { |
|
651 localCollator->rules = coll->rules; |
|
652 } |
|
653 localCollator->freeRulesOnClose = FALSE; |
|
654 localCollator->rulesLength = coll->rulesLength; |
|
655 } |
|
656 |
|
657 // collator reordering |
|
658 if (coll->defaultReorderCodes) { |
|
659 localCollator->defaultReorderCodes = |
|
660 (int32_t*) uprv_memcpy(defaultReorderCodes, coll->defaultReorderCodes, coll->defaultReorderCodesLength * sizeof(int32_t)); |
|
661 localCollator->defaultReorderCodesLength = coll->defaultReorderCodesLength; |
|
662 localCollator->freeDefaultReorderCodesOnClose = FALSE; |
|
663 } |
|
664 if (coll->reorderCodes) { |
|
665 localCollator->reorderCodes = |
|
666 (int32_t*)uprv_memcpy(reorderCodes, coll->reorderCodes, coll->reorderCodesLength * sizeof(int32_t)); |
|
667 localCollator->reorderCodesLength = coll->reorderCodesLength; |
|
668 localCollator->freeReorderCodesOnClose = FALSE; |
|
669 } |
|
670 if (coll->leadBytePermutationTable) { |
|
671 localCollator->leadBytePermutationTable = |
|
672 (uint8_t*) uprv_memcpy(leadBytePermutationTable, coll->leadBytePermutationTable, 256); |
|
673 localCollator->freeLeadBytePermutationTableOnClose = FALSE; |
|
674 } |
|
675 |
|
676 int32_t i; |
|
677 for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) { |
|
678 ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status); |
|
679 } |
|
680 // zero copies of pointers |
|
681 localCollator->actualLocale = NULL; |
|
682 localCollator->validLocale = NULL; |
|
683 localCollator->requestedLocale = NULL; |
|
684 localCollator->ucaRules = coll->ucaRules; // There should only be one copy here. |
|
685 localCollator->freeOnClose = TRUE; |
|
686 localCollator->freeImageOnClose = imageAllocated; |
|
687 return localCollator; |
|
688 } |
|
689 |
|
690 U_CAPI void U_EXPORT2 |
|
691 ucol_close(UCollator *coll) |
|
692 { |
|
693 UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE); |
|
694 UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll); |
|
695 if(coll != NULL) { |
|
696 // these are always owned by each UCollator struct, |
|
697 // so we always free them |
|
698 if(coll->validLocale != NULL) { |
|
699 uprv_free(coll->validLocale); |
|
700 } |
|
701 if(coll->actualLocale != NULL) { |
|
702 uprv_free(coll->actualLocale); |
|
703 } |
|
704 if(coll->requestedLocale != NULL) { |
|
705 uprv_free(coll->requestedLocale); |
|
706 } |
|
707 if(coll->latinOneCEs != NULL) { |
|
708 uprv_free(coll->latinOneCEs); |
|
709 } |
|
710 if(coll->options != NULL && coll->freeOptionsOnClose) { |
|
711 uprv_free(coll->options); |
|
712 } |
|
713 if(coll->rules != NULL && coll->freeRulesOnClose) { |
|
714 uprv_free((UChar *)coll->rules); |
|
715 } |
|
716 if(coll->image != NULL && coll->freeImageOnClose) { |
|
717 uprv_free((UCATableHeader *)coll->image); |
|
718 } |
|
719 |
|
720 if(coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { |
|
721 uprv_free(coll->leadBytePermutationTable); |
|
722 } |
|
723 if(coll->defaultReorderCodes != NULL && coll->freeDefaultReorderCodesOnClose == TRUE) { |
|
724 uprv_free(coll->defaultReorderCodes); |
|
725 } |
|
726 if(coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { |
|
727 uprv_free(coll->reorderCodes); |
|
728 } |
|
729 |
|
730 if(coll->delegate != NULL) { |
|
731 delete (Collator*)coll->delegate; |
|
732 } |
|
733 |
|
734 /* Here, it would be advisable to close: */ |
|
735 /* - UData for UCA (unless we stuff it in the root resb */ |
|
736 /* Again, do we need additional housekeeping... HMMM! */ |
|
737 UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose); |
|
738 if(coll->freeOnClose){ |
|
739 /* for safeClone, if freeOnClose is FALSE, |
|
740 don't free the other instance data */ |
|
741 uprv_free(coll); |
|
742 } |
|
743 } |
|
744 UTRACE_EXIT(); |
|
745 } |
|
746 |
|
747 void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) { |
|
748 if(U_FAILURE(*status)) { |
|
749 return; |
|
750 } |
|
751 result->caseFirst = (UColAttributeValue)opts->caseFirst; |
|
752 result->caseLevel = (UColAttributeValue)opts->caseLevel; |
|
753 result->frenchCollation = (UColAttributeValue)opts->frenchCollation; |
|
754 result->normalizationMode = (UColAttributeValue)opts->normalizationMode; |
|
755 if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) { |
|
756 return; |
|
757 } |
|
758 result->strength = (UColAttributeValue)opts->strength; |
|
759 result->variableTopValue = opts->variableTopValue; |
|
760 result->alternateHandling = (UColAttributeValue)opts->alternateHandling; |
|
761 result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ; |
|
762 result->numericCollation = (UColAttributeValue)opts->numericCollation; |
|
763 result->caseFirstisDefault = TRUE; |
|
764 result->caseLevelisDefault = TRUE; |
|
765 result->frenchCollationisDefault = TRUE; |
|
766 result->normalizationModeisDefault = TRUE; |
|
767 result->strengthisDefault = TRUE; |
|
768 result->variableTopValueisDefault = TRUE; |
|
769 result->alternateHandlingisDefault = TRUE; |
|
770 result->hiraganaQisDefault = TRUE; |
|
771 result->numericCollationisDefault = TRUE; |
|
772 |
|
773 ucol_updateInternalState(result, status); |
|
774 |
|
775 result->options = opts; |
|
776 } |
|
777 |
|
778 |
|
779 /** |
|
780 * Approximate determination if a character is at a contraction end. |
|
781 * Guaranteed to be TRUE if a character is at the end of a contraction, |
|
782 * otherwise it is not deterministic. |
|
783 * @param c character to be determined |
|
784 * @param coll collator |
|
785 */ |
|
786 static |
|
787 inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) { |
|
788 if (c < coll->minContrEndCP) { |
|
789 return FALSE; |
|
790 } |
|
791 |
|
792 int32_t hash = c; |
|
793 uint8_t htbyte; |
|
794 if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { |
|
795 if (U16_IS_TRAIL(c)) { |
|
796 return TRUE; |
|
797 } |
|
798 hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; |
|
799 } |
|
800 htbyte = coll->contrEndCP[hash>>3]; |
|
801 return (((htbyte >> (hash & 7)) & 1) == 1); |
|
802 } |
|
803 |
|
804 |
|
805 |
|
806 /* |
|
807 * i_getCombiningClass() |
|
808 * A fast, at least partly inline version of u_getCombiningClass() |
|
809 * This is a candidate for further optimization. Used heavily |
|
810 * in contraction processing. |
|
811 */ |
|
812 static |
|
813 inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) { |
|
814 uint8_t sCC = 0; |
|
815 if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) { |
|
816 sCC = u_getCombiningClass(c); |
|
817 } |
|
818 return sCC; |
|
819 } |
|
820 |
|
821 UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) { |
|
822 UChar c; |
|
823 UCollator *result = fillIn; |
|
824 if(U_FAILURE(*status) || image == NULL) { |
|
825 return NULL; |
|
826 } |
|
827 |
|
828 if(result == NULL) { |
|
829 result = (UCollator *)uprv_malloc(sizeof(UCollator)); |
|
830 if(result == NULL) { |
|
831 *status = U_MEMORY_ALLOCATION_ERROR; |
|
832 return result; |
|
833 } |
|
834 result->freeOnClose = TRUE; |
|
835 } else { |
|
836 result->freeOnClose = FALSE; |
|
837 } |
|
838 |
|
839 result->delegate = NULL; |
|
840 |
|
841 result->image = image; |
|
842 result->mapping.getFoldingOffset = _getFoldingOffset; |
|
843 const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition; |
|
844 utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status); |
|
845 if(U_FAILURE(*status)) { |
|
846 if(result->freeOnClose == TRUE) { |
|
847 uprv_free(result); |
|
848 result = NULL; |
|
849 } |
|
850 return result; |
|
851 } |
|
852 |
|
853 result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping); |
|
854 result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs); |
|
855 result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex); |
|
856 result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion); |
|
857 result->rules = NULL; |
|
858 result->rulesLength = 0; |
|
859 result->freeRulesOnClose = FALSE; |
|
860 result->defaultReorderCodes = NULL; |
|
861 result->defaultReorderCodesLength = 0; |
|
862 result->freeDefaultReorderCodesOnClose = FALSE; |
|
863 result->reorderCodes = NULL; |
|
864 result->reorderCodesLength = 0; |
|
865 result->freeReorderCodesOnClose = FALSE; |
|
866 result->leadBytePermutationTable = NULL; |
|
867 result->freeLeadBytePermutationTableOnClose = FALSE; |
|
868 |
|
869 /* get the version info from UCATableHeader and populate the Collator struct*/ |
|
870 result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/ |
|
871 result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/ |
|
872 result->dataVersion[2] = 0; |
|
873 result->dataVersion[3] = 0; |
|
874 |
|
875 result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP; |
|
876 result->minUnsafeCP = 0; |
|
877 for (c=0; c<0x300; c++) { // Find the smallest unsafe char. |
|
878 if (ucol_unsafeCP(c, result)) break; |
|
879 } |
|
880 result->minUnsafeCP = c; |
|
881 |
|
882 result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP; |
|
883 result->minContrEndCP = 0; |
|
884 for (c=0; c<0x300; c++) { // Find the Contraction-ending char. |
|
885 if (ucol_contractionEndCP(c, result)) break; |
|
886 } |
|
887 result->minContrEndCP = c; |
|
888 |
|
889 /* max expansion tables */ |
|
890 result->endExpansionCE = (uint32_t*)((uint8_t*)result->image + |
|
891 result->image->endExpansionCE); |
|
892 result->lastEndExpansionCE = result->endExpansionCE + |
|
893 result->image->endExpansionCECount - 1; |
|
894 result->expansionCESize = (uint8_t*)result->image + |
|
895 result->image->expansionCESize; |
|
896 |
|
897 |
|
898 //result->errorCode = *status; |
|
899 |
|
900 result->latinOneCEs = NULL; |
|
901 |
|
902 result->latinOneRegenTable = FALSE; |
|
903 result->latinOneFailed = FALSE; |
|
904 result->UCA = UCA; |
|
905 |
|
906 /* Normally these will be set correctly later. This is the default if you use UCA or the default. */ |
|
907 result->ucaRules = NULL; |
|
908 result->actualLocale = NULL; |
|
909 result->validLocale = NULL; |
|
910 result->requestedLocale = NULL; |
|
911 result->hasRealData = FALSE; // real data lives in .dat file... |
|
912 result->freeImageOnClose = FALSE; |
|
913 |
|
914 /* set attributes */ |
|
915 ucol_setOptionsFromHeader( |
|
916 result, |
|
917 (UColOptionSet*)((uint8_t*)result->image+result->image->options), |
|
918 status); |
|
919 result->freeOptionsOnClose = FALSE; |
|
920 |
|
921 return result; |
|
922 } |
|
923 |
|
924 /* new Mark's code */ |
|
925 |
|
926 /** |
|
927 * For generation of Implicit CEs |
|
928 * @author Davis |
|
929 * |
|
930 * Cleaned up so that changes can be made more easily. |
|
931 * Old values: |
|
932 # First Implicit: E26A792D |
|
933 # Last Implicit: E3DC70C0 |
|
934 # First CJK: E0030300 |
|
935 # Last CJK: E0A9DD00 |
|
936 # First CJK_A: E0A9DF00 |
|
937 # Last CJK_A: E0DE3100 |
|
938 */ |
|
939 /* Following is a port of Mark's code for new treatment of implicits. |
|
940 * It is positioned here, since ucol_initUCA need to initialize the |
|
941 * variables below according to the data in the fractional UCA. |
|
942 */ |
|
943 |
|
944 /** |
|
945 * Function used to: |
|
946 * a) collapse the 2 different Han ranges from UCA into one (in the right order), and |
|
947 * b) bump any non-CJK characters by 10FFFF. |
|
948 * The relevant blocks are: |
|
949 * A: 4E00..9FFF; CJK Unified Ideographs |
|
950 * F900..FAFF; CJK Compatibility Ideographs |
|
951 * B: 3400..4DBF; CJK Unified Ideographs Extension A |
|
952 * 20000..XX; CJK Unified Ideographs Extension B (and others later on) |
|
953 * As long as |
|
954 * no new B characters are allocated between 4E00 and FAFF, and |
|
955 * no new A characters are outside of this range, |
|
956 * (very high probability) this simple code will work. |
|
957 * The reordered blocks are: |
|
958 * Block1 is CJK |
|
959 * Block2 is CJK_COMPAT_USED |
|
960 * Block3 is CJK_A |
|
961 * (all contiguous) |
|
962 * Any other CJK gets its normal code point |
|
963 * Any non-CJK gets +10FFFF |
|
964 * When we reorder Block1, we make sure that it is at the very start, |
|
965 * so that it will use a 3-byte form. |
|
966 * Warning: the we only pick up the compatibility characters that are |
|
967 * NOT decomposed, so that block is smaller! |
|
968 */ |
|
969 |
|
970 // CONSTANTS |
|
971 static const UChar32 |
|
972 NON_CJK_OFFSET = 0x110000, |
|
973 UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2 |
|
974 |
|
975 /** |
|
976 * Precomputed by initImplicitConstants() |
|
977 */ |
|
978 static int32_t |
|
979 final3Multiplier = 0, |
|
980 final4Multiplier = 0, |
|
981 final3Count = 0, |
|
982 final4Count = 0, |
|
983 medialCount = 0, |
|
984 min3Primary = 0, |
|
985 min4Primary = 0, |
|
986 max4Primary = 0, |
|
987 minTrail = 0, |
|
988 maxTrail = 0, |
|
989 max3Trail = 0, |
|
990 max4Trail = 0, |
|
991 min4Boundary = 0; |
|
992 |
|
993 static const UChar32 |
|
994 // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;; |
|
995 // 9FCC;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;; (Unicode 6.1) |
|
996 CJK_BASE = 0x4E00, |
|
997 CJK_LIMIT = 0x9FCC+1, |
|
998 // Unified CJK ideographs in the compatibility ideographs block. |
|
999 CJK_COMPAT_USED_BASE = 0xFA0E, |
|
1000 CJK_COMPAT_USED_LIMIT = 0xFA2F+1, |
|
1001 // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;; |
|
1002 // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;; |
|
1003 CJK_A_BASE = 0x3400, |
|
1004 CJK_A_LIMIT = 0x4DB5+1, |
|
1005 // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;; |
|
1006 // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;; |
|
1007 CJK_B_BASE = 0x20000, |
|
1008 CJK_B_LIMIT = 0x2A6D6+1, |
|
1009 // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;; |
|
1010 // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;; |
|
1011 CJK_C_BASE = 0x2A700, |
|
1012 CJK_C_LIMIT = 0x2B734+1, |
|
1013 // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;; |
|
1014 // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;; |
|
1015 CJK_D_BASE = 0x2B740, |
|
1016 CJK_D_LIMIT = 0x2B81D+1; |
|
1017 // when adding to this list, look for all occurrences (in project) |
|
1018 // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!! |
|
1019 |
|
1020 static UChar32 swapCJK(UChar32 i) { |
|
1021 if (i < CJK_A_BASE) { |
|
1022 // non-CJK |
|
1023 } else if (i < CJK_A_LIMIT) { |
|
1024 // Extension A has lower code points than the original Unihan+compat |
|
1025 // but sorts higher. |
|
1026 return i - CJK_A_BASE |
|
1027 + (CJK_LIMIT - CJK_BASE) |
|
1028 + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); |
|
1029 } else if (i < CJK_BASE) { |
|
1030 // non-CJK |
|
1031 } else if (i < CJK_LIMIT) { |
|
1032 return i - CJK_BASE; |
|
1033 } else if (i < CJK_COMPAT_USED_BASE) { |
|
1034 // non-CJK |
|
1035 } else if (i < CJK_COMPAT_USED_LIMIT) { |
|
1036 return i - CJK_COMPAT_USED_BASE |
|
1037 + (CJK_LIMIT - CJK_BASE); |
|
1038 } else if (i < CJK_B_BASE) { |
|
1039 // non-CJK |
|
1040 } else if (i < CJK_B_LIMIT) { |
|
1041 return i; // non-BMP-CJK |
|
1042 } else if (i < CJK_C_BASE) { |
|
1043 // non-CJK |
|
1044 } else if (i < CJK_C_LIMIT) { |
|
1045 return i; // non-BMP-CJK |
|
1046 } else if (i < CJK_D_BASE) { |
|
1047 // non-CJK |
|
1048 } else if (i < CJK_D_LIMIT) { |
|
1049 return i; // non-BMP-CJK |
|
1050 } |
|
1051 return i + NON_CJK_OFFSET; // non-CJK |
|
1052 } |
|
1053 |
|
1054 U_CAPI UChar32 U_EXPORT2 |
|
1055 uprv_uca_getRawFromCodePoint(UChar32 i) { |
|
1056 return swapCJK(i)+1; |
|
1057 } |
|
1058 |
|
1059 U_CAPI UChar32 U_EXPORT2 |
|
1060 uprv_uca_getCodePointFromRaw(UChar32 i) { |
|
1061 i--; |
|
1062 UChar32 result = 0; |
|
1063 if(i >= NON_CJK_OFFSET) { |
|
1064 result = i - NON_CJK_OFFSET; |
|
1065 } else if(i >= CJK_B_BASE) { |
|
1066 result = i; |
|
1067 } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted |
|
1068 if(i < CJK_LIMIT - CJK_BASE) { |
|
1069 result = i + CJK_BASE; |
|
1070 } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { |
|
1071 result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE); |
|
1072 } else { |
|
1073 result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); |
|
1074 } |
|
1075 } else { |
|
1076 result = -1; |
|
1077 } |
|
1078 return result; |
|
1079 } |
|
1080 |
|
1081 // GET IMPLICIT PRIMARY WEIGHTS |
|
1082 // Return value is left justified primary key |
|
1083 U_CAPI uint32_t U_EXPORT2 |
|
1084 uprv_uca_getImplicitFromRaw(UChar32 cp) { |
|
1085 /* |
|
1086 if (cp < 0 || cp > UCOL_MAX_INPUT) { |
|
1087 throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp)); |
|
1088 } |
|
1089 */ |
|
1090 int32_t last0 = cp - min4Boundary; |
|
1091 if (last0 < 0) { |
|
1092 int32_t last1 = cp / final3Count; |
|
1093 last0 = cp % final3Count; |
|
1094 |
|
1095 int32_t last2 = last1 / medialCount; |
|
1096 last1 %= medialCount; |
|
1097 |
|
1098 last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start |
|
1099 last1 = minTrail + last1; // offset |
|
1100 last2 = min3Primary + last2; // offset |
|
1101 /* |
|
1102 if (last2 >= min4Primary) { |
|
1103 throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2)); |
|
1104 } |
|
1105 */ |
|
1106 return (last2 << 24) + (last1 << 16) + (last0 << 8); |
|
1107 } else { |
|
1108 int32_t last1 = last0 / final4Count; |
|
1109 last0 %= final4Count; |
|
1110 |
|
1111 int32_t last2 = last1 / medialCount; |
|
1112 last1 %= medialCount; |
|
1113 |
|
1114 int32_t last3 = last2 / medialCount; |
|
1115 last2 %= medialCount; |
|
1116 |
|
1117 last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start |
|
1118 last1 = minTrail + last1; // offset |
|
1119 last2 = minTrail + last2; // offset |
|
1120 last3 = min4Primary + last3; // offset |
|
1121 /* |
|
1122 if (last3 > max4Primary) { |
|
1123 throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3)); |
|
1124 } |
|
1125 */ |
|
1126 return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0; |
|
1127 } |
|
1128 } |
|
1129 |
|
1130 static uint32_t U_EXPORT2 |
|
1131 uprv_uca_getImplicitPrimary(UChar32 cp) { |
|
1132 //fprintf(stdout, "Incoming: %04x\n", cp); |
|
1133 //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp)); |
|
1134 |
|
1135 cp = swapCJK(cp); |
|
1136 cp++; |
|
1137 // we now have a range of numbers from 0 to 21FFFF. |
|
1138 |
|
1139 //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp)); |
|
1140 //fprintf(stdout, "CJK swapped: %04x\n", cp); |
|
1141 |
|
1142 return uprv_uca_getImplicitFromRaw(cp); |
|
1143 } |
|
1144 |
|
1145 /** |
|
1146 * Converts implicit CE into raw integer ("code point") |
|
1147 * @param implicit |
|
1148 * @return -1 if illegal format |
|
1149 */ |
|
1150 U_CAPI UChar32 U_EXPORT2 |
|
1151 uprv_uca_getRawFromImplicit(uint32_t implicit) { |
|
1152 UChar32 result; |
|
1153 UChar32 b3 = implicit & 0xFF; |
|
1154 UChar32 b2 = (implicit >> 8) & 0xFF; |
|
1155 UChar32 b1 = (implicit >> 16) & 0xFF; |
|
1156 UChar32 b0 = (implicit >> 24) & 0xFF; |
|
1157 |
|
1158 // simple parameter checks |
|
1159 if (b0 < min3Primary || b0 > max4Primary |
|
1160 || b1 < minTrail || b1 > maxTrail) |
|
1161 return -1; |
|
1162 // normal offsets |
|
1163 b1 -= minTrail; |
|
1164 |
|
1165 // take care of the final values, and compose |
|
1166 if (b0 < min4Primary) { |
|
1167 if (b2 < minTrail || b2 > max3Trail || b3 != 0) |
|
1168 return -1; |
|
1169 b2 -= minTrail; |
|
1170 UChar32 remainder = b2 % final3Multiplier; |
|
1171 if (remainder != 0) |
|
1172 return -1; |
|
1173 b0 -= min3Primary; |
|
1174 b2 /= final3Multiplier; |
|
1175 result = ((b0 * medialCount) + b1) * final3Count + b2; |
|
1176 } else { |
|
1177 if (b2 < minTrail || b2 > maxTrail |
|
1178 || b3 < minTrail || b3 > max4Trail) |
|
1179 return -1; |
|
1180 b2 -= minTrail; |
|
1181 b3 -= minTrail; |
|
1182 UChar32 remainder = b3 % final4Multiplier; |
|
1183 if (remainder != 0) |
|
1184 return -1; |
|
1185 b3 /= final4Multiplier; |
|
1186 b0 -= min4Primary; |
|
1187 result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary; |
|
1188 } |
|
1189 // final check |
|
1190 if (result < 0 || result > UCOL_MAX_INPUT) |
|
1191 return -1; |
|
1192 return result; |
|
1193 } |
|
1194 |
|
1195 |
|
1196 static inline int32_t divideAndRoundUp(int a, int b) { |
|
1197 return 1 + (a-1)/b; |
|
1198 } |
|
1199 |
|
1200 /* this function is either called from initUCA or from genUCA before |
|
1201 * doing canonical closure for the UCA. |
|
1202 */ |
|
1203 |
|
1204 /** |
|
1205 * Set up to generate implicits. |
|
1206 * Maintenance Note: this function may end up being called more than once, due |
|
1207 * to threading races during initialization. Make sure that |
|
1208 * none of the Constants is ever transiently assigned an |
|
1209 * incorrect value. |
|
1210 * @param minPrimary |
|
1211 * @param maxPrimary |
|
1212 * @param minTrail final byte |
|
1213 * @param maxTrail final byte |
|
1214 * @param gap3 the gap we leave for tailoring for 3-byte forms |
|
1215 * @param gap4 the gap we leave for tailoring for 4-byte forms |
|
1216 */ |
|
1217 static void initImplicitConstants(int minPrimary, int maxPrimary, |
|
1218 int minTrailIn, int maxTrailIn, |
|
1219 int gap3, int primaries3count, |
|
1220 UErrorCode *status) { |
|
1221 // some simple parameter checks |
|
1222 if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF) |
|
1223 || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF) |
|
1224 || (primaries3count < 1)) |
|
1225 { |
|
1226 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
1227 return; |
|
1228 }; |
|
1229 |
|
1230 minTrail = minTrailIn; |
|
1231 maxTrail = maxTrailIn; |
|
1232 |
|
1233 min3Primary = minPrimary; |
|
1234 max4Primary = maxPrimary; |
|
1235 // compute constants for use later. |
|
1236 // number of values we can use in trailing bytes |
|
1237 // leave room for empty values between AND above, e.g. if gap = 2 |
|
1238 // range 3..7 => +3 -4 -5 -6 -7: so 1 value |
|
1239 // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values |
|
1240 // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values |
|
1241 final3Multiplier = gap3 + 1; |
|
1242 final3Count = (maxTrail - minTrail + 1) / final3Multiplier; |
|
1243 max3Trail = minTrail + (final3Count - 1) * final3Multiplier; |
|
1244 |
|
1245 // medials can use full range |
|
1246 medialCount = (maxTrail - minTrail + 1); |
|
1247 // find out how many values fit in each form |
|
1248 int32_t threeByteCount = medialCount * final3Count; |
|
1249 // now determine where the 3/4 boundary is. |
|
1250 // we use 3 bytes below the boundary, and 4 above |
|
1251 int32_t primariesAvailable = maxPrimary - minPrimary + 1; |
|
1252 int32_t primaries4count = primariesAvailable - primaries3count; |
|
1253 |
|
1254 |
|
1255 int32_t min3ByteCoverage = primaries3count * threeByteCount; |
|
1256 min4Primary = minPrimary + primaries3count; |
|
1257 min4Boundary = min3ByteCoverage; |
|
1258 // Now expand out the multiplier for the 4 bytes, and redo. |
|
1259 |
|
1260 int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary; |
|
1261 int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count); |
|
1262 int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount); |
|
1263 int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte; |
|
1264 if (gap4 < 1) { |
|
1265 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
1266 return; |
|
1267 } |
|
1268 final4Multiplier = gap4 + 1; |
|
1269 final4Count = neededPerFinalByte; |
|
1270 max4Trail = minTrail + (final4Count - 1) * final4Multiplier; |
|
1271 } |
|
1272 |
|
1273 /** |
|
1274 * Supply parameters for generating implicit CEs |
|
1275 */ |
|
1276 U_CAPI void U_EXPORT2 |
|
1277 uprv_uca_initImplicitConstants(UErrorCode *status) { |
|
1278 // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms. |
|
1279 //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status); |
|
1280 initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status); |
|
1281 } |
|
1282 |
|
1283 |
|
1284 /* collIterNormalize Incremental Normalization happens here. */ |
|
1285 /* pick up the range of chars identifed by FCD, */ |
|
1286 /* normalize it into the collIterate's writable buffer, */ |
|
1287 /* switch the collIterate's state to use the writable buffer. */ |
|
1288 /* */ |
|
1289 static |
|
1290 void collIterNormalize(collIterate *collationSource) |
|
1291 { |
|
1292 UErrorCode status = U_ZERO_ERROR; |
|
1293 const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */ |
|
1294 const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */ |
|
1295 |
|
1296 collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)), |
|
1297 collationSource->writableBuffer, |
|
1298 status); |
|
1299 if (U_FAILURE(status)) { |
|
1300 #ifdef UCOL_DEBUG |
|
1301 fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status)); |
|
1302 #endif |
|
1303 return; |
|
1304 } |
|
1305 |
|
1306 collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer(); |
|
1307 collationSource->origFlags = collationSource->flags; |
|
1308 collationSource->flags |= UCOL_ITER_INNORMBUF; |
|
1309 collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
|
1310 } |
|
1311 |
|
1312 |
|
1313 // This function takes the iterator and extracts normalized stuff up to the next boundary |
|
1314 // It is similar in the end results to the collIterNormalize, but for the cases when we |
|
1315 // use an iterator |
|
1316 /*static |
|
1317 inline void normalizeIterator(collIterate *collationSource) { |
|
1318 UErrorCode status = U_ZERO_ERROR; |
|
1319 UBool wasNormalized = FALSE; |
|
1320 //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT); |
|
1321 uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator); |
|
1322 int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
|
1323 (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
|
1324 if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) { |
|
1325 // reallocate and terminate |
|
1326 if(!u_growBufferFromStatic(collationSource->stackWritableBuffer, |
|
1327 &collationSource->writableBuffer, |
|
1328 (int32_t *)&collationSource->writableBufSize, normLen + 1, |
|
1329 0) |
|
1330 ) { |
|
1331 #ifdef UCOL_DEBUG |
|
1332 fprintf(stderr, "normalizeIterator(), out of memory\n"); |
|
1333 #endif |
|
1334 return; |
|
1335 } |
|
1336 status = U_ZERO_ERROR; |
|
1337 //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO); |
|
1338 collationSource->iterator->setState(collationSource->iterator, iterIndex, &status); |
|
1339 normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
|
1340 (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
|
1341 } |
|
1342 // Terminate the buffer - we already checked that it is big enough |
|
1343 collationSource->writableBuffer[normLen] = 0; |
|
1344 if(collationSource->writableBuffer != collationSource->stackWritableBuffer) { |
|
1345 collationSource->flags |= UCOL_ITER_ALLOCATED; |
|
1346 } |
|
1347 collationSource->pos = collationSource->writableBuffer; |
|
1348 collationSource->origFlags = collationSource->flags; |
|
1349 collationSource->flags |= UCOL_ITER_INNORMBUF; |
|
1350 collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
|
1351 }*/ |
|
1352 |
|
1353 |
|
1354 /* Incremental FCD check and normalize */ |
|
1355 /* Called from getNextCE when normalization state is suspect. */ |
|
1356 /* When entering, the state is known to be this: */ |
|
1357 /* o We are working in the main buffer of the collIterate, not the side */ |
|
1358 /* writable buffer. When in the side buffer, normalization mode is always off, */ |
|
1359 /* so we won't get here. */ |
|
1360 /* o The leading combining class from the current character is 0 or */ |
|
1361 /* the trailing combining class of the previous char was zero. */ |
|
1362 /* True because the previous call to this function will have always exited */ |
|
1363 /* that way, and we get called for every char where cc might be non-zero. */ |
|
1364 static |
|
1365 inline UBool collIterFCD(collIterate *collationSource) { |
|
1366 const UChar *srcP, *endP; |
|
1367 uint8_t leadingCC; |
|
1368 uint8_t prevTrailingCC = 0; |
|
1369 uint16_t fcd; |
|
1370 UBool needNormalize = FALSE; |
|
1371 |
|
1372 srcP = collationSource->pos-1; |
|
1373 |
|
1374 if (collationSource->flags & UCOL_ITER_HASLEN) { |
|
1375 endP = collationSource->endp; |
|
1376 } else { |
|
1377 endP = NULL; |
|
1378 } |
|
1379 |
|
1380 // Get the trailing combining class of the current character. If it's zero, we are OK. |
|
1381 fcd = g_nfcImpl->nextFCD16(srcP, endP); |
|
1382 if (fcd != 0) { |
|
1383 prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
|
1384 |
|
1385 if (prevTrailingCC != 0) { |
|
1386 // The current char has a non-zero trailing CC. Scan forward until we find |
|
1387 // a char with a leading cc of zero. |
|
1388 while (endP == NULL || srcP != endP) |
|
1389 { |
|
1390 const UChar *savedSrcP = srcP; |
|
1391 |
|
1392 fcd = g_nfcImpl->nextFCD16(srcP, endP); |
|
1393 leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
|
1394 if (leadingCC == 0) { |
|
1395 srcP = savedSrcP; // Hit char that is not part of combining sequence. |
|
1396 // back up over it. (Could be surrogate pair!) |
|
1397 break; |
|
1398 } |
|
1399 |
|
1400 if (leadingCC < prevTrailingCC) { |
|
1401 needNormalize = TRUE; |
|
1402 } |
|
1403 |
|
1404 prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
|
1405 } |
|
1406 } |
|
1407 } |
|
1408 |
|
1409 collationSource->fcdPosition = (UChar *)srcP; |
|
1410 |
|
1411 return needNormalize; |
|
1412 } |
|
1413 |
|
1414 /****************************************************************************/ |
|
1415 /* Following are the CE retrieval functions */ |
|
1416 /* */ |
|
1417 /****************************************************************************/ |
|
1418 |
|
1419 static uint32_t getImplicit(UChar32 cp, collIterate *collationSource); |
|
1420 static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource); |
|
1421 |
|
1422 /* there should be a macro version of this function in the header file */ |
|
1423 /* This is the first function that tries to fetch a collation element */ |
|
1424 /* If it's not succesfull or it encounters a more difficult situation */ |
|
1425 /* some more sofisticated and slower functions are invoked */ |
|
1426 static |
|
1427 inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { |
|
1428 uint32_t order = 0; |
|
1429 if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */ |
|
1430 order = *(collationSource->toReturn++); /* if so, return them */ |
|
1431 if(collationSource->CEpos == collationSource->toReturn) { |
|
1432 collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs; |
|
1433 } |
|
1434 return order; |
|
1435 } |
|
1436 |
|
1437 UChar ch = 0; |
|
1438 collationSource->offsetReturn = NULL; |
|
1439 |
|
1440 do { |
|
1441 for (;;) /* Loop handles case when incremental normalize switches */ |
|
1442 { /* to or from the side buffer / original string, and we */ |
|
1443 /* need to start again to get the next character. */ |
|
1444 |
|
1445 if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0) |
|
1446 { |
|
1447 // The source string is null terminated and we're not working from the side buffer, |
|
1448 // and we're not normalizing. This is the fast path. |
|
1449 // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.) |
|
1450 ch = *collationSource->pos++; |
|
1451 if (ch != 0) { |
|
1452 break; |
|
1453 } |
|
1454 else { |
|
1455 return UCOL_NO_MORE_CES; |
|
1456 } |
|
1457 } |
|
1458 |
|
1459 if (collationSource->flags & UCOL_ITER_HASLEN) { |
|
1460 // Normal path for strings when length is specified. |
|
1461 // (We can't be in side buffer because it is always null terminated.) |
|
1462 if (collationSource->pos >= collationSource->endp) { |
|
1463 // Ran off of the end of the main source string. We're done. |
|
1464 return UCOL_NO_MORE_CES; |
|
1465 } |
|
1466 ch = *collationSource->pos++; |
|
1467 } |
|
1468 else if(collationSource->flags & UCOL_USE_ITERATOR) { |
|
1469 UChar32 iterCh = collationSource->iterator->next(collationSource->iterator); |
|
1470 if(iterCh == U_SENTINEL) { |
|
1471 return UCOL_NO_MORE_CES; |
|
1472 } |
|
1473 ch = (UChar)iterCh; |
|
1474 } |
|
1475 else |
|
1476 { |
|
1477 // Null terminated string. |
|
1478 ch = *collationSource->pos++; |
|
1479 if (ch == 0) { |
|
1480 // Ran off end of buffer. |
|
1481 if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { |
|
1482 // Ran off end of main string. backing up one character. |
|
1483 collationSource->pos--; |
|
1484 return UCOL_NO_MORE_CES; |
|
1485 } |
|
1486 else |
|
1487 { |
|
1488 // Hit null in the normalize side buffer. |
|
1489 // Usually this means the end of the normalized data, |
|
1490 // except for one odd case: a null followed by combining chars, |
|
1491 // which is the case if we are at the start of the buffer. |
|
1492 if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) { |
|
1493 break; |
|
1494 } |
|
1495 |
|
1496 // Null marked end of side buffer. |
|
1497 // Revert to the main string and |
|
1498 // loop back to top to try again to get a character. |
|
1499 collationSource->pos = collationSource->fcdPosition; |
|
1500 collationSource->flags = collationSource->origFlags; |
|
1501 continue; |
|
1502 } |
|
1503 } |
|
1504 } |
|
1505 |
|
1506 if(collationSource->flags&UCOL_HIRAGANA_Q) { |
|
1507 /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag |
|
1508 * based on whether the previous codepoint was Hiragana or Katakana. |
|
1509 */ |
|
1510 if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) || |
|
1511 ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) { |
|
1512 collationSource->flags |= UCOL_WAS_HIRAGANA; |
|
1513 } else { |
|
1514 collationSource->flags &= ~UCOL_WAS_HIRAGANA; |
|
1515 } |
|
1516 } |
|
1517 |
|
1518 // We've got a character. See if there's any fcd and/or normalization stuff to do. |
|
1519 // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer. |
|
1520 if ((collationSource->flags & UCOL_ITER_NORM) == 0) { |
|
1521 break; |
|
1522 } |
|
1523 |
|
1524 if (collationSource->fcdPosition >= collationSource->pos) { |
|
1525 // An earlier FCD check has already covered the current character. |
|
1526 // We can go ahead and process this char. |
|
1527 break; |
|
1528 } |
|
1529 |
|
1530 if (ch < ZERO_CC_LIMIT_ ) { |
|
1531 // Fast fcd safe path. Trailing combining class == 0. This char is OK. |
|
1532 break; |
|
1533 } |
|
1534 |
|
1535 if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
|
1536 // We need to peek at the next character in order to tell if we are FCD |
|
1537 if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) { |
|
1538 // We are at the last char of source string. |
|
1539 // It is always OK for FCD check. |
|
1540 break; |
|
1541 } |
|
1542 |
|
1543 // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test |
|
1544 if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) { |
|
1545 break; |
|
1546 } |
|
1547 } |
|
1548 |
|
1549 |
|
1550 // Need a more complete FCD check and possible normalization. |
|
1551 if (collIterFCD(collationSource)) { |
|
1552 collIterNormalize(collationSource); |
|
1553 } |
|
1554 if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { |
|
1555 // No normalization was needed. Go ahead and process the char we already had. |
|
1556 break; |
|
1557 } |
|
1558 |
|
1559 // Some normalization happened. Next loop iteration will pick up a char |
|
1560 // from the normalization buffer. |
|
1561 |
|
1562 } // end for (;;) |
|
1563 |
|
1564 |
|
1565 if (ch <= 0xFF) { |
|
1566 /* For latin-1 characters we never need to fall back to the UCA table */ |
|
1567 /* because all of the UCA data is replicated in the latinOneMapping array */ |
|
1568 order = coll->latinOneMapping[ch]; |
|
1569 if (order > UCOL_NOT_FOUND) { |
|
1570 order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); |
|
1571 } |
|
1572 } |
|
1573 else |
|
1574 { |
|
1575 // Always use UCA for Han, Hangul |
|
1576 // (Han extension A is before main Han block) |
|
1577 // **** Han compatibility chars ?? **** |
|
1578 if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && |
|
1579 (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) { |
|
1580 if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) { |
|
1581 // between the two target ranges; do normal lookup |
|
1582 // **** this range is YI, Modifier tone letters, **** |
|
1583 // **** Latin-D, Syloti Nagari, Phagas-pa. **** |
|
1584 // **** Latin-D might be tailored, so we need to **** |
|
1585 // **** do the normal lookup for these guys. **** |
|
1586 order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
|
1587 } else { |
|
1588 // in one of the target ranges; use UCA |
|
1589 order = UCOL_NOT_FOUND; |
|
1590 } |
|
1591 } else { |
|
1592 order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
|
1593 } |
|
1594 |
|
1595 if(order > UCOL_NOT_FOUND) { /* if a CE is special */ |
|
1596 order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */ |
|
1597 } |
|
1598 |
|
1599 if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */ |
|
1600 /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */ |
|
1601 order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
|
1602 |
|
1603 if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */ |
|
1604 order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status); |
|
1605 } |
|
1606 } |
|
1607 } |
|
1608 } while ( order == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
|
1609 |
|
1610 if(order == UCOL_NOT_FOUND) { |
|
1611 order = getImplicit(ch, collationSource); |
|
1612 } |
|
1613 return order; /* return the CE */ |
|
1614 } |
|
1615 |
|
1616 /* ucol_getNextCE, out-of-line version for use from other files. */ |
|
1617 U_CAPI uint32_t U_EXPORT2 |
|
1618 ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { |
|
1619 return ucol_IGetNextCE(coll, collationSource, status); |
|
1620 } |
|
1621 |
|
1622 |
|
1623 /** |
|
1624 * Incremental previous normalization happens here. Pick up the range of chars |
|
1625 * identifed by FCD, normalize it into the collIterate's writable buffer, |
|
1626 * switch the collIterate's state to use the writable buffer. |
|
1627 * @param data collation iterator data |
|
1628 */ |
|
1629 static |
|
1630 void collPrevIterNormalize(collIterate *data) |
|
1631 { |
|
1632 UErrorCode status = U_ZERO_ERROR; |
|
1633 const UChar *pEnd = data->pos; /* End normalize + 1 */ |
|
1634 const UChar *pStart; |
|
1635 |
|
1636 /* Start normalize */ |
|
1637 if (data->fcdPosition == NULL) { |
|
1638 pStart = data->string; |
|
1639 } |
|
1640 else { |
|
1641 pStart = data->fcdPosition + 1; |
|
1642 } |
|
1643 |
|
1644 int32_t normLen = |
|
1645 data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)), |
|
1646 data->writableBuffer, |
|
1647 status). |
|
1648 length(); |
|
1649 if(U_FAILURE(status)) { |
|
1650 return; |
|
1651 } |
|
1652 /* |
|
1653 this puts the null termination infront of the normalized string instead |
|
1654 of the end |
|
1655 */ |
|
1656 data->writableBuffer.insert(0, (UChar)0); |
|
1657 |
|
1658 /* |
|
1659 * The usual case at this point is that we've got a base |
|
1660 * character followed by marks that were normalized. If |
|
1661 * fcdPosition is NULL, that means that we backed up to |
|
1662 * the beginning of the string and there's no base character. |
|
1663 * |
|
1664 * Forward processing will usually normalize when it sees |
|
1665 * the first mark, so that mark will get it's natural offset |
|
1666 * and the rest will get the offset of the character following |
|
1667 * the marks. The base character will also get its natural offset. |
|
1668 * |
|
1669 * We write the offset of the base character, if there is one, |
|
1670 * followed by the offset of the first mark and then the offsets |
|
1671 * of the rest of the marks. |
|
1672 */ |
|
1673 int32_t firstMarkOffset = 0; |
|
1674 int32_t trailOffset = (int32_t)(data->pos - data->string + 1); |
|
1675 int32_t trailCount = normLen - 1; |
|
1676 |
|
1677 if (data->fcdPosition != NULL) { |
|
1678 int32_t baseOffset = (int32_t)(data->fcdPosition - data->string); |
|
1679 UChar baseChar = *data->fcdPosition; |
|
1680 |
|
1681 firstMarkOffset = baseOffset + 1; |
|
1682 |
|
1683 /* |
|
1684 * If the base character is the start of a contraction, forward processing |
|
1685 * will normalize the marks while checking for the contraction, which means |
|
1686 * that the offset of the first mark will the same as the other marks. |
|
1687 * |
|
1688 * **** THIS IS PROBABLY NOT A COMPLETE TEST **** |
|
1689 */ |
|
1690 if (baseChar >= 0x100) { |
|
1691 uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar); |
|
1692 |
|
1693 if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) { |
|
1694 baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar); |
|
1695 } |
|
1696 |
|
1697 if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) { |
|
1698 firstMarkOffset = trailOffset; |
|
1699 } |
|
1700 } |
|
1701 |
|
1702 data->appendOffset(baseOffset, status); |
|
1703 } |
|
1704 |
|
1705 data->appendOffset(firstMarkOffset, status); |
|
1706 |
|
1707 for (int32_t i = 0; i < trailCount; i += 1) { |
|
1708 data->appendOffset(trailOffset, status); |
|
1709 } |
|
1710 |
|
1711 data->offsetRepeatValue = trailOffset; |
|
1712 |
|
1713 data->offsetReturn = data->offsetStore - 1; |
|
1714 if (data->offsetReturn == data->offsetBuffer) { |
|
1715 data->offsetStore = data->offsetBuffer; |
|
1716 } |
|
1717 |
|
1718 data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen; |
|
1719 data->origFlags = data->flags; |
|
1720 data->flags |= UCOL_ITER_INNORMBUF; |
|
1721 data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
|
1722 } |
|
1723 |
|
1724 |
|
1725 /** |
|
1726 * Incremental FCD check for previous iteration and normalize. Called from |
|
1727 * getPrevCE when normalization state is suspect. |
|
1728 * When entering, the state is known to be this: |
|
1729 * o We are working in the main buffer of the collIterate, not the side |
|
1730 * writable buffer. When in the side buffer, normalization mode is always |
|
1731 * off, so we won't get here. |
|
1732 * o The leading combining class from the current character is 0 or the |
|
1733 * trailing combining class of the previous char was zero. |
|
1734 * True because the previous call to this function will have always exited |
|
1735 * that way, and we get called for every char where cc might be non-zero. |
|
1736 * @param data collation iterate struct |
|
1737 * @return normalization status, TRUE for normalization to be done, FALSE |
|
1738 * otherwise |
|
1739 */ |
|
1740 static |
|
1741 inline UBool collPrevIterFCD(collIterate *data) |
|
1742 { |
|
1743 const UChar *src, *start; |
|
1744 uint8_t leadingCC; |
|
1745 uint8_t trailingCC = 0; |
|
1746 uint16_t fcd; |
|
1747 UBool result = FALSE; |
|
1748 |
|
1749 start = data->string; |
|
1750 src = data->pos + 1; |
|
1751 |
|
1752 /* Get the trailing combining class of the current character. */ |
|
1753 fcd = g_nfcImpl->previousFCD16(start, src); |
|
1754 |
|
1755 leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
|
1756 |
|
1757 if (leadingCC != 0) { |
|
1758 /* |
|
1759 The current char has a non-zero leading combining class. |
|
1760 Scan backward until we find a char with a trailing cc of zero. |
|
1761 */ |
|
1762 for (;;) |
|
1763 { |
|
1764 if (start == src) { |
|
1765 data->fcdPosition = NULL; |
|
1766 return result; |
|
1767 } |
|
1768 |
|
1769 fcd = g_nfcImpl->previousFCD16(start, src); |
|
1770 |
|
1771 trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
|
1772 |
|
1773 if (trailingCC == 0) { |
|
1774 break; |
|
1775 } |
|
1776 |
|
1777 if (leadingCC < trailingCC) { |
|
1778 result = TRUE; |
|
1779 } |
|
1780 |
|
1781 leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
|
1782 } |
|
1783 } |
|
1784 |
|
1785 data->fcdPosition = (UChar *)src; |
|
1786 |
|
1787 return result; |
|
1788 } |
|
1789 |
|
1790 /** gets a code unit from the string at a given offset |
|
1791 * Handles both normal and iterative cases. |
|
1792 * No error checking - caller beware! |
|
1793 */ |
|
1794 static inline |
|
1795 UChar peekCodeUnit(collIterate *source, int32_t offset) { |
|
1796 if(source->pos != NULL) { |
|
1797 return *(source->pos + offset); |
|
1798 } else if(source->iterator != NULL) { |
|
1799 UChar32 c; |
|
1800 if(offset != 0) { |
|
1801 source->iterator->move(source->iterator, offset, UITER_CURRENT); |
|
1802 c = source->iterator->next(source->iterator); |
|
1803 source->iterator->move(source->iterator, -offset-1, UITER_CURRENT); |
|
1804 } else { |
|
1805 c = source->iterator->current(source->iterator); |
|
1806 } |
|
1807 return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0. |
|
1808 } else { |
|
1809 return 0xfffd; |
|
1810 } |
|
1811 } |
|
1812 |
|
1813 // Code point version. Treats the offset as a _code point_ delta. |
|
1814 // We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16. |
|
1815 // We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer. |
|
1816 static inline |
|
1817 UChar32 peekCodePoint(collIterate *source, int32_t offset) { |
|
1818 UChar32 c; |
|
1819 if(source->pos != NULL) { |
|
1820 const UChar *p = source->pos; |
|
1821 if(offset >= 0) { |
|
1822 // Skip forward over (offset-1) code points. |
|
1823 while(--offset >= 0) { |
|
1824 if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) { |
|
1825 ++p; |
|
1826 } |
|
1827 } |
|
1828 // Read the code point there. |
|
1829 c = *p++; |
|
1830 UChar trail; |
|
1831 if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) { |
|
1832 c = U16_GET_SUPPLEMENTARY(c, trail); |
|
1833 } |
|
1834 } else /* offset<0 */ { |
|
1835 // Skip backward over (offset-1) code points. |
|
1836 while(++offset < 0) { |
|
1837 if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) { |
|
1838 --p; |
|
1839 } |
|
1840 } |
|
1841 // Read the code point before that. |
|
1842 c = *--p; |
|
1843 UChar lead; |
|
1844 if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) { |
|
1845 c = U16_GET_SUPPLEMENTARY(lead, c); |
|
1846 } |
|
1847 } |
|
1848 } else if(source->iterator != NULL) { |
|
1849 if(offset >= 0) { |
|
1850 // Skip forward over (offset-1) code points. |
|
1851 int32_t fwd = offset; |
|
1852 while(fwd-- > 0) { |
|
1853 uiter_next32(source->iterator); |
|
1854 } |
|
1855 // Read the code point there. |
|
1856 c = uiter_current32(source->iterator); |
|
1857 // Return to the starting point, skipping backward over (offset-1) code points. |
|
1858 while(offset-- > 0) { |
|
1859 uiter_previous32(source->iterator); |
|
1860 } |
|
1861 } else /* offset<0 */ { |
|
1862 // Read backward, reading offset code points, remember only the last-read one. |
|
1863 int32_t back = offset; |
|
1864 do { |
|
1865 c = uiter_previous32(source->iterator); |
|
1866 } while(++back < 0); |
|
1867 // Return to the starting position, skipping forward over offset code points. |
|
1868 do { |
|
1869 uiter_next32(source->iterator); |
|
1870 } while(++offset < 0); |
|
1871 } |
|
1872 } else { |
|
1873 c = U_SENTINEL; |
|
1874 } |
|
1875 return c; |
|
1876 } |
|
1877 |
|
1878 /** |
|
1879 * Determines if we are at the start of the data string in the backwards |
|
1880 * collation iterator |
|
1881 * @param data collation iterator |
|
1882 * @return TRUE if we are at the start |
|
1883 */ |
|
1884 static |
|
1885 inline UBool isAtStartPrevIterate(collIterate *data) { |
|
1886 if(data->pos == NULL && data->iterator != NULL) { |
|
1887 return !data->iterator->hasPrevious(data->iterator); |
|
1888 } |
|
1889 //return (collIter_bos(data)) || |
|
1890 return (data->pos == data->string) || |
|
1891 ((data->flags & UCOL_ITER_INNORMBUF) && (data->pos != NULL) && |
|
1892 *(data->pos - 1) == 0 && data->fcdPosition == NULL); |
|
1893 } |
|
1894 |
|
1895 static |
|
1896 inline void goBackOne(collIterate *data) { |
|
1897 # if 0 |
|
1898 // somehow, it looks like we need to keep iterator synced up |
|
1899 // at all times, as above. |
|
1900 if(data->pos) { |
|
1901 data->pos--; |
|
1902 } |
|
1903 if(data->iterator) { |
|
1904 data->iterator->previous(data->iterator); |
|
1905 } |
|
1906 #endif |
|
1907 if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) { |
|
1908 data->iterator->previous(data->iterator); |
|
1909 } |
|
1910 if(data->pos) { |
|
1911 data->pos --; |
|
1912 } |
|
1913 } |
|
1914 |
|
1915 /** |
|
1916 * Inline function that gets a simple CE. |
|
1917 * So what it does is that it will first check the expansion buffer. If the |
|
1918 * expansion buffer is not empty, ie the end pointer to the expansion buffer |
|
1919 * is different from the string pointer, we return the collation element at the |
|
1920 * return pointer and decrement it. |
|
1921 * For more complicated CEs it resorts to getComplicatedCE. |
|
1922 * @param coll collator data |
|
1923 * @param data collation iterator struct |
|
1924 * @param status error status |
|
1925 */ |
|
1926 static |
|
1927 inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data, |
|
1928 UErrorCode *status) |
|
1929 { |
|
1930 uint32_t result = (uint32_t)UCOL_NULLORDER; |
|
1931 |
|
1932 if (data->offsetReturn != NULL) { |
|
1933 if (data->offsetRepeatCount > 0) { |
|
1934 data->offsetRepeatCount -= 1; |
|
1935 } else { |
|
1936 if (data->offsetReturn == data->offsetBuffer) { |
|
1937 data->offsetReturn = NULL; |
|
1938 data->offsetStore = data->offsetBuffer; |
|
1939 } else { |
|
1940 data->offsetReturn -= 1; |
|
1941 } |
|
1942 } |
|
1943 } |
|
1944 |
|
1945 if ((data->extendCEs && data->toReturn > data->extendCEs) || |
|
1946 (!data->extendCEs && data->toReturn > data->CEs)) |
|
1947 { |
|
1948 data->toReturn -= 1; |
|
1949 result = *(data->toReturn); |
|
1950 if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) { |
|
1951 data->CEpos = data->toReturn; |
|
1952 } |
|
1953 } |
|
1954 else { |
|
1955 UChar ch = 0; |
|
1956 |
|
1957 do { |
|
1958 /* |
|
1959 Loop handles case when incremental normalize switches to or from the |
|
1960 side buffer / original string, and we need to start again to get the |
|
1961 next character. |
|
1962 */ |
|
1963 for (;;) { |
|
1964 if (data->flags & UCOL_ITER_HASLEN) { |
|
1965 /* |
|
1966 Normal path for strings when length is specified. |
|
1967 Not in side buffer because it is always null terminated. |
|
1968 */ |
|
1969 if (data->pos <= data->string) { |
|
1970 /* End of the main source string */ |
|
1971 return UCOL_NO_MORE_CES; |
|
1972 } |
|
1973 data->pos --; |
|
1974 ch = *data->pos; |
|
1975 } |
|
1976 // we are using an iterator to go back. Pray for us! |
|
1977 else if (data->flags & UCOL_USE_ITERATOR) { |
|
1978 UChar32 iterCh = data->iterator->previous(data->iterator); |
|
1979 if(iterCh == U_SENTINEL) { |
|
1980 return UCOL_NO_MORE_CES; |
|
1981 } else { |
|
1982 ch = (UChar)iterCh; |
|
1983 } |
|
1984 } |
|
1985 else { |
|
1986 data->pos --; |
|
1987 ch = *data->pos; |
|
1988 /* we are in the side buffer. */ |
|
1989 if (ch == 0) { |
|
1990 /* |
|
1991 At the start of the normalize side buffer. |
|
1992 Go back to string. |
|
1993 Because pointer points to the last accessed character, |
|
1994 hence we have to increment it by one here. |
|
1995 */ |
|
1996 data->flags = data->origFlags; |
|
1997 data->offsetRepeatValue = 0; |
|
1998 |
|
1999 if (data->fcdPosition == NULL) { |
|
2000 data->pos = data->string; |
|
2001 return UCOL_NO_MORE_CES; |
|
2002 } |
|
2003 else { |
|
2004 data->pos = data->fcdPosition + 1; |
|
2005 } |
|
2006 |
|
2007 continue; |
|
2008 } |
|
2009 } |
|
2010 |
|
2011 if(data->flags&UCOL_HIRAGANA_Q) { |
|
2012 if(ch>=0x3040 && ch<=0x309f) { |
|
2013 data->flags |= UCOL_WAS_HIRAGANA; |
|
2014 } else { |
|
2015 data->flags &= ~UCOL_WAS_HIRAGANA; |
|
2016 } |
|
2017 } |
|
2018 |
|
2019 /* |
|
2020 * got a character to determine if there's fcd and/or normalization |
|
2021 * stuff to do. |
|
2022 * if the current character is not fcd. |
|
2023 * if current character is at the start of the string |
|
2024 * Trailing combining class == 0. |
|
2025 * Note if pos is in the writablebuffer, norm is always 0 |
|
2026 */ |
|
2027 if (ch < ZERO_CC_LIMIT_ || |
|
2028 // this should propel us out of the loop in the iterator case |
|
2029 (data->flags & UCOL_ITER_NORM) == 0 || |
|
2030 (data->fcdPosition != NULL && data->fcdPosition <= data->pos) |
|
2031 || data->string == data->pos) { |
|
2032 break; |
|
2033 } |
|
2034 |
|
2035 if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
|
2036 /* if next character is FCD */ |
|
2037 if (data->pos == data->string) { |
|
2038 /* First char of string is always OK for FCD check */ |
|
2039 break; |
|
2040 } |
|
2041 |
|
2042 /* Not first char of string, do the FCD fast test */ |
|
2043 if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) { |
|
2044 break; |
|
2045 } |
|
2046 } |
|
2047 |
|
2048 /* Need a more complete FCD check and possible normalization. */ |
|
2049 if (collPrevIterFCD(data)) { |
|
2050 collPrevIterNormalize(data); |
|
2051 } |
|
2052 |
|
2053 if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
|
2054 /* No normalization. Go ahead and process the char. */ |
|
2055 break; |
|
2056 } |
|
2057 |
|
2058 /* |
|
2059 Some normalization happened. |
|
2060 Next loop picks up a char from the normalization buffer. |
|
2061 */ |
|
2062 } |
|
2063 |
|
2064 /* attempt to handle contractions, after removal of the backwards |
|
2065 contraction |
|
2066 */ |
|
2067 if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) { |
|
2068 result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status); |
|
2069 } else { |
|
2070 if (ch <= 0xFF) { |
|
2071 result = coll->latinOneMapping[ch]; |
|
2072 } |
|
2073 else { |
|
2074 // Always use UCA for [3400..9FFF], [AC00..D7AF] |
|
2075 // **** [FA0E..FA2F] ?? **** |
|
2076 if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && |
|
2077 (ch >= 0x3400 && ch <= 0xD7AF)) { |
|
2078 if (ch > 0x9FFF && ch < 0xAC00) { |
|
2079 // between the two target ranges; do normal lookup |
|
2080 // **** this range is YI, Modifier tone letters, **** |
|
2081 // **** Latin-D, Syloti Nagari, Phagas-pa. **** |
|
2082 // **** Latin-D might be tailored, so we need to **** |
|
2083 // **** do the normal lookup for these guys. **** |
|
2084 result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
|
2085 } else { |
|
2086 result = UCOL_NOT_FOUND; |
|
2087 } |
|
2088 } else { |
|
2089 result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
|
2090 } |
|
2091 } |
|
2092 if (result > UCOL_NOT_FOUND) { |
|
2093 result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status); |
|
2094 } |
|
2095 if (result == UCOL_NOT_FOUND) { // Not found in master list |
|
2096 if (!isAtStartPrevIterate(data) && |
|
2097 ucol_contractionEndCP(ch, data->coll)) |
|
2098 { |
|
2099 result = UCOL_CONTRACTION; |
|
2100 } else { |
|
2101 if(coll->UCA) { |
|
2102 result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
|
2103 } |
|
2104 } |
|
2105 |
|
2106 if (result > UCOL_NOT_FOUND) { |
|
2107 if(coll->UCA) { |
|
2108 result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status); |
|
2109 } |
|
2110 } |
|
2111 } |
|
2112 } |
|
2113 } while ( result == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
|
2114 |
|
2115 if(result == UCOL_NOT_FOUND) { |
|
2116 result = getPrevImplicit(ch, data); |
|
2117 } |
|
2118 } |
|
2119 |
|
2120 return result; |
|
2121 } |
|
2122 |
|
2123 |
|
2124 /* ucol_getPrevCE, out-of-line version for use from other files. */ |
|
2125 U_CFUNC uint32_t U_EXPORT2 |
|
2126 ucol_getPrevCE(const UCollator *coll, collIterate *data, |
|
2127 UErrorCode *status) { |
|
2128 return ucol_IGetPrevCE(coll, data, status); |
|
2129 } |
|
2130 |
|
2131 |
|
2132 /* this should be connected to special Jamo handling */ |
|
2133 U_CFUNC uint32_t U_EXPORT2 |
|
2134 ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) { |
|
2135 collIterate colIt; |
|
2136 IInit_collIterate(coll, &u, 1, &colIt, status); |
|
2137 if(U_FAILURE(*status)) { |
|
2138 return 0; |
|
2139 } |
|
2140 return ucol_IGetNextCE(coll, &colIt, status); |
|
2141 } |
|
2142 |
|
2143 /** |
|
2144 * Inserts the argument character into the end of the buffer pushing back the |
|
2145 * null terminator. |
|
2146 * @param data collIterate struct data |
|
2147 * @param ch character to be appended |
|
2148 * @return the position of the new addition |
|
2149 */ |
|
2150 static |
|
2151 inline const UChar * insertBufferEnd(collIterate *data, UChar ch) |
|
2152 { |
|
2153 int32_t oldLength = data->writableBuffer.length(); |
|
2154 return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength; |
|
2155 } |
|
2156 |
|
2157 /** |
|
2158 * Inserts the argument string into the end of the buffer pushing back the |
|
2159 * null terminator. |
|
2160 * @param data collIterate struct data |
|
2161 * @param string to be appended |
|
2162 * @param length of the string to be appended |
|
2163 * @return the position of the new addition |
|
2164 */ |
|
2165 static |
|
2166 inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length) |
|
2167 { |
|
2168 int32_t oldLength = data->writableBuffer.length(); |
|
2169 return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength; |
|
2170 } |
|
2171 |
|
2172 /** |
|
2173 * Special normalization function for contraction in the forwards iterator. |
|
2174 * This normalization sequence will place the current character at source->pos |
|
2175 * and its following normalized sequence into the buffer. |
|
2176 * The fcd position, pos will be changed. |
|
2177 * pos will now point to positions in the buffer. |
|
2178 * Flags will be changed accordingly. |
|
2179 * @param data collation iterator data |
|
2180 */ |
|
2181 static |
|
2182 inline void normalizeNextContraction(collIterate *data) |
|
2183 { |
|
2184 int32_t strsize; |
|
2185 UErrorCode status = U_ZERO_ERROR; |
|
2186 /* because the pointer points to the next character */ |
|
2187 const UChar *pStart = data->pos - 1; |
|
2188 const UChar *pEnd; |
|
2189 |
|
2190 if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
|
2191 data->writableBuffer.setTo(*(pStart - 1)); |
|
2192 strsize = 1; |
|
2193 } |
|
2194 else { |
|
2195 strsize = data->writableBuffer.length(); |
|
2196 } |
|
2197 |
|
2198 pEnd = data->fcdPosition; |
|
2199 |
|
2200 data->writableBuffer.append( |
|
2201 data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status)); |
|
2202 if(U_FAILURE(status)) { |
|
2203 return; |
|
2204 } |
|
2205 |
|
2206 data->pos = data->writableBuffer.getTerminatedBuffer() + strsize; |
|
2207 data->origFlags = data->flags; |
|
2208 data->flags |= UCOL_ITER_INNORMBUF; |
|
2209 data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
|
2210 } |
|
2211 |
|
2212 /** |
|
2213 * Contraction character management function that returns the next character |
|
2214 * for the forwards iterator. |
|
2215 * Does nothing if the next character is in buffer and not the first character |
|
2216 * in it. |
|
2217 * Else it checks next character in data string to see if it is normalizable. |
|
2218 * If it is not, the character is simply copied into the buffer, else |
|
2219 * the whole normalized substring is copied into the buffer, including the |
|
2220 * current character. |
|
2221 * @param data collation element iterator data |
|
2222 * @return next character |
|
2223 */ |
|
2224 static |
|
2225 inline UChar getNextNormalizedChar(collIterate *data) |
|
2226 { |
|
2227 UChar nextch; |
|
2228 UChar ch; |
|
2229 // Here we need to add the iterator code. One problem is the way |
|
2230 // end of string is handled. If we just return next char, it could |
|
2231 // be the sentinel. Most of the cases already check for this, but we |
|
2232 // need to be sure. |
|
2233 if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) { |
|
2234 /* if no normalization and not in buffer. */ |
|
2235 if(data->flags & UCOL_USE_ITERATOR) { |
|
2236 return (UChar)data->iterator->next(data->iterator); |
|
2237 } else { |
|
2238 return *(data->pos ++); |
|
2239 } |
|
2240 } |
|
2241 |
|
2242 //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) { |
|
2243 //normalizeIterator(data); |
|
2244 //} |
|
2245 |
|
2246 UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
|
2247 if ((innormbuf && *data->pos != 0) || |
|
2248 (data->fcdPosition != NULL && !innormbuf && |
|
2249 data->pos < data->fcdPosition)) { |
|
2250 /* |
|
2251 if next character is in normalized buffer, no further normalization |
|
2252 is required |
|
2253 */ |
|
2254 return *(data->pos ++); |
|
2255 } |
|
2256 |
|
2257 if (data->flags & UCOL_ITER_HASLEN) { |
|
2258 /* in data string */ |
|
2259 if (data->pos + 1 == data->endp) { |
|
2260 return *(data->pos ++); |
|
2261 } |
|
2262 } |
|
2263 else { |
|
2264 if (innormbuf) { |
|
2265 // inside the normalization buffer, but at the end |
|
2266 // (since we encountered zero). This means, in the |
|
2267 // case we're using char iterator, that we need to |
|
2268 // do another round of normalization. |
|
2269 //if(data->origFlags & UCOL_USE_ITERATOR) { |
|
2270 // we need to restore original flags, |
|
2271 // otherwise, we'll lose them |
|
2272 //data->flags = data->origFlags; |
|
2273 //normalizeIterator(data); |
|
2274 //return *(data->pos++); |
|
2275 //} else { |
|
2276 /* |
|
2277 in writable buffer, at this point fcdPosition can not be |
|
2278 pointing to the end of the data string. see contracting tag. |
|
2279 */ |
|
2280 if(data->fcdPosition) { |
|
2281 if (*(data->fcdPosition + 1) == 0 || |
|
2282 data->fcdPosition + 1 == data->endp) { |
|
2283 /* at the end of the string, dump it into the normalizer */ |
|
2284 data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1; |
|
2285 // Check if data->pos received a null pointer |
|
2286 if (data->pos == NULL) { |
|
2287 return (UChar)-1; // Return to indicate error. |
|
2288 } |
|
2289 return *(data->fcdPosition ++); |
|
2290 } |
|
2291 data->pos = data->fcdPosition; |
|
2292 } else if(data->origFlags & UCOL_USE_ITERATOR) { |
|
2293 // if we are here, we're using a normalizing iterator. |
|
2294 // we should just continue further. |
|
2295 data->flags = data->origFlags; |
|
2296 data->pos = NULL; |
|
2297 return (UChar)data->iterator->next(data->iterator); |
|
2298 } |
|
2299 //} |
|
2300 } |
|
2301 else { |
|
2302 if (*(data->pos + 1) == 0) { |
|
2303 return *(data->pos ++); |
|
2304 } |
|
2305 } |
|
2306 } |
|
2307 |
|
2308 ch = *data->pos ++; |
|
2309 nextch = *data->pos; |
|
2310 |
|
2311 /* |
|
2312 * if the current character is not fcd. |
|
2313 * Trailing combining class == 0. |
|
2314 */ |
|
2315 if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) && |
|
2316 (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ || |
|
2317 ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) { |
|
2318 /* |
|
2319 Need a more complete FCD check and possible normalization. |
|
2320 normalize substring will be appended to buffer |
|
2321 */ |
|
2322 if (collIterFCD(data)) { |
|
2323 normalizeNextContraction(data); |
|
2324 return *(data->pos ++); |
|
2325 } |
|
2326 else if (innormbuf) { |
|
2327 /* fcdposition shifted even when there's no normalization, if we |
|
2328 don't input the rest into this, we'll get the wrong position when |
|
2329 we reach the end of the writableBuffer */ |
|
2330 int32_t length = (int32_t)(data->fcdPosition - data->pos + 1); |
|
2331 data->pos = insertBufferEnd(data, data->pos - 1, length); |
|
2332 // Check if data->pos received a null pointer |
|
2333 if (data->pos == NULL) { |
|
2334 return (UChar)-1; // Return to indicate error. |
|
2335 } |
|
2336 return *(data->pos ++); |
|
2337 } |
|
2338 } |
|
2339 |
|
2340 if (innormbuf) { |
|
2341 /* |
|
2342 no normalization is to be done hence only one character will be |
|
2343 appended to the buffer. |
|
2344 */ |
|
2345 data->pos = insertBufferEnd(data, ch) + 1; |
|
2346 // Check if data->pos received a null pointer |
|
2347 if (data->pos == NULL) { |
|
2348 return (UChar)-1; // Return to indicate error. |
|
2349 } |
|
2350 } |
|
2351 |
|
2352 /* points back to the pos in string */ |
|
2353 return ch; |
|
2354 } |
|
2355 |
|
2356 |
|
2357 |
|
2358 /** |
|
2359 * Function to copy the buffer into writableBuffer and sets the fcd position to |
|
2360 * the correct position |
|
2361 * @param source data string source |
|
2362 * @param buffer character buffer |
|
2363 */ |
|
2364 static |
|
2365 inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer) |
|
2366 { |
|
2367 /* okay confusing part here. to ensure that the skipped characters are |
|
2368 considered later, we need to place it in the appropriate position in the |
|
2369 normalization buffer and reassign the pos pointer. simple case if pos |
|
2370 reside in string, simply copy to normalization buffer and |
|
2371 fcdposition = pos, pos = start of normalization buffer. if pos in |
|
2372 normalization buffer, we'll insert the copy infront of pos and point pos |
|
2373 to the start of the normalization buffer. why am i doing these copies? |
|
2374 well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does |
|
2375 not require any changes, which be really painful. */ |
|
2376 if (source->flags & UCOL_ITER_INNORMBUF) { |
|
2377 int32_t replaceLength = source->pos - source->writableBuffer.getBuffer(); |
|
2378 source->writableBuffer.replace(0, replaceLength, buffer); |
|
2379 } |
|
2380 else { |
|
2381 source->fcdPosition = source->pos; |
|
2382 source->origFlags = source->flags; |
|
2383 source->flags |= UCOL_ITER_INNORMBUF; |
|
2384 source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
|
2385 source->writableBuffer = buffer; |
|
2386 } |
|
2387 |
|
2388 source->pos = source->writableBuffer.getTerminatedBuffer(); |
|
2389 } |
|
2390 |
|
2391 /** |
|
2392 * Function to get the discontiguos collation element within the source. |
|
2393 * Note this function will set the position to the appropriate places. |
|
2394 * @param coll current collator used |
|
2395 * @param source data string source |
|
2396 * @param constart index to the start character in the contraction table |
|
2397 * @return discontiguos collation element offset |
|
2398 */ |
|
2399 static |
|
2400 uint32_t getDiscontiguous(const UCollator *coll, collIterate *source, |
|
2401 const UChar *constart) |
|
2402 { |
|
2403 /* source->pos currently points to the second combining character after |
|
2404 the start character */ |
|
2405 const UChar *temppos = source->pos; |
|
2406 UnicodeString buffer; |
|
2407 const UChar *tempconstart = constart; |
|
2408 uint8_t tempflags = source->flags; |
|
2409 UBool multicontraction = FALSE; |
|
2410 collIterateState discState; |
|
2411 |
|
2412 backupState(source, &discState); |
|
2413 |
|
2414 buffer.setTo(peekCodePoint(source, -1)); |
|
2415 for (;;) { |
|
2416 UChar *UCharOffset; |
|
2417 UChar schar, |
|
2418 tchar; |
|
2419 uint32_t result; |
|
2420 |
|
2421 if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp) |
|
2422 || (peekCodeUnit(source, 0) == 0 && |
|
2423 //|| (*source->pos == 0 && |
|
2424 ((source->flags & UCOL_ITER_INNORMBUF) == 0 || |
|
2425 source->fcdPosition == NULL || |
|
2426 source->fcdPosition == source->endp || |
|
2427 *(source->fcdPosition) == 0 || |
|
2428 u_getCombiningClass(*(source->fcdPosition)) == 0)) || |
|
2429 /* end of string in null terminated string or stopped by a |
|
2430 null character, note fcd does not always point to a base |
|
2431 character after the discontiguos change */ |
|
2432 u_getCombiningClass(peekCodePoint(source, 0)) == 0) { |
|
2433 //u_getCombiningClass(*(source->pos)) == 0) { |
|
2434 //constart = (UChar *)coll->image + getContractOffset(CE); |
|
2435 if (multicontraction) { |
|
2436 source->pos = temppos - 1; |
|
2437 setDiscontiguosAttribute(source, buffer); |
|
2438 return *(coll->contractionCEs + |
|
2439 (tempconstart - coll->contractionIndex)); |
|
2440 } |
|
2441 constart = tempconstart; |
|
2442 break; |
|
2443 } |
|
2444 |
|
2445 UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/ |
|
2446 schar = getNextNormalizedChar(source); |
|
2447 |
|
2448 while (schar > (tchar = *UCharOffset)) { |
|
2449 UCharOffset++; |
|
2450 } |
|
2451 |
|
2452 if (schar != tchar) { |
|
2453 /* not the correct codepoint. we stuff the current codepoint into |
|
2454 the discontiguos buffer and try the next character */ |
|
2455 buffer.append(schar); |
|
2456 continue; |
|
2457 } |
|
2458 else { |
|
2459 if (u_getCombiningClass(schar) == |
|
2460 u_getCombiningClass(peekCodePoint(source, -2))) { |
|
2461 buffer.append(schar); |
|
2462 continue; |
|
2463 } |
|
2464 result = *(coll->contractionCEs + |
|
2465 (UCharOffset - coll->contractionIndex)); |
|
2466 } |
|
2467 |
|
2468 if (result == UCOL_NOT_FOUND) { |
|
2469 break; |
|
2470 } else if (isContraction(result)) { |
|
2471 /* this is a multi-contraction*/ |
|
2472 tempconstart = (UChar *)coll->image + getContractOffset(result); |
|
2473 if (*(coll->contractionCEs + (constart - coll->contractionIndex)) |
|
2474 != UCOL_NOT_FOUND) { |
|
2475 multicontraction = TRUE; |
|
2476 temppos = source->pos + 1; |
|
2477 } |
|
2478 } else { |
|
2479 setDiscontiguosAttribute(source, buffer); |
|
2480 return result; |
|
2481 } |
|
2482 } |
|
2483 |
|
2484 /* no problems simply reverting just like that, |
|
2485 if we are in string before getting into this function, points back to |
|
2486 string hence no problem. |
|
2487 if we are in normalization buffer before getting into this function, |
|
2488 since we'll never use another normalization within this function, we |
|
2489 know that fcdposition points to a base character. the normalization buffer |
|
2490 never change, hence this revert works. */ |
|
2491 loadState(source, &discState, TRUE); |
|
2492 goBackOne(source); |
|
2493 |
|
2494 //source->pos = temppos - 1; |
|
2495 source->flags = tempflags; |
|
2496 return *(coll->contractionCEs + (constart - coll->contractionIndex)); |
|
2497 } |
|
2498 |
|
2499 /* now uses Mark's getImplicitPrimary code */ |
|
2500 static |
|
2501 inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) { |
|
2502 uint32_t r = uprv_uca_getImplicitPrimary(cp); |
|
2503 *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0; |
|
2504 collationSource->offsetRepeatCount += 1; |
|
2505 return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order' |
|
2506 } |
|
2507 |
|
2508 /** |
|
2509 * Inserts the argument character into the front of the buffer replacing the |
|
2510 * front null terminator. |
|
2511 * @param data collation element iterator data |
|
2512 * @param ch character to be appended |
|
2513 */ |
|
2514 static |
|
2515 inline void insertBufferFront(collIterate *data, UChar ch) |
|
2516 { |
|
2517 data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2; |
|
2518 } |
|
2519 |
|
2520 /** |
|
2521 * Special normalization function for contraction in the previous iterator. |
|
2522 * This normalization sequence will place the current character at source->pos |
|
2523 * and its following normalized sequence into the buffer. |
|
2524 * The fcd position, pos will be changed. |
|
2525 * pos will now point to positions in the buffer. |
|
2526 * Flags will be changed accordingly. |
|
2527 * @param data collation iterator data |
|
2528 */ |
|
2529 static |
|
2530 inline void normalizePrevContraction(collIterate *data, UErrorCode *status) |
|
2531 { |
|
2532 const UChar *pEnd = data->pos + 1; /* End normalize + 1 */ |
|
2533 const UChar *pStart; |
|
2534 |
|
2535 UnicodeString endOfBuffer; |
|
2536 if (data->flags & UCOL_ITER_HASLEN) { |
|
2537 /* |
|
2538 normalization buffer not used yet, we'll pull down the next |
|
2539 character into the end of the buffer |
|
2540 */ |
|
2541 endOfBuffer.setTo(*pEnd); |
|
2542 } |
|
2543 else { |
|
2544 endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL |
|
2545 } |
|
2546 |
|
2547 if (data->fcdPosition == NULL) { |
|
2548 pStart = data->string; |
|
2549 } |
|
2550 else { |
|
2551 pStart = data->fcdPosition + 1; |
|
2552 } |
|
2553 int32_t normLen = |
|
2554 data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), |
|
2555 data->writableBuffer, |
|
2556 *status). |
|
2557 length(); |
|
2558 if(U_FAILURE(*status)) { |
|
2559 return; |
|
2560 } |
|
2561 /* |
|
2562 this puts the null termination infront of the normalized string instead |
|
2563 of the end |
|
2564 */ |
|
2565 data->pos = |
|
2566 data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() + |
|
2567 1 + normLen; |
|
2568 data->origFlags = data->flags; |
|
2569 data->flags |= UCOL_ITER_INNORMBUF; |
|
2570 data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
|
2571 } |
|
2572 |
|
2573 /** |
|
2574 * Contraction character management function that returns the previous character |
|
2575 * for the backwards iterator. |
|
2576 * Does nothing if the previous character is in buffer and not the first |
|
2577 * character in it. |
|
2578 * Else it checks previous character in data string to see if it is |
|
2579 * normalizable. |
|
2580 * If it is not, the character is simply copied into the buffer, else |
|
2581 * the whole normalized substring is copied into the buffer, including the |
|
2582 * current character. |
|
2583 * @param data collation element iterator data |
|
2584 * @return previous character |
|
2585 */ |
|
2586 static |
|
2587 inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status) |
|
2588 { |
|
2589 UChar prevch; |
|
2590 UChar ch; |
|
2591 const UChar *start; |
|
2592 UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
|
2593 if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 || |
|
2594 (innormbuf && *(data->pos - 1) != 0)) { |
|
2595 /* |
|
2596 if no normalization. |
|
2597 if previous character is in normalized buffer, no further normalization |
|
2598 is required |
|
2599 */ |
|
2600 if(data->flags & UCOL_USE_ITERATOR) { |
|
2601 data->iterator->move(data->iterator, -1, UITER_CURRENT); |
|
2602 return (UChar)data->iterator->next(data->iterator); |
|
2603 } else { |
|
2604 return *(data->pos - 1); |
|
2605 } |
|
2606 } |
|
2607 |
|
2608 start = data->pos; |
|
2609 if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) { |
|
2610 /* in data string */ |
|
2611 if ((start - 1) == data->string) { |
|
2612 return *(start - 1); |
|
2613 } |
|
2614 start --; |
|
2615 ch = *start; |
|
2616 prevch = *(start - 1); |
|
2617 } |
|
2618 else { |
|
2619 /* |
|
2620 in writable buffer, at this point fcdPosition can not be NULL. |
|
2621 see contracting tag. |
|
2622 */ |
|
2623 if (data->fcdPosition == data->string) { |
|
2624 /* at the start of the string, just dump it into the normalizer */ |
|
2625 insertBufferFront(data, *(data->fcdPosition)); |
|
2626 data->fcdPosition = NULL; |
|
2627 return *(data->pos - 1); |
|
2628 } |
|
2629 start = data->fcdPosition; |
|
2630 ch = *start; |
|
2631 prevch = *(start - 1); |
|
2632 } |
|
2633 /* |
|
2634 * if the current character is not fcd. |
|
2635 * Trailing combining class == 0. |
|
2636 */ |
|
2637 if (data->fcdPosition > start && |
|
2638 (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_)) |
|
2639 { |
|
2640 /* |
|
2641 Need a more complete FCD check and possible normalization. |
|
2642 normalize substring will be appended to buffer |
|
2643 */ |
|
2644 const UChar *backuppos = data->pos; |
|
2645 data->pos = start; |
|
2646 if (collPrevIterFCD(data)) { |
|
2647 normalizePrevContraction(data, status); |
|
2648 return *(data->pos - 1); |
|
2649 } |
|
2650 data->pos = backuppos; |
|
2651 data->fcdPosition ++; |
|
2652 } |
|
2653 |
|
2654 if (innormbuf) { |
|
2655 /* |
|
2656 no normalization is to be done hence only one character will be |
|
2657 appended to the buffer. |
|
2658 */ |
|
2659 insertBufferFront(data, ch); |
|
2660 data->fcdPosition --; |
|
2661 } |
|
2662 |
|
2663 return ch; |
|
2664 } |
|
2665 |
|
2666 /* This function handles the special CEs like contractions, expansions, surrogates, Thai */ |
|
2667 /* It is called by getNextCE */ |
|
2668 |
|
2669 /* The following should be even */ |
|
2670 #define UCOL_MAX_DIGITS_FOR_NUMBER 254 |
|
2671 |
|
2672 uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) { |
|
2673 collIterateState entryState; |
|
2674 backupState(source, &entryState); |
|
2675 UChar32 cp = ch; |
|
2676 |
|
2677 for (;;) { |
|
2678 // This loop will repeat only in the case of contractions, and only when a contraction |
|
2679 // is found and the first CE resulting from that contraction is itself a special |
|
2680 // (an expansion, for example.) All other special CE types are fully handled the |
|
2681 // first time through, and the loop exits. |
|
2682 |
|
2683 const uint32_t *CEOffset = NULL; |
|
2684 switch(getCETag(CE)) { |
|
2685 case NOT_FOUND_TAG: |
|
2686 /* This one is not found, and we'll let somebody else bother about it... no more games */ |
|
2687 return CE; |
|
2688 case SPEC_PROC_TAG: |
|
2689 { |
|
2690 // Special processing is getting a CE that is preceded by a certain prefix |
|
2691 // Currently this is only needed for optimizing Japanese length and iteration marks. |
|
2692 // When we encouter a special processing tag, we go backwards and try to see if |
|
2693 // we have a match. |
|
2694 // Contraction tables are used - so the whole process is not unlike contraction. |
|
2695 // prefix data is stored backwards in the table. |
|
2696 const UChar *UCharOffset; |
|
2697 UChar schar, tchar; |
|
2698 collIterateState prefixState; |
|
2699 backupState(source, &prefixState); |
|
2700 loadState(source, &entryState, TRUE); |
|
2701 goBackOne(source); // We want to look at the point where we entered - actually one |
|
2702 // before that... |
|
2703 |
|
2704 for(;;) { |
|
2705 // This loop will run once per source string character, for as long as we |
|
2706 // are matching a potential contraction sequence |
|
2707 |
|
2708 // First we position ourselves at the begining of contraction sequence |
|
2709 const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
|
2710 if (collIter_bos(source)) { |
|
2711 CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
|
2712 break; |
|
2713 } |
|
2714 schar = getPrevNormalizedChar(source, status); |
|
2715 goBackOne(source); |
|
2716 |
|
2717 while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
|
2718 UCharOffset++; |
|
2719 } |
|
2720 |
|
2721 if (schar == tchar) { |
|
2722 // Found the source string char in the table. |
|
2723 // Pick up the corresponding CE from the table. |
|
2724 CE = *(coll->contractionCEs + |
|
2725 (UCharOffset - coll->contractionIndex)); |
|
2726 } |
|
2727 else |
|
2728 { |
|
2729 // Source string char was not in the table. |
|
2730 // We have not found the prefix. |
|
2731 CE = *(coll->contractionCEs + |
|
2732 (ContractionStart - coll->contractionIndex)); |
|
2733 } |
|
2734 |
|
2735 if(!isPrefix(CE)) { |
|
2736 // The source string char was in the contraction table, and the corresponding |
|
2737 // CE is not a prefix CE. We found the prefix, break |
|
2738 // out of loop, this CE will end up being returned. This is the normal |
|
2739 // way out of prefix handling when the source actually contained |
|
2740 // the prefix. |
|
2741 break; |
|
2742 } |
|
2743 } |
|
2744 if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue |
|
2745 loadState(source, &prefixState, TRUE); |
|
2746 if(source->origFlags & UCOL_USE_ITERATOR) { |
|
2747 source->flags = source->origFlags; |
|
2748 } |
|
2749 } else { // prefix search was a failure, we have to backup all the way to the start |
|
2750 loadState(source, &entryState, TRUE); |
|
2751 } |
|
2752 break; |
|
2753 } |
|
2754 case CONTRACTION_TAG: |
|
2755 { |
|
2756 /* This should handle contractions */ |
|
2757 collIterateState state; |
|
2758 backupState(source, &state); |
|
2759 uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND; |
|
2760 const UChar *UCharOffset; |
|
2761 UChar schar, tchar; |
|
2762 |
|
2763 for (;;) { |
|
2764 /* This loop will run once per source string character, for as long as we */ |
|
2765 /* are matching a potential contraction sequence */ |
|
2766 |
|
2767 /* First we position ourselves at the begining of contraction sequence */ |
|
2768 const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
|
2769 |
|
2770 if (collIter_eos(source)) { |
|
2771 // Ran off the end of the source string. |
|
2772 CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
|
2773 // So we'll pick whatever we have at the point... |
|
2774 if (CE == UCOL_NOT_FOUND) { |
|
2775 // back up the source over all the chars we scanned going into this contraction. |
|
2776 CE = firstCE; |
|
2777 loadState(source, &state, TRUE); |
|
2778 if(source->origFlags & UCOL_USE_ITERATOR) { |
|
2779 source->flags = source->origFlags; |
|
2780 } |
|
2781 } |
|
2782 break; |
|
2783 } |
|
2784 |
|
2785 uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */ |
|
2786 uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8); |
|
2787 |
|
2788 schar = getNextNormalizedChar(source); |
|
2789 while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
|
2790 UCharOffset++; |
|
2791 } |
|
2792 |
|
2793 if (schar == tchar) { |
|
2794 // Found the source string char in the contraction table. |
|
2795 // Pick up the corresponding CE from the table. |
|
2796 CE = *(coll->contractionCEs + |
|
2797 (UCharOffset - coll->contractionIndex)); |
|
2798 } |
|
2799 else |
|
2800 { |
|
2801 // Source string char was not in contraction table. |
|
2802 // Unless we have a discontiguous contraction, we have finished |
|
2803 // with this contraction. |
|
2804 // in order to do the proper detection, we |
|
2805 // need to see if we're dealing with a supplementary |
|
2806 /* We test whether the next two char are surrogate pairs. |
|
2807 * This test is done if the iterator is not NULL. |
|
2808 * If there is no surrogate pair, the iterator |
|
2809 * goes back one if needed. */ |
|
2810 UChar32 miss = schar; |
|
2811 if (source->iterator) { |
|
2812 UChar32 surrNextChar; /* the next char in the iteration to test */ |
|
2813 int32_t prevPos; /* holds the previous position before move forward of the source iterator */ |
|
2814 if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) { |
|
2815 prevPos = source->iterator->index; |
|
2816 surrNextChar = getNextNormalizedChar(source); |
|
2817 if (U16_IS_TRAIL(surrNextChar)) { |
|
2818 miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar); |
|
2819 } else if (prevPos < source->iterator->index){ |
|
2820 goBackOne(source); |
|
2821 } |
|
2822 } |
|
2823 } else if (U16_IS_LEAD(schar)) { |
|
2824 miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source)); |
|
2825 } |
|
2826 |
|
2827 uint8_t sCC; |
|
2828 if (miss < 0x300 || |
|
2829 maxCC == 0 || |
|
2830 (sCC = i_getCombiningClass(miss, coll)) == 0 || |
|
2831 sCC>maxCC || |
|
2832 (allSame != 0 && sCC == maxCC) || |
|
2833 collIter_eos(source)) |
|
2834 { |
|
2835 // Contraction can not be discontiguous. |
|
2836 goBackOne(source); // back up the source string by one, |
|
2837 // because the character we just looked at was |
|
2838 // not part of the contraction. */ |
|
2839 if(U_IS_SUPPLEMENTARY(miss)) { |
|
2840 goBackOne(source); |
|
2841 } |
|
2842 CE = *(coll->contractionCEs + |
|
2843 (ContractionStart - coll->contractionIndex)); |
|
2844 } else { |
|
2845 // |
|
2846 // Contraction is possibly discontiguous. |
|
2847 // Scan more of source string looking for a match |
|
2848 // |
|
2849 UChar tempchar; |
|
2850 /* find the next character if schar is not a base character |
|
2851 and we are not yet at the end of the string */ |
|
2852 tempchar = getNextNormalizedChar(source); |
|
2853 // probably need another supplementary thingie here |
|
2854 goBackOne(source); |
|
2855 if (i_getCombiningClass(tempchar, coll) == 0) { |
|
2856 goBackOne(source); |
|
2857 if(U_IS_SUPPLEMENTARY(miss)) { |
|
2858 goBackOne(source); |
|
2859 } |
|
2860 /* Spit out the last char of the string, wasn't tasty enough */ |
|
2861 CE = *(coll->contractionCEs + |
|
2862 (ContractionStart - coll->contractionIndex)); |
|
2863 } else { |
|
2864 CE = getDiscontiguous(coll, source, ContractionStart); |
|
2865 } |
|
2866 } |
|
2867 } // else after if(schar == tchar) |
|
2868 |
|
2869 if(CE == UCOL_NOT_FOUND) { |
|
2870 /* The Source string did not match the contraction that we were checking. */ |
|
2871 /* Back up the source position to undo the effects of having partially */ |
|
2872 /* scanned through what ultimately proved to not be a contraction. */ |
|
2873 loadState(source, &state, TRUE); |
|
2874 CE = firstCE; |
|
2875 break; |
|
2876 } |
|
2877 |
|
2878 if(!isContraction(CE)) { |
|
2879 // The source string char was in the contraction table, and the corresponding |
|
2880 // CE is not a contraction CE. We completed the contraction, break |
|
2881 // out of loop, this CE will end up being returned. This is the normal |
|
2882 // way out of contraction handling when the source actually contained |
|
2883 // the contraction. |
|
2884 break; |
|
2885 } |
|
2886 |
|
2887 |
|
2888 // The source string char was in the contraction table, and the corresponding |
|
2889 // CE is IS a contraction CE. We will continue looping to check the source |
|
2890 // string for the remaining chars in the contraction. |
|
2891 uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex)); |
|
2892 if(tempCE != UCOL_NOT_FOUND) { |
|
2893 // We have scanned a a section of source string for which there is a |
|
2894 // CE from the contraction table. Remember the CE and scan position, so |
|
2895 // that we can return to this point if further scanning fails to |
|
2896 // match a longer contraction sequence. |
|
2897 firstCE = tempCE; |
|
2898 |
|
2899 goBackOne(source); |
|
2900 backupState(source, &state); |
|
2901 getNextNormalizedChar(source); |
|
2902 |
|
2903 // Another way to do this is: |
|
2904 //collIterateState tempState; |
|
2905 //backupState(source, &tempState); |
|
2906 //goBackOne(source); |
|
2907 //backupState(source, &state); |
|
2908 //loadState(source, &tempState, TRUE); |
|
2909 |
|
2910 // The problem is that for incomplete contractions we have to remember the previous |
|
2911 // position. Before, the only thing I needed to do was state.pos--; |
|
2912 // After iterator introduction and especially after introduction of normalizing |
|
2913 // iterators, it became much more difficult to decrease the saved state. |
|
2914 // I'm not yet sure which of the two methods above is faster. |
|
2915 } |
|
2916 } // for(;;) |
|
2917 break; |
|
2918 } // case CONTRACTION_TAG: |
|
2919 case LONG_PRIMARY_TAG: |
|
2920 { |
|
2921 *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; |
|
2922 CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; |
|
2923 source->offsetRepeatCount += 1; |
|
2924 return CE; |
|
2925 } |
|
2926 case EXPANSION_TAG: |
|
2927 { |
|
2928 /* This should handle expansion. */ |
|
2929 /* NOTE: we can encounter both continuations and expansions in an expansion! */ |
|
2930 /* I have to decide where continuations are going to be dealt with */ |
|
2931 uint32_t size; |
|
2932 uint32_t i; /* general counter */ |
|
2933 |
|
2934 CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
|
2935 size = getExpansionCount(CE); |
|
2936 CE = *CEOffset++; |
|
2937 //source->offsetRepeatCount = -1; |
|
2938 |
|
2939 if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ |
|
2940 for(i = 1; i<size; i++) { |
|
2941 *(source->CEpos++) = *CEOffset++; |
|
2942 source->offsetRepeatCount += 1; |
|
2943 } |
|
2944 } else { /* else, we do */ |
|
2945 while(*CEOffset != 0) { |
|
2946 *(source->CEpos++) = *CEOffset++; |
|
2947 source->offsetRepeatCount += 1; |
|
2948 } |
|
2949 } |
|
2950 |
|
2951 return CE; |
|
2952 } |
|
2953 case DIGIT_TAG: |
|
2954 { |
|
2955 /* |
|
2956 We do a check to see if we want to collate digits as numbers; if so we generate |
|
2957 a custom collation key. Otherwise we pull out the value stored in the expansion table. |
|
2958 */ |
|
2959 //uint32_t size; |
|
2960 uint32_t i; /* general counter */ |
|
2961 |
|
2962 if (source->coll->numericCollation == UCOL_ON){ |
|
2963 collIterateState digitState = {0,0,0,0,0,0,0,0,0}; |
|
2964 UChar32 char32 = 0; |
|
2965 int32_t digVal = 0; |
|
2966 |
|
2967 uint32_t digIndx = 0; |
|
2968 uint32_t endIndex = 0; |
|
2969 uint32_t trailingZeroIndex = 0; |
|
2970 |
|
2971 uint8_t collateVal = 0; |
|
2972 |
|
2973 UBool nonZeroValReached = FALSE; |
|
2974 |
|
2975 uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs. |
|
2976 /* |
|
2977 We parse the source string until we hit a char that's NOT a digit. |
|
2978 Use this u_charDigitValue. This might be slow because we have to |
|
2979 handle surrogates... |
|
2980 */ |
|
2981 /* |
|
2982 if (U16_IS_LEAD(ch)){ |
|
2983 if (!collIter_eos(source)) { |
|
2984 backupState(source, &digitState); |
|
2985 UChar trail = getNextNormalizedChar(source); |
|
2986 if(U16_IS_TRAIL(trail)) { |
|
2987 char32 = U16_GET_SUPPLEMENTARY(ch, trail); |
|
2988 } else { |
|
2989 loadState(source, &digitState, TRUE); |
|
2990 char32 = ch; |
|
2991 } |
|
2992 } else { |
|
2993 char32 = ch; |
|
2994 } |
|
2995 } else { |
|
2996 char32 = ch; |
|
2997 } |
|
2998 digVal = u_charDigitValue(char32); |
|
2999 */ |
|
3000 digVal = u_charDigitValue(cp); // if we have arrived here, we have |
|
3001 // already processed possible supplementaries that trigered the digit tag - |
|
3002 // all supplementaries are marked in the UCA. |
|
3003 /* |
|
3004 We pad a zero in front of the first element anyways. This takes |
|
3005 care of the (probably) most common case where people are sorting things followed |
|
3006 by a single digit |
|
3007 */ |
|
3008 digIndx++; |
|
3009 for(;;){ |
|
3010 // Make sure we have enough space. No longer needed; |
|
3011 // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER |
|
3012 // (it has been pre-incremented) so we just ensure that numTempBuf is big enough |
|
3013 // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3). |
|
3014 |
|
3015 // Skipping over leading zeroes. |
|
3016 if (digVal != 0) { |
|
3017 nonZeroValReached = TRUE; |
|
3018 } |
|
3019 if (nonZeroValReached) { |
|
3020 /* |
|
3021 We parse the digit string into base 100 numbers (this fits into a byte). |
|
3022 We only add to the buffer in twos, thus if we are parsing an odd character, |
|
3023 that serves as the 'tens' digit while the if we are parsing an even one, that |
|
3024 is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into |
|
3025 a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid |
|
3026 overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less |
|
3027 than all the other bytes. |
|
3028 */ |
|
3029 |
|
3030 if (digIndx % 2 == 1){ |
|
3031 collateVal += (uint8_t)digVal; |
|
3032 |
|
3033 // We don't enter the low-order-digit case unless we've already seen |
|
3034 // the high order, or for the first digit, which is always non-zero. |
|
3035 if (collateVal != 0) |
|
3036 trailingZeroIndex = 0; |
|
3037 |
|
3038 numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
|
3039 collateVal = 0; |
|
3040 } |
|
3041 else{ |
|
3042 // We drop the collation value into the buffer so if we need to do |
|
3043 // a "front patch" we don't have to check to see if we're hitting the |
|
3044 // last element. |
|
3045 collateVal = (uint8_t)(digVal * 10); |
|
3046 |
|
3047 // Check for trailing zeroes. |
|
3048 if (collateVal == 0) |
|
3049 { |
|
3050 if (!trailingZeroIndex) |
|
3051 trailingZeroIndex = (digIndx/2) + 2; |
|
3052 } |
|
3053 else |
|
3054 trailingZeroIndex = 0; |
|
3055 |
|
3056 numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
|
3057 } |
|
3058 digIndx++; |
|
3059 } |
|
3060 |
|
3061 // Get next character. |
|
3062 if (!collIter_eos(source)){ |
|
3063 ch = getNextNormalizedChar(source); |
|
3064 if (U16_IS_LEAD(ch)){ |
|
3065 if (!collIter_eos(source)) { |
|
3066 backupState(source, &digitState); |
|
3067 UChar trail = getNextNormalizedChar(source); |
|
3068 if(U16_IS_TRAIL(trail)) { |
|
3069 char32 = U16_GET_SUPPLEMENTARY(ch, trail); |
|
3070 } else { |
|
3071 loadState(source, &digitState, TRUE); |
|
3072 char32 = ch; |
|
3073 } |
|
3074 } |
|
3075 } else { |
|
3076 char32 = ch; |
|
3077 } |
|
3078 |
|
3079 if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){ |
|
3080 // Resetting position to point to the next unprocessed char. We |
|
3081 // overshot it when doing our test/set for numbers. |
|
3082 if (char32 > 0xFFFF) { // For surrogates. |
|
3083 loadState(source, &digitState, TRUE); |
|
3084 //goBackOne(source); |
|
3085 } |
|
3086 goBackOne(source); |
|
3087 break; |
|
3088 } |
|
3089 } else { |
|
3090 break; |
|
3091 } |
|
3092 } |
|
3093 |
|
3094 if (nonZeroValReached == FALSE){ |
|
3095 digIndx = 2; |
|
3096 numTempBuf[2] = 6; |
|
3097 } |
|
3098 |
|
3099 endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ; |
|
3100 if (digIndx % 2 != 0){ |
|
3101 /* |
|
3102 We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what |
|
3103 we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward. |
|
3104 Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a |
|
3105 single pass and optimizes for strings with single digits. I'm just assuming that's the more common case. |
|
3106 */ |
|
3107 |
|
3108 for(i = 2; i < endIndex; i++){ |
|
3109 numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) + |
|
3110 (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6; |
|
3111 } |
|
3112 --digIndx; |
|
3113 } |
|
3114 |
|
3115 // Subtract one off of the last byte. |
|
3116 numTempBuf[endIndex-1] -= 1; |
|
3117 |
|
3118 /* |
|
3119 We want to skip over the first two slots in the buffer. The first slot |
|
3120 is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the |
|
3121 sign/exponent byte: 0x80 + (decimalPos/2) & 7f. |
|
3122 */ |
|
3123 numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; |
|
3124 numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F)); |
|
3125 |
|
3126 // Now transfer the collation key to our collIterate struct. |
|
3127 // The total size for our collation key is endIndx bumped up to the next largest even value divided by two. |
|
3128 //size = ((endIndex+1) & ~1)/2; |
|
3129 CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
|
3130 (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight |
|
3131 UCOL_BYTE_COMMON; // Tertiary weight. |
|
3132 i = 2; // Reset the index into the buffer. |
|
3133 while(i < endIndex) |
|
3134 { |
|
3135 uint32_t primWeight = numTempBuf[i++] << 8; |
|
3136 if ( i < endIndex) |
|
3137 primWeight |= numTempBuf[i++]; |
|
3138 *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; |
|
3139 } |
|
3140 |
|
3141 } else { |
|
3142 // no numeric mode, we'll just switch to whatever we stashed and continue |
|
3143 CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
|
3144 CE = *CEOffset++; |
|
3145 break; |
|
3146 } |
|
3147 return CE; |
|
3148 } |
|
3149 /* various implicits optimization */ |
|
3150 case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
|
3151 /* UCA is filled with these. Tailorings are NOT_FOUND */ |
|
3152 return getImplicit(cp, source); |
|
3153 case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ |
|
3154 // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit |
|
3155 return getImplicit(cp, source); |
|
3156 case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
|
3157 { |
|
3158 static const uint32_t |
|
3159 SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; |
|
3160 //const uint32_t LCount = 19; |
|
3161 static const uint32_t VCount = 21; |
|
3162 static const uint32_t TCount = 28; |
|
3163 //const uint32_t NCount = VCount * TCount; // 588 |
|
3164 //const uint32_t SCount = LCount * NCount; // 11172 |
|
3165 uint32_t L = ch - SBase; |
|
3166 |
|
3167 // divide into pieces |
|
3168 |
|
3169 uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation |
|
3170 L /= TCount; |
|
3171 uint32_t V = L % VCount; |
|
3172 L /= VCount; |
|
3173 |
|
3174 // offset them |
|
3175 |
|
3176 L += LBase; |
|
3177 V += VBase; |
|
3178 T += TBase; |
|
3179 |
|
3180 // return the first CE, but first put the rest into the expansion buffer |
|
3181 if (!source->coll->image->jamoSpecial) { // FAST PATH |
|
3182 |
|
3183 *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); |
|
3184 if (T != TBase) { |
|
3185 *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); |
|
3186 } |
|
3187 |
|
3188 return UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
|
3189 |
|
3190 } else { // Jamo is Special |
|
3191 // Since Hanguls pass the FCD check, it is |
|
3192 // guaranteed that we won't be in |
|
3193 // the normalization buffer if something like this happens |
|
3194 |
|
3195 // However, if we are using a uchar iterator and normalization |
|
3196 // is ON, the Hangul that lead us here is going to be in that |
|
3197 // normalization buffer. Here we want to restore the uchar |
|
3198 // iterator state and pull out of the normalization buffer |
|
3199 if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) { |
|
3200 source->flags = source->origFlags; // restore the iterator |
|
3201 source->pos = NULL; |
|
3202 } |
|
3203 |
|
3204 // Move Jamos into normalization buffer |
|
3205 UChar *buffer = source->writableBuffer.getBuffer(4); |
|
3206 int32_t bufferLength; |
|
3207 buffer[0] = (UChar)L; |
|
3208 buffer[1] = (UChar)V; |
|
3209 if (T != TBase) { |
|
3210 buffer[2] = (UChar)T; |
|
3211 bufferLength = 3; |
|
3212 } else { |
|
3213 bufferLength = 2; |
|
3214 } |
|
3215 source->writableBuffer.releaseBuffer(bufferLength); |
|
3216 |
|
3217 // Indicate where to continue in main input string after exhausting the writableBuffer |
|
3218 source->fcdPosition = source->pos; |
|
3219 |
|
3220 source->pos = source->writableBuffer.getTerminatedBuffer(); |
|
3221 source->origFlags = source->flags; |
|
3222 source->flags |= UCOL_ITER_INNORMBUF; |
|
3223 source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
|
3224 |
|
3225 return(UCOL_IGNORABLE); |
|
3226 } |
|
3227 } |
|
3228 case SURROGATE_TAG: |
|
3229 /* we encountered a leading surrogate. We shall get the CE by using the following code unit */ |
|
3230 /* two things can happen here: next code point can be a trailing surrogate - we will use it */ |
|
3231 /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */ |
|
3232 /* we treat it like an unassigned code point. */ |
|
3233 { |
|
3234 UChar trail; |
|
3235 collIterateState state; |
|
3236 backupState(source, &state); |
|
3237 if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) { |
|
3238 // we chould have stepped one char forward and it might have turned that it |
|
3239 // was not a trail surrogate. In that case, we have to backup. |
|
3240 loadState(source, &state, TRUE); |
|
3241 return UCOL_NOT_FOUND; |
|
3242 } else { |
|
3243 /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */ |
|
3244 CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail); |
|
3245 if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one. |
|
3246 // We need to backup |
|
3247 loadState(source, &state, TRUE); |
|
3248 return CE; |
|
3249 } |
|
3250 // calculate the supplementary code point value, if surrogate was not tailored |
|
3251 cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); |
|
3252 } |
|
3253 } |
|
3254 break; |
|
3255 case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
|
3256 UChar nextChar; |
|
3257 if( source->flags & UCOL_USE_ITERATOR) { |
|
3258 if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) { |
|
3259 cp = U16_GET_SUPPLEMENTARY(ch, nextChar); |
|
3260 source->iterator->next(source->iterator); |
|
3261 return getImplicit(cp, source); |
|
3262 } |
|
3263 } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) && |
|
3264 U_IS_TRAIL((nextChar=*source->pos))) { |
|
3265 cp = U16_GET_SUPPLEMENTARY(ch, nextChar); |
|
3266 source->pos++; |
|
3267 return getImplicit(cp, source); |
|
3268 } |
|
3269 return UCOL_NOT_FOUND; |
|
3270 case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
|
3271 return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
|
3272 case CHARSET_TAG: |
|
3273 /* not yet implemented */ |
|
3274 /* probably after 1.8 */ |
|
3275 return UCOL_NOT_FOUND; |
|
3276 default: |
|
3277 *status = U_INTERNAL_PROGRAM_ERROR; |
|
3278 CE=0; |
|
3279 break; |
|
3280 } |
|
3281 if (CE <= UCOL_NOT_FOUND) break; |
|
3282 } |
|
3283 return CE; |
|
3284 } |
|
3285 |
|
3286 |
|
3287 /* now uses Mark's getImplicitPrimary code */ |
|
3288 static |
|
3289 inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) { |
|
3290 uint32_t r = uprv_uca_getImplicitPrimary(cp); |
|
3291 |
|
3292 *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505; |
|
3293 collationSource->toReturn = collationSource->CEpos; |
|
3294 |
|
3295 // **** doesn't work if using iterator **** |
|
3296 if (collationSource->flags & UCOL_ITER_INNORMBUF) { |
|
3297 collationSource->offsetRepeatCount = 1; |
|
3298 } else { |
|
3299 int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string); |
|
3300 |
|
3301 UErrorCode errorCode = U_ZERO_ERROR; |
|
3302 collationSource->appendOffset(firstOffset, errorCode); |
|
3303 collationSource->appendOffset(firstOffset + 1, errorCode); |
|
3304 |
|
3305 collationSource->offsetReturn = collationSource->offsetStore - 1; |
|
3306 *(collationSource->offsetBuffer) = firstOffset; |
|
3307 if (collationSource->offsetReturn == collationSource->offsetBuffer) { |
|
3308 collationSource->offsetStore = collationSource->offsetBuffer; |
|
3309 } |
|
3310 } |
|
3311 |
|
3312 return ((r & 0x0000FFFF)<<16) | 0x000000C0; |
|
3313 } |
|
3314 |
|
3315 /** |
|
3316 * This function handles the special CEs like contractions, expansions, |
|
3317 * surrogates, Thai. |
|
3318 * It is called by both getPrevCE |
|
3319 */ |
|
3320 uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE, |
|
3321 collIterate *source, |
|
3322 UErrorCode *status) |
|
3323 { |
|
3324 const uint32_t *CEOffset = NULL; |
|
3325 UChar *UCharOffset = NULL; |
|
3326 UChar schar; |
|
3327 const UChar *constart = NULL; |
|
3328 uint32_t size; |
|
3329 UChar buffer[UCOL_MAX_BUFFER]; |
|
3330 uint32_t *endCEBuffer; |
|
3331 UChar *strbuffer; |
|
3332 int32_t noChars = 0; |
|
3333 int32_t CECount = 0; |
|
3334 |
|
3335 for(;;) |
|
3336 { |
|
3337 /* the only ces that loops are thai and contractions */ |
|
3338 switch (getCETag(CE)) |
|
3339 { |
|
3340 case NOT_FOUND_TAG: /* this tag always returns */ |
|
3341 return CE; |
|
3342 |
|
3343 case SPEC_PROC_TAG: |
|
3344 { |
|
3345 // Special processing is getting a CE that is preceded by a certain prefix |
|
3346 // Currently this is only needed for optimizing Japanese length and iteration marks. |
|
3347 // When we encouter a special processing tag, we go backwards and try to see if |
|
3348 // we have a match. |
|
3349 // Contraction tables are used - so the whole process is not unlike contraction. |
|
3350 // prefix data is stored backwards in the table. |
|
3351 const UChar *UCharOffset; |
|
3352 UChar schar, tchar; |
|
3353 collIterateState prefixState; |
|
3354 backupState(source, &prefixState); |
|
3355 for(;;) { |
|
3356 // This loop will run once per source string character, for as long as we |
|
3357 // are matching a potential contraction sequence |
|
3358 |
|
3359 // First we position ourselves at the begining of contraction sequence |
|
3360 const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
|
3361 |
|
3362 if (collIter_bos(source)) { |
|
3363 CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
|
3364 break; |
|
3365 } |
|
3366 schar = getPrevNormalizedChar(source, status); |
|
3367 goBackOne(source); |
|
3368 |
|
3369 while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
|
3370 UCharOffset++; |
|
3371 } |
|
3372 |
|
3373 if (schar == tchar) { |
|
3374 // Found the source string char in the table. |
|
3375 // Pick up the corresponding CE from the table. |
|
3376 CE = *(coll->contractionCEs + |
|
3377 (UCharOffset - coll->contractionIndex)); |
|
3378 } |
|
3379 else |
|
3380 { |
|
3381 // if there is a completely ignorable code point in the middle of |
|
3382 // a prefix, we need to act as if it's not there |
|
3383 // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero) |
|
3384 // lone surrogates cannot be set to zero as it would break other processing |
|
3385 uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
|
3386 // it's easy for BMP code points |
|
3387 if(isZeroCE == 0) { |
|
3388 continue; |
|
3389 } else if(U16_IS_SURROGATE(schar)) { |
|
3390 // for supplementary code points, we have to check the next one |
|
3391 // situations where we are going to ignore |
|
3392 // 1. beginning of the string: schar is a lone surrogate |
|
3393 // 2. schar is a lone surrogate |
|
3394 // 3. schar is a trail surrogate in a valid surrogate sequence |
|
3395 // that is explicitly set to zero. |
|
3396 if (!collIter_bos(source)) { |
|
3397 UChar lead; |
|
3398 if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) { |
|
3399 isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead); |
|
3400 if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) { |
|
3401 uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar); |
|
3402 if(finalCE == 0) { |
|
3403 // this is a real, assigned completely ignorable code point |
|
3404 goBackOne(source); |
|
3405 continue; |
|
3406 } |
|
3407 } |
|
3408 } else { |
|
3409 // lone surrogate, treat like unassigned |
|
3410 return UCOL_NOT_FOUND; |
|
3411 } |
|
3412 } else { |
|
3413 // lone surrogate at the beggining, treat like unassigned |
|
3414 return UCOL_NOT_FOUND; |
|
3415 } |
|
3416 } |
|
3417 // Source string char was not in the table. |
|
3418 // We have not found the prefix. |
|
3419 CE = *(coll->contractionCEs + |
|
3420 (ContractionStart - coll->contractionIndex)); |
|
3421 } |
|
3422 |
|
3423 if(!isPrefix(CE)) { |
|
3424 // The source string char was in the contraction table, and the corresponding |
|
3425 // CE is not a prefix CE. We found the prefix, break |
|
3426 // out of loop, this CE will end up being returned. This is the normal |
|
3427 // way out of prefix handling when the source actually contained |
|
3428 // the prefix. |
|
3429 break; |
|
3430 } |
|
3431 } |
|
3432 loadState(source, &prefixState, TRUE); |
|
3433 break; |
|
3434 } |
|
3435 |
|
3436 case CONTRACTION_TAG: { |
|
3437 /* to ensure that the backwards and forwards iteration matches, we |
|
3438 take the current region of most possible match and pass it through |
|
3439 the forward iteration. this will ensure that the obstinate problem of |
|
3440 overlapping contractions will not occur. |
|
3441 */ |
|
3442 schar = peekCodeUnit(source, 0); |
|
3443 constart = (UChar *)coll->image + getContractOffset(CE); |
|
3444 if (isAtStartPrevIterate(source) |
|
3445 /* commented away contraction end checks after adding the checks |
|
3446 in getPrevCE */) { |
|
3447 /* start of string or this is not the end of any contraction */ |
|
3448 CE = *(coll->contractionCEs + |
|
3449 (constart - coll->contractionIndex)); |
|
3450 break; |
|
3451 } |
|
3452 strbuffer = buffer; |
|
3453 UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1); |
|
3454 *(UCharOffset --) = 0; |
|
3455 noChars = 0; |
|
3456 // have to swap thai characters |
|
3457 while (ucol_unsafeCP(schar, coll)) { |
|
3458 *(UCharOffset) = schar; |
|
3459 noChars++; |
|
3460 UCharOffset --; |
|
3461 schar = getPrevNormalizedChar(source, status); |
|
3462 goBackOne(source); |
|
3463 // TODO: when we exhaust the contraction buffer, |
|
3464 // it needs to get reallocated. The problem is |
|
3465 // that the size depends on the string which is |
|
3466 // not iterated over. However, since we're travelling |
|
3467 // backwards, we already had to set the iterator at |
|
3468 // the end - so we might as well know where we are? |
|
3469 if (UCharOffset + 1 == buffer) { |
|
3470 /* we have exhausted the buffer */ |
|
3471 int32_t newsize = 0; |
|
3472 if(source->pos) { // actually dealing with a position |
|
3473 newsize = (int32_t)(source->pos - source->string + 1); |
|
3474 } else { // iterator |
|
3475 newsize = 4 * UCOL_MAX_BUFFER; |
|
3476 } |
|
3477 strbuffer = (UChar *)uprv_malloc(sizeof(UChar) * |
|
3478 (newsize + UCOL_MAX_BUFFER)); |
|
3479 /* test for NULL */ |
|
3480 if (strbuffer == NULL) { |
|
3481 *status = U_MEMORY_ALLOCATION_ERROR; |
|
3482 return UCOL_NO_MORE_CES; |
|
3483 } |
|
3484 UCharOffset = strbuffer + newsize; |
|
3485 uprv_memcpy(UCharOffset, buffer, |
|
3486 UCOL_MAX_BUFFER * sizeof(UChar)); |
|
3487 UCharOffset --; |
|
3488 } |
|
3489 if ((source->pos && (source->pos == source->string || |
|
3490 ((source->flags & UCOL_ITER_INNORMBUF) && |
|
3491 *(source->pos - 1) == 0 && source->fcdPosition == NULL))) |
|
3492 || (source->iterator && !source->iterator->hasPrevious(source->iterator))) { |
|
3493 break; |
|
3494 } |
|
3495 } |
|
3496 /* adds the initial base character to the string */ |
|
3497 *(UCharOffset) = schar; |
|
3498 noChars++; |
|
3499 |
|
3500 int32_t offsetBias; |
|
3501 |
|
3502 // **** doesn't work if using iterator **** |
|
3503 if (source->flags & UCOL_ITER_INNORMBUF) { |
|
3504 offsetBias = -1; |
|
3505 } else { |
|
3506 offsetBias = (int32_t)(source->pos - source->string); |
|
3507 } |
|
3508 |
|
3509 /* a new collIterate is used to simplify things, since using the current |
|
3510 collIterate will mean that the forward and backwards iteration will |
|
3511 share and change the same buffers. we don't want to get into that. */ |
|
3512 collIterate temp; |
|
3513 int32_t rawOffset; |
|
3514 |
|
3515 IInit_collIterate(coll, UCharOffset, noChars, &temp, status); |
|
3516 if(U_FAILURE(*status)) { |
|
3517 return (uint32_t)UCOL_NULLORDER; |
|
3518 } |
|
3519 temp.flags &= ~UCOL_ITER_NORM; |
|
3520 temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT; |
|
3521 |
|
3522 rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero? |
|
3523 CE = ucol_IGetNextCE(coll, &temp, status); |
|
3524 |
|
3525 if (source->extendCEs) { |
|
3526 endCEBuffer = source->extendCEs + source->extendCEsSize; |
|
3527 CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t)); |
|
3528 } else { |
|
3529 endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE; |
|
3530 CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t)); |
|
3531 } |
|
3532 |
|
3533 while (CE != UCOL_NO_MORE_CES) { |
|
3534 *(source->CEpos ++) = CE; |
|
3535 |
|
3536 if (offsetBias >= 0) { |
|
3537 source->appendOffset(rawOffset + offsetBias, *status); |
|
3538 } |
|
3539 |
|
3540 CECount++; |
|
3541 if (source->CEpos == endCEBuffer) { |
|
3542 /* ran out of CE space, reallocate to new buffer. |
|
3543 If reallocation fails, reset pointers and bail out, |
|
3544 there's no guarantee of the right character position after |
|
3545 this bail*/ |
|
3546 if (!increaseCEsCapacity(source)) { |
|
3547 *status = U_MEMORY_ALLOCATION_ERROR; |
|
3548 break; |
|
3549 } |
|
3550 |
|
3551 endCEBuffer = source->extendCEs + source->extendCEsSize; |
|
3552 } |
|
3553 |
|
3554 if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) { |
|
3555 rawOffset = (int32_t)(temp.fcdPosition - temp.string); |
|
3556 } else { |
|
3557 rawOffset = (int32_t)(temp.pos - temp.string); |
|
3558 } |
|
3559 |
|
3560 CE = ucol_IGetNextCE(coll, &temp, status); |
|
3561 } |
|
3562 |
|
3563 if (strbuffer != buffer) { |
|
3564 uprv_free(strbuffer); |
|
3565 } |
|
3566 if (U_FAILURE(*status)) { |
|
3567 return (uint32_t)UCOL_NULLORDER; |
|
3568 } |
|
3569 |
|
3570 if (source->offsetRepeatValue != 0) { |
|
3571 if (CECount > noChars) { |
|
3572 source->offsetRepeatCount += temp.offsetRepeatCount; |
|
3573 } else { |
|
3574 // **** does this really skip the right offsets? **** |
|
3575 source->offsetReturn -= (noChars - CECount); |
|
3576 } |
|
3577 } |
|
3578 |
|
3579 if (offsetBias >= 0) { |
|
3580 source->offsetReturn = source->offsetStore - 1; |
|
3581 if (source->offsetReturn == source->offsetBuffer) { |
|
3582 source->offsetStore = source->offsetBuffer; |
|
3583 } |
|
3584 } |
|
3585 |
|
3586 source->toReturn = source->CEpos - 1; |
|
3587 if (source->toReturn == source->CEs) { |
|
3588 source->CEpos = source->CEs; |
|
3589 } |
|
3590 |
|
3591 return *(source->toReturn); |
|
3592 } |
|
3593 case LONG_PRIMARY_TAG: |
|
3594 { |
|
3595 *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; |
|
3596 *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; |
|
3597 source->toReturn = source->CEpos - 1; |
|
3598 |
|
3599 if (source->flags & UCOL_ITER_INNORMBUF) { |
|
3600 source->offsetRepeatCount = 1; |
|
3601 } else { |
|
3602 int32_t firstOffset = (int32_t)(source->pos - source->string); |
|
3603 |
|
3604 source->appendOffset(firstOffset, *status); |
|
3605 source->appendOffset(firstOffset + 1, *status); |
|
3606 |
|
3607 source->offsetReturn = source->offsetStore - 1; |
|
3608 *(source->offsetBuffer) = firstOffset; |
|
3609 if (source->offsetReturn == source->offsetBuffer) { |
|
3610 source->offsetStore = source->offsetBuffer; |
|
3611 } |
|
3612 } |
|
3613 |
|
3614 |
|
3615 return *(source->toReturn); |
|
3616 } |
|
3617 |
|
3618 case EXPANSION_TAG: /* this tag always returns */ |
|
3619 { |
|
3620 /* |
|
3621 This should handle expansion. |
|
3622 NOTE: we can encounter both continuations and expansions in an expansion! |
|
3623 I have to decide where continuations are going to be dealt with |
|
3624 */ |
|
3625 int32_t firstOffset = (int32_t)(source->pos - source->string); |
|
3626 |
|
3627 // **** doesn't work if using iterator **** |
|
3628 if (source->offsetReturn != NULL) { |
|
3629 if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) { |
|
3630 source->offsetStore = source->offsetBuffer; |
|
3631 }else { |
|
3632 firstOffset = -1; |
|
3633 } |
|
3634 } |
|
3635 |
|
3636 /* find the offset to expansion table */ |
|
3637 CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); |
|
3638 size = getExpansionCount(CE); |
|
3639 if (size != 0) { |
|
3640 /* |
|
3641 if there are less than 16 elements in expansion, we don't terminate |
|
3642 */ |
|
3643 uint32_t count; |
|
3644 |
|
3645 for (count = 0; count < size; count++) { |
|
3646 *(source->CEpos ++) = *CEOffset++; |
|
3647 |
|
3648 if (firstOffset >= 0) { |
|
3649 source->appendOffset(firstOffset + 1, *status); |
|
3650 } |
|
3651 } |
|
3652 } else { |
|
3653 /* else, we do */ |
|
3654 while (*CEOffset != 0) { |
|
3655 *(source->CEpos ++) = *CEOffset ++; |
|
3656 |
|
3657 if (firstOffset >= 0) { |
|
3658 source->appendOffset(firstOffset + 1, *status); |
|
3659 } |
|
3660 } |
|
3661 } |
|
3662 |
|
3663 if (firstOffset >= 0) { |
|
3664 source->offsetReturn = source->offsetStore - 1; |
|
3665 *(source->offsetBuffer) = firstOffset; |
|
3666 if (source->offsetReturn == source->offsetBuffer) { |
|
3667 source->offsetStore = source->offsetBuffer; |
|
3668 } |
|
3669 } else { |
|
3670 source->offsetRepeatCount += size - 1; |
|
3671 } |
|
3672 |
|
3673 source->toReturn = source->CEpos - 1; |
|
3674 // in case of one element expansion, we |
|
3675 // want to immediately return CEpos |
|
3676 if(source->toReturn == source->CEs) { |
|
3677 source->CEpos = source->CEs; |
|
3678 } |
|
3679 |
|
3680 return *(source->toReturn); |
|
3681 } |
|
3682 |
|
3683 case DIGIT_TAG: |
|
3684 { |
|
3685 /* |
|
3686 We do a check to see if we want to collate digits as numbers; if so we generate |
|
3687 a custom collation key. Otherwise we pull out the value stored in the expansion table. |
|
3688 */ |
|
3689 uint32_t i; /* general counter */ |
|
3690 |
|
3691 if (source->coll->numericCollation == UCOL_ON){ |
|
3692 uint32_t digIndx = 0; |
|
3693 uint32_t endIndex = 0; |
|
3694 uint32_t leadingZeroIndex = 0; |
|
3695 uint32_t trailingZeroCount = 0; |
|
3696 |
|
3697 uint8_t collateVal = 0; |
|
3698 |
|
3699 UBool nonZeroValReached = FALSE; |
|
3700 |
|
3701 uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs. |
|
3702 /* |
|
3703 We parse the source string until we hit a char that's NOT a digit. |
|
3704 Use this u_charDigitValue. This might be slow because we have to |
|
3705 handle surrogates... |
|
3706 */ |
|
3707 /* |
|
3708 We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less, |
|
3709 with any chunks smaller than that being on the right end of the digit string - i.e. the first collation |
|
3710 element we process when going backward. To determine how long that chunk might be, we may need to make |
|
3711 two passes through the loop that collects digits - one to see how long the string is (and how much is |
|
3712 leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has |
|
3713 more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation |
|
3714 element chunk after resetting the state to the initialState at the right side of the digit string. |
|
3715 */ |
|
3716 uint32_t ceLimit = 0; |
|
3717 UChar initial_ch = ch; |
|
3718 collIterateState initialState = {0,0,0,0,0,0,0,0,0}; |
|
3719 backupState(source, &initialState); |
|
3720 |
|
3721 for(;;) { |
|
3722 collIterateState state = {0,0,0,0,0,0,0,0,0}; |
|
3723 UChar32 char32 = 0; |
|
3724 int32_t digVal = 0; |
|
3725 |
|
3726 if (U16_IS_TRAIL (ch)) { |
|
3727 if (!collIter_bos(source)){ |
|
3728 UChar lead = getPrevNormalizedChar(source, status); |
|
3729 if(U16_IS_LEAD(lead)) { |
|
3730 char32 = U16_GET_SUPPLEMENTARY(lead,ch); |
|
3731 goBackOne(source); |
|
3732 } else { |
|
3733 char32 = ch; |
|
3734 } |
|
3735 } else { |
|
3736 char32 = ch; |
|
3737 } |
|
3738 } else { |
|
3739 char32 = ch; |
|
3740 } |
|
3741 digVal = u_charDigitValue(char32); |
|
3742 |
|
3743 for(;;) { |
|
3744 // Make sure we have enough space. No longer needed; |
|
3745 // at this point the largest value of digIndx when we need to save data in numTempBuf |
|
3746 // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure |
|
3747 // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2). |
|
3748 |
|
3749 // Skip over trailing zeroes, and keep a count of them. |
|
3750 if (digVal != 0) |
|
3751 nonZeroValReached = TRUE; |
|
3752 |
|
3753 if (nonZeroValReached) { |
|
3754 /* |
|
3755 We parse the digit string into base 100 numbers (this fits into a byte). |
|
3756 We only add to the buffer in twos, thus if we are parsing an odd character, |
|
3757 that serves as the 'tens' digit while the if we are parsing an even one, that |
|
3758 is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into |
|
3759 a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid |
|
3760 overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less |
|
3761 than all the other bytes. |
|
3762 |
|
3763 Since we're doing in this reverse we want to put the first digit encountered into the |
|
3764 ones place and the second digit encountered into the tens place. |
|
3765 */ |
|
3766 |
|
3767 if ((digIndx + trailingZeroCount) % 2 == 1) { |
|
3768 // High-order digit case (tens place) |
|
3769 collateVal += (uint8_t)(digVal * 10); |
|
3770 |
|
3771 // We cannot set leadingZeroIndex unless it has been set for the |
|
3772 // low-order digit. Therefore, all we can do for the high-order |
|
3773 // digit is turn it off, never on. |
|
3774 // The only time we will have a high digit without a low is for |
|
3775 // the very first non-zero digit, so no zero check is necessary. |
|
3776 if (collateVal != 0) |
|
3777 leadingZeroIndex = 0; |
|
3778 |
|
3779 // The first pass through, digIndx may exceed the limit, but in that case |
|
3780 // we no longer care about numTempBuf contents since they will be discarded |
|
3781 if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) { |
|
3782 numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
|
3783 } |
|
3784 collateVal = 0; |
|
3785 } else { |
|
3786 // Low-order digit case (ones place) |
|
3787 collateVal = (uint8_t)digVal; |
|
3788 |
|
3789 // Check for leading zeroes. |
|
3790 if (collateVal == 0) { |
|
3791 if (!leadingZeroIndex) |
|
3792 leadingZeroIndex = (digIndx/2) + 2; |
|
3793 } else |
|
3794 leadingZeroIndex = 0; |
|
3795 |
|
3796 // No need to write to buffer; the case of a last odd digit |
|
3797 // is handled below. |
|
3798 } |
|
3799 ++digIndx; |
|
3800 } else |
|
3801 ++trailingZeroCount; |
|
3802 |
|
3803 if (!collIter_bos(source)) { |
|
3804 ch = getPrevNormalizedChar(source, status); |
|
3805 //goBackOne(source); |
|
3806 if (U16_IS_TRAIL(ch)) { |
|
3807 backupState(source, &state); |
|
3808 if (!collIter_bos(source)) { |
|
3809 goBackOne(source); |
|
3810 UChar lead = getPrevNormalizedChar(source, status); |
|
3811 |
|
3812 if(U16_IS_LEAD(lead)) { |
|
3813 char32 = U16_GET_SUPPLEMENTARY(lead,ch); |
|
3814 } else { |
|
3815 loadState(source, &state, FALSE); |
|
3816 char32 = ch; |
|
3817 } |
|
3818 } |
|
3819 } else |
|
3820 char32 = ch; |
|
3821 |
|
3822 if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) { |
|
3823 if (char32 > 0xFFFF) {// For surrogates. |
|
3824 loadState(source, &state, FALSE); |
|
3825 } |
|
3826 // Don't need to "reverse" the goBackOne call, |
|
3827 // as this points to the next position to process.. |
|
3828 //if (char32 > 0xFFFF) // For surrogates. |
|
3829 //getNextNormalizedChar(source); |
|
3830 break; |
|
3831 } |
|
3832 |
|
3833 goBackOne(source); |
|
3834 }else |
|
3835 break; |
|
3836 } |
|
3837 |
|
3838 if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) { |
|
3839 // our collation element is not too big, go ahead and finish with it |
|
3840 break; |
|
3841 } |
|
3842 // our digit string is too long for a collation element; |
|
3843 // set the limit for it, reset the state and begin again |
|
3844 ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER; |
|
3845 if ( ceLimit == 0 ) { |
|
3846 ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER; |
|
3847 } |
|
3848 ch = initial_ch; |
|
3849 loadState(source, &initialState, FALSE); |
|
3850 digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0; |
|
3851 collateVal = 0; |
|
3852 nonZeroValReached = FALSE; |
|
3853 } |
|
3854 |
|
3855 if (! nonZeroValReached) { |
|
3856 digIndx = 2; |
|
3857 trailingZeroCount = 0; |
|
3858 numTempBuf[2] = 6; |
|
3859 } |
|
3860 |
|
3861 if ((digIndx + trailingZeroCount) % 2 != 0) { |
|
3862 numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6; |
|
3863 digIndx += 1; // The implicit leading zero |
|
3864 } |
|
3865 if (trailingZeroCount % 2 != 0) { |
|
3866 // We had to consume one trailing zero for the low digit |
|
3867 // of the least significant byte |
|
3868 digIndx += 1; // The trailing zero not in the exponent |
|
3869 trailingZeroCount -= 1; |
|
3870 } |
|
3871 |
|
3872 endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ; |
|
3873 |
|
3874 // Subtract one off of the last byte. Really the first byte here, but it's reversed... |
|
3875 numTempBuf[2] -= 1; |
|
3876 |
|
3877 /* |
|
3878 We want to skip over the first two slots in the buffer. The first slot |
|
3879 is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the |
|
3880 sign/exponent byte: 0x80 + (decimalPos/2) & 7f. |
|
3881 The exponent must be adjusted by the number of leading zeroes, and the number of |
|
3882 trailing zeroes. |
|
3883 */ |
|
3884 numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; |
|
3885 uint32_t exponent = (digIndx+trailingZeroCount)/2; |
|
3886 if (leadingZeroIndex) |
|
3887 exponent -= ((digIndx/2) + 2 - leadingZeroIndex); |
|
3888 numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F)); |
|
3889 |
|
3890 // Now transfer the collation key to our collIterate struct. |
|
3891 // The total size for our collation key is half of endIndex, rounded up. |
|
3892 int32_t size = (endIndex+1)/2; |
|
3893 if(!ensureCEsCapacity(source, size)) { |
|
3894 return (uint32_t)UCOL_NULLORDER; |
|
3895 } |
|
3896 *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
|
3897 (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight |
|
3898 UCOL_BYTE_COMMON; // Tertiary weight. |
|
3899 i = endIndex - 1; // Reset the index into the buffer. |
|
3900 while(i >= 2) { |
|
3901 uint32_t primWeight = numTempBuf[i--] << 8; |
|
3902 if ( i >= 2) |
|
3903 primWeight |= numTempBuf[i--]; |
|
3904 *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; |
|
3905 } |
|
3906 |
|
3907 source->toReturn = source->CEpos -1; |
|
3908 return *(source->toReturn); |
|
3909 } else { |
|
3910 CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); |
|
3911 CE = *(CEOffset++); |
|
3912 break; |
|
3913 } |
|
3914 } |
|
3915 |
|
3916 case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
|
3917 { |
|
3918 static const uint32_t |
|
3919 SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; |
|
3920 //const uint32_t LCount = 19; |
|
3921 static const uint32_t VCount = 21; |
|
3922 static const uint32_t TCount = 28; |
|
3923 //const uint32_t NCount = VCount * TCount; /* 588 */ |
|
3924 //const uint32_t SCount = LCount * NCount; /* 11172 */ |
|
3925 |
|
3926 uint32_t L = ch - SBase; |
|
3927 /* |
|
3928 divide into pieces. |
|
3929 we do it in this order since some compilers can do % and / in one |
|
3930 operation |
|
3931 */ |
|
3932 uint32_t T = L % TCount; |
|
3933 L /= TCount; |
|
3934 uint32_t V = L % VCount; |
|
3935 L /= VCount; |
|
3936 |
|
3937 /* offset them */ |
|
3938 L += LBase; |
|
3939 V += VBase; |
|
3940 T += TBase; |
|
3941 |
|
3942 int32_t firstOffset = (int32_t)(source->pos - source->string); |
|
3943 source->appendOffset(firstOffset, *status); |
|
3944 |
|
3945 /* |
|
3946 * return the first CE, but first put the rest into the expansion buffer |
|
3947 */ |
|
3948 if (!source->coll->image->jamoSpecial) { |
|
3949 *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
|
3950 *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); |
|
3951 source->appendOffset(firstOffset + 1, *status); |
|
3952 |
|
3953 if (T != TBase) { |
|
3954 *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); |
|
3955 source->appendOffset(firstOffset + 1, *status); |
|
3956 } |
|
3957 |
|
3958 source->toReturn = source->CEpos - 1; |
|
3959 |
|
3960 source->offsetReturn = source->offsetStore - 1; |
|
3961 if (source->offsetReturn == source->offsetBuffer) { |
|
3962 source->offsetStore = source->offsetBuffer; |
|
3963 } |
|
3964 |
|
3965 return *(source->toReturn); |
|
3966 } else { |
|
3967 // Since Hanguls pass the FCD check, it is |
|
3968 // guaranteed that we won't be in |
|
3969 // the normalization buffer if something like this happens |
|
3970 |
|
3971 // Move Jamos into normalization buffer |
|
3972 UChar *tempbuffer = source->writableBuffer.getBuffer(5); |
|
3973 int32_t tempbufferLength, jamoOffset; |
|
3974 tempbuffer[0] = 0; |
|
3975 tempbuffer[1] = (UChar)L; |
|
3976 tempbuffer[2] = (UChar)V; |
|
3977 if (T != TBase) { |
|
3978 tempbuffer[3] = (UChar)T; |
|
3979 tempbufferLength = 4; |
|
3980 } else { |
|
3981 tempbufferLength = 3; |
|
3982 } |
|
3983 source->writableBuffer.releaseBuffer(tempbufferLength); |
|
3984 |
|
3985 // Indicate where to continue in main input string after exhausting the writableBuffer |
|
3986 if (source->pos == source->string) { |
|
3987 jamoOffset = 0; |
|
3988 source->fcdPosition = NULL; |
|
3989 } else { |
|
3990 jamoOffset = source->pos - source->string; |
|
3991 source->fcdPosition = source->pos-1; |
|
3992 } |
|
3993 |
|
3994 // Append offsets for the additional chars |
|
3995 // (not the 0, and not the L whose offsets match the original Hangul) |
|
3996 int32_t jamoRemaining = tempbufferLength - 2; |
|
3997 jamoOffset++; // appended offsets should match end of original Hangul |
|
3998 while (jamoRemaining-- > 0) { |
|
3999 source->appendOffset(jamoOffset, *status); |
|
4000 } |
|
4001 |
|
4002 source->offsetRepeatValue = jamoOffset; |
|
4003 |
|
4004 source->offsetReturn = source->offsetStore - 1; |
|
4005 if (source->offsetReturn == source->offsetBuffer) { |
|
4006 source->offsetStore = source->offsetBuffer; |
|
4007 } |
|
4008 |
|
4009 source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength; |
|
4010 source->origFlags = source->flags; |
|
4011 source->flags |= UCOL_ITER_INNORMBUF; |
|
4012 source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
|
4013 |
|
4014 return(UCOL_IGNORABLE); |
|
4015 } |
|
4016 } |
|
4017 |
|
4018 case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
|
4019 return getPrevImplicit(ch, source); |
|
4020 |
|
4021 // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function |
|
4022 case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ |
|
4023 return getPrevImplicit(ch, source); |
|
4024 |
|
4025 case SURROGATE_TAG: /* This is a surrogate pair */ |
|
4026 /* essentially an engaged lead surrogate. */ |
|
4027 /* if you have encountered it here, it means that a */ |
|
4028 /* broken sequence was encountered and this is an error */ |
|
4029 return UCOL_NOT_FOUND; |
|
4030 |
|
4031 case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
|
4032 return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
|
4033 |
|
4034 case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
|
4035 { |
|
4036 UChar32 cp = 0; |
|
4037 UChar prevChar; |
|
4038 const UChar *prev; |
|
4039 if (isAtStartPrevIterate(source)) { |
|
4040 /* we are at the start of the string, wrong place to be at */ |
|
4041 return UCOL_NOT_FOUND; |
|
4042 } |
|
4043 if (source->pos != source->writableBuffer.getBuffer()) { |
|
4044 prev = source->pos - 1; |
|
4045 } else { |
|
4046 prev = source->fcdPosition; |
|
4047 } |
|
4048 prevChar = *prev; |
|
4049 |
|
4050 /* Handles Han and Supplementary characters here.*/ |
|
4051 if (U16_IS_LEAD(prevChar)) { |
|
4052 cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); |
|
4053 source->pos = prev; |
|
4054 } else { |
|
4055 return UCOL_NOT_FOUND; /* like unassigned */ |
|
4056 } |
|
4057 |
|
4058 return getPrevImplicit(cp, source); |
|
4059 } |
|
4060 |
|
4061 /* UCA is filled with these. Tailorings are NOT_FOUND */ |
|
4062 /* not yet implemented */ |
|
4063 case CHARSET_TAG: /* this tag always returns */ |
|
4064 /* probably after 1.8 */ |
|
4065 return UCOL_NOT_FOUND; |
|
4066 |
|
4067 default: /* this tag always returns */ |
|
4068 *status = U_INTERNAL_PROGRAM_ERROR; |
|
4069 CE=0; |
|
4070 break; |
|
4071 } |
|
4072 |
|
4073 if (CE <= UCOL_NOT_FOUND) { |
|
4074 break; |
|
4075 } |
|
4076 } |
|
4077 |
|
4078 return CE; |
|
4079 } |
|
4080 |
|
4081 /* This should really be a macro */ |
|
4082 /* This function is used to reverse parts of a buffer. We need this operation when doing continuation */ |
|
4083 /* secondaries in French */ |
|
4084 /* |
|
4085 void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) { |
|
4086 uint8_t temp; |
|
4087 while(start<end) { |
|
4088 temp = *start; |
|
4089 *start++ = *end; |
|
4090 *end-- = temp; |
|
4091 } |
|
4092 } |
|
4093 */ |
|
4094 |
|
4095 #define uprv_ucol_reverse_buffer(TYPE, start, end) { \ |
|
4096 TYPE tempA; \ |
|
4097 while((start)<(end)) { \ |
|
4098 tempA = *(start); \ |
|
4099 *(start)++ = *(end); \ |
|
4100 *(end)-- = tempA; \ |
|
4101 } \ |
|
4102 } |
|
4103 |
|
4104 /****************************************************************************/ |
|
4105 /* Following are the sortkey generation functions */ |
|
4106 /* */ |
|
4107 /****************************************************************************/ |
|
4108 |
|
4109 U_CAPI int32_t U_EXPORT2 |
|
4110 ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length, |
|
4111 const uint8_t *src2, int32_t src2Length, |
|
4112 uint8_t *dest, int32_t destCapacity) { |
|
4113 /* check arguments */ |
|
4114 if( src1==NULL || src1Length<-1 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) || |
|
4115 src2==NULL || src2Length<-1 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) || |
|
4116 destCapacity<0 || (destCapacity>0 && dest==NULL) |
|
4117 ) { |
|
4118 /* error, attempt to write a zero byte and return 0 */ |
|
4119 if(dest!=NULL && destCapacity>0) { |
|
4120 *dest=0; |
|
4121 } |
|
4122 return 0; |
|
4123 } |
|
4124 |
|
4125 /* check lengths and capacity */ |
|
4126 if(src1Length<0) { |
|
4127 src1Length=(int32_t)uprv_strlen((const char *)src1)+1; |
|
4128 } |
|
4129 if(src2Length<0) { |
|
4130 src2Length=(int32_t)uprv_strlen((const char *)src2)+1; |
|
4131 } |
|
4132 |
|
4133 int32_t destLength=src1Length+src2Length; |
|
4134 if(destLength>destCapacity) { |
|
4135 /* the merged sort key does not fit into the destination */ |
|
4136 return destLength; |
|
4137 } |
|
4138 |
|
4139 /* merge the sort keys with the same number of levels */ |
|
4140 uint8_t *p=dest; |
|
4141 for(;;) { |
|
4142 /* copy level from src1 not including 00 or 01 */ |
|
4143 uint8_t b; |
|
4144 while((b=*src1)>=2) { |
|
4145 ++src1; |
|
4146 *p++=b; |
|
4147 } |
|
4148 |
|
4149 /* add a 02 merge separator */ |
|
4150 *p++=2; |
|
4151 |
|
4152 /* copy level from src2 not including 00 or 01 */ |
|
4153 while((b=*src2)>=2) { |
|
4154 ++src2; |
|
4155 *p++=b; |
|
4156 } |
|
4157 |
|
4158 /* if both sort keys have another level, then add a 01 level separator and continue */ |
|
4159 if(*src1==1 && *src2==1) { |
|
4160 ++src1; |
|
4161 ++src2; |
|
4162 *p++=1; |
|
4163 } else { |
|
4164 break; |
|
4165 } |
|
4166 } |
|
4167 |
|
4168 /* |
|
4169 * here, at least one sort key is finished now, but the other one |
|
4170 * might have some contents left from containing more levels; |
|
4171 * that contents is just appended to the result |
|
4172 */ |
|
4173 if(*src1!=0) { |
|
4174 /* src1 is not finished, therefore *src2==0, and src1 is appended */ |
|
4175 src2=src1; |
|
4176 } |
|
4177 /* append src2, "the other, unfinished sort key" */ |
|
4178 while((*p++=*src2++)!=0) {} |
|
4179 |
|
4180 /* the actual length might be less than destLength if either sort key contained illegally embedded zero bytes */ |
|
4181 return (int32_t)(p-dest); |
|
4182 } |
|
4183 |
|
4184 U_NAMESPACE_BEGIN |
|
4185 |
|
4186 class SortKeyByteSink : public ByteSink { |
|
4187 public: |
|
4188 SortKeyByteSink(char *dest, int32_t destCapacity) |
|
4189 : buffer_(dest), capacity_(destCapacity), |
|
4190 appended_(0) { |
|
4191 if (buffer_ == NULL) { |
|
4192 capacity_ = 0; |
|
4193 } else if(capacity_ < 0) { |
|
4194 buffer_ = NULL; |
|
4195 capacity_ = 0; |
|
4196 } |
|
4197 } |
|
4198 virtual ~SortKeyByteSink(); |
|
4199 |
|
4200 virtual void Append(const char *bytes, int32_t n); |
|
4201 void Append(uint32_t b) { |
|
4202 if (appended_ < capacity_ || Resize(1, appended_)) { |
|
4203 buffer_[appended_] = (char)b; |
|
4204 } |
|
4205 ++appended_; |
|
4206 } |
|
4207 void Append(uint32_t b1, uint32_t b2) { |
|
4208 int32_t a2 = appended_ + 2; |
|
4209 if (a2 <= capacity_ || Resize(2, appended_)) { |
|
4210 buffer_[appended_] = (char)b1; |
|
4211 buffer_[appended_ + 1] = (char)b2; |
|
4212 } else if(appended_ < capacity_) { |
|
4213 buffer_[appended_] = (char)b1; |
|
4214 } |
|
4215 appended_ = a2; |
|
4216 } |
|
4217 virtual char *GetAppendBuffer(int32_t min_capacity, |
|
4218 int32_t desired_capacity_hint, |
|
4219 char *scratch, int32_t scratch_capacity, |
|
4220 int32_t *result_capacity); |
|
4221 int32_t NumberOfBytesAppended() const { return appended_; } |
|
4222 /** @return FALSE if memory allocation failed */ |
|
4223 UBool IsOk() const { return buffer_ != NULL; } |
|
4224 |
|
4225 protected: |
|
4226 virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) = 0; |
|
4227 virtual UBool Resize(int32_t appendCapacity, int32_t length) = 0; |
|
4228 |
|
4229 void SetNotOk() { |
|
4230 buffer_ = NULL; |
|
4231 capacity_ = 0; |
|
4232 } |
|
4233 |
|
4234 char *buffer_; |
|
4235 int32_t capacity_; |
|
4236 int32_t appended_; |
|
4237 |
|
4238 private: |
|
4239 SortKeyByteSink(const SortKeyByteSink &); // copy constructor not implemented |
|
4240 SortKeyByteSink &operator=(const SortKeyByteSink &); // assignment operator not implemented |
|
4241 }; |
|
4242 |
|
4243 SortKeyByteSink::~SortKeyByteSink() {} |
|
4244 |
|
4245 void |
|
4246 SortKeyByteSink::Append(const char *bytes, int32_t n) { |
|
4247 if (n <= 0 || bytes == NULL) { |
|
4248 return; |
|
4249 } |
|
4250 int32_t length = appended_; |
|
4251 appended_ += n; |
|
4252 if ((buffer_ + length) == bytes) { |
|
4253 return; // the caller used GetAppendBuffer() and wrote the bytes already |
|
4254 } |
|
4255 int32_t available = capacity_ - length; |
|
4256 if (n <= available) { |
|
4257 uprv_memcpy(buffer_ + length, bytes, n); |
|
4258 } else { |
|
4259 AppendBeyondCapacity(bytes, n, length); |
|
4260 } |
|
4261 } |
|
4262 |
|
4263 char * |
|
4264 SortKeyByteSink::GetAppendBuffer(int32_t min_capacity, |
|
4265 int32_t desired_capacity_hint, |
|
4266 char *scratch, |
|
4267 int32_t scratch_capacity, |
|
4268 int32_t *result_capacity) { |
|
4269 if (min_capacity < 1 || scratch_capacity < min_capacity) { |
|
4270 *result_capacity = 0; |
|
4271 return NULL; |
|
4272 } |
|
4273 int32_t available = capacity_ - appended_; |
|
4274 if (available >= min_capacity) { |
|
4275 *result_capacity = available; |
|
4276 return buffer_ + appended_; |
|
4277 } else if (Resize(desired_capacity_hint, appended_)) { |
|
4278 *result_capacity = capacity_ - appended_; |
|
4279 return buffer_ + appended_; |
|
4280 } else { |
|
4281 *result_capacity = scratch_capacity; |
|
4282 return scratch; |
|
4283 } |
|
4284 } |
|
4285 |
|
4286 class FixedSortKeyByteSink : public SortKeyByteSink { |
|
4287 public: |
|
4288 FixedSortKeyByteSink(char *dest, int32_t destCapacity) |
|
4289 : SortKeyByteSink(dest, destCapacity) {} |
|
4290 virtual ~FixedSortKeyByteSink(); |
|
4291 |
|
4292 private: |
|
4293 virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); |
|
4294 virtual UBool Resize(int32_t appendCapacity, int32_t length); |
|
4295 }; |
|
4296 |
|
4297 FixedSortKeyByteSink::~FixedSortKeyByteSink() {} |
|
4298 |
|
4299 void |
|
4300 FixedSortKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t /*n*/, int32_t length) { |
|
4301 // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ |
|
4302 // Fill the buffer completely. |
|
4303 int32_t available = capacity_ - length; |
|
4304 if (available > 0) { |
|
4305 uprv_memcpy(buffer_ + length, bytes, available); |
|
4306 } |
|
4307 } |
|
4308 |
|
4309 UBool |
|
4310 FixedSortKeyByteSink::Resize(int32_t /*appendCapacity*/, int32_t /*length*/) { |
|
4311 return FALSE; |
|
4312 } |
|
4313 |
|
4314 class CollationKeyByteSink : public SortKeyByteSink { |
|
4315 public: |
|
4316 CollationKeyByteSink(CollationKey &key) |
|
4317 : SortKeyByteSink(reinterpret_cast<char *>(key.getBytes()), key.getCapacity()), |
|
4318 key_(key) {} |
|
4319 virtual ~CollationKeyByteSink(); |
|
4320 |
|
4321 private: |
|
4322 virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); |
|
4323 virtual UBool Resize(int32_t appendCapacity, int32_t length); |
|
4324 |
|
4325 CollationKey &key_; |
|
4326 }; |
|
4327 |
|
4328 CollationKeyByteSink::~CollationKeyByteSink() {} |
|
4329 |
|
4330 void |
|
4331 CollationKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) { |
|
4332 // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ |
|
4333 if (Resize(n, length)) { |
|
4334 uprv_memcpy(buffer_ + length, bytes, n); |
|
4335 } |
|
4336 } |
|
4337 |
|
4338 UBool |
|
4339 CollationKeyByteSink::Resize(int32_t appendCapacity, int32_t length) { |
|
4340 if (buffer_ == NULL) { |
|
4341 return FALSE; // allocation failed before already |
|
4342 } |
|
4343 int32_t newCapacity = 2 * capacity_; |
|
4344 int32_t altCapacity = length + 2 * appendCapacity; |
|
4345 if (newCapacity < altCapacity) { |
|
4346 newCapacity = altCapacity; |
|
4347 } |
|
4348 if (newCapacity < 200) { |
|
4349 newCapacity = 200; |
|
4350 } |
|
4351 uint8_t *newBuffer = key_.reallocate(newCapacity, length); |
|
4352 if (newBuffer == NULL) { |
|
4353 SetNotOk(); |
|
4354 return FALSE; |
|
4355 } |
|
4356 buffer_ = reinterpret_cast<char *>(newBuffer); |
|
4357 capacity_ = newCapacity; |
|
4358 return TRUE; |
|
4359 } |
|
4360 |
|
4361 /** |
|
4362 * uint8_t byte buffer, similar to CharString but simpler. |
|
4363 */ |
|
4364 class SortKeyLevel : public UMemory { |
|
4365 public: |
|
4366 SortKeyLevel() : len(0), ok(TRUE) {} |
|
4367 ~SortKeyLevel() {} |
|
4368 |
|
4369 /** @return FALSE if memory allocation failed */ |
|
4370 UBool isOk() const { return ok; } |
|
4371 UBool isEmpty() const { return len == 0; } |
|
4372 int32_t length() const { return len; } |
|
4373 const uint8_t *data() const { return buffer.getAlias(); } |
|
4374 uint8_t operator[](int32_t index) const { return buffer[index]; } |
|
4375 |
|
4376 void appendByte(uint32_t b); |
|
4377 |
|
4378 void appendTo(ByteSink &sink) const { |
|
4379 sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len); |
|
4380 } |
|
4381 |
|
4382 uint8_t &lastByte() { |
|
4383 U_ASSERT(len > 0); |
|
4384 return buffer[len - 1]; |
|
4385 } |
|
4386 |
|
4387 uint8_t *getLastFewBytes(int32_t n) { |
|
4388 if (ok && len >= n) { |
|
4389 return buffer.getAlias() + len - n; |
|
4390 } else { |
|
4391 return NULL; |
|
4392 } |
|
4393 } |
|
4394 |
|
4395 private: |
|
4396 MaybeStackArray<uint8_t, 40> buffer; |
|
4397 int32_t len; |
|
4398 UBool ok; |
|
4399 |
|
4400 UBool ensureCapacity(int32_t appendCapacity); |
|
4401 |
|
4402 SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class |
|
4403 SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class |
|
4404 }; |
|
4405 |
|
4406 void SortKeyLevel::appendByte(uint32_t b) { |
|
4407 if(len < buffer.getCapacity() || ensureCapacity(1)) { |
|
4408 buffer[len++] = (uint8_t)b; |
|
4409 } |
|
4410 } |
|
4411 |
|
4412 UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) { |
|
4413 if(!ok) { |
|
4414 return FALSE; |
|
4415 } |
|
4416 int32_t newCapacity = 2 * buffer.getCapacity(); |
|
4417 int32_t altCapacity = len + 2 * appendCapacity; |
|
4418 if (newCapacity < altCapacity) { |
|
4419 newCapacity = altCapacity; |
|
4420 } |
|
4421 if (newCapacity < 200) { |
|
4422 newCapacity = 200; |
|
4423 } |
|
4424 if(buffer.resize(newCapacity, len)==NULL) { |
|
4425 return ok = FALSE; |
|
4426 } |
|
4427 return TRUE; |
|
4428 } |
|
4429 |
|
4430 U_NAMESPACE_END |
|
4431 |
|
4432 /* sortkey API */ |
|
4433 U_CAPI int32_t U_EXPORT2 |
|
4434 ucol_getSortKey(const UCollator *coll, |
|
4435 const UChar *source, |
|
4436 int32_t sourceLength, |
|
4437 uint8_t *result, |
|
4438 int32_t resultLength) |
|
4439 { |
|
4440 UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY); |
|
4441 if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
|
4442 UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, |
|
4443 ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength)); |
|
4444 } |
|
4445 |
|
4446 if(coll->delegate != NULL) { |
|
4447 return ((const Collator*)coll->delegate)->getSortKey(source, sourceLength, result, resultLength); |
|
4448 } |
|
4449 |
|
4450 UErrorCode status = U_ZERO_ERROR; |
|
4451 int32_t keySize = 0; |
|
4452 |
|
4453 if(source != NULL) { |
|
4454 // source == NULL is actually an error situation, but we would need to |
|
4455 // have an error code to return it. Until we introduce a new |
|
4456 // API, it stays like this |
|
4457 |
|
4458 /* this uses the function pointer that is set in updateinternalstate */ |
|
4459 /* currently, there are two funcs: */ |
|
4460 /*ucol_calcSortKey(...);*/ |
|
4461 /*ucol_calcSortKeySimpleTertiary(...);*/ |
|
4462 |
|
4463 uint8_t noDest[1] = { 0 }; |
|
4464 if(result == NULL) { |
|
4465 // Distinguish pure preflighting from an allocation error. |
|
4466 result = noDest; |
|
4467 resultLength = 0; |
|
4468 } |
|
4469 FixedSortKeyByteSink sink(reinterpret_cast<char *>(result), resultLength); |
|
4470 coll->sortKeyGen(coll, source, sourceLength, sink, &status); |
|
4471 if(U_SUCCESS(status)) { |
|
4472 keySize = sink.NumberOfBytesAppended(); |
|
4473 } |
|
4474 } |
|
4475 UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize); |
|
4476 UTRACE_EXIT_STATUS(status); |
|
4477 return keySize; |
|
4478 } |
|
4479 |
|
4480 U_CFUNC int32_t |
|
4481 ucol_getCollationKey(const UCollator *coll, |
|
4482 const UChar *source, int32_t sourceLength, |
|
4483 CollationKey &key, |
|
4484 UErrorCode &errorCode) { |
|
4485 CollationKeyByteSink sink(key); |
|
4486 coll->sortKeyGen(coll, source, sourceLength, sink, &errorCode); |
|
4487 return sink.NumberOfBytesAppended(); |
|
4488 } |
|
4489 |
|
4490 // Is this primary weight compressible? |
|
4491 // Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit). |
|
4492 // TODO: This should use per-lead-byte flags from FractionalUCA.txt. |
|
4493 static inline UBool |
|
4494 isCompressible(const UCollator * /*coll*/, uint8_t primary1) { |
|
4495 return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary; |
|
4496 } |
|
4497 |
|
4498 static |
|
4499 inline void doCaseShift(SortKeyLevel &cases, uint32_t &caseShift) { |
|
4500 if (caseShift == 0) { |
|
4501 cases.appendByte(UCOL_CASE_BYTE_START); |
|
4502 caseShift = UCOL_CASE_SHIFT_START; |
|
4503 } |
|
4504 } |
|
4505 |
|
4506 // Packs the secondary buffer when processing French locale. |
|
4507 static void |
|
4508 packFrench(const uint8_t *secondaries, int32_t secsize, SortKeyByteSink &result) { |
|
4509 secondaries += secsize; // We read the secondary-level bytes back to front. |
|
4510 uint8_t secondary; |
|
4511 int32_t count2 = 0; |
|
4512 int32_t i = 0; |
|
4513 // we use i here since the key size already accounts for terminators, so we'll discard the increment |
|
4514 for(i = 0; i<secsize; i++) { |
|
4515 secondary = *(secondaries-i-1); |
|
4516 /* This is compression code. */ |
|
4517 if (secondary == UCOL_COMMON2) { |
|
4518 ++count2; |
|
4519 } else { |
|
4520 if (count2 > 0) { |
|
4521 if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
|
4522 while (count2 > UCOL_TOP_COUNT2) { |
|
4523 result.Append(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
|
4524 count2 -= (uint32_t)UCOL_TOP_COUNT2; |
|
4525 } |
|
4526 result.Append(UCOL_COMMON_TOP2 - (count2-1)); |
|
4527 } else { |
|
4528 while (count2 > UCOL_BOT_COUNT2) { |
|
4529 result.Append(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
|
4530 count2 -= (uint32_t)UCOL_BOT_COUNT2; |
|
4531 } |
|
4532 result.Append(UCOL_COMMON_BOT2 + (count2-1)); |
|
4533 } |
|
4534 count2 = 0; |
|
4535 } |
|
4536 result.Append(secondary); |
|
4537 } |
|
4538 } |
|
4539 if (count2 > 0) { |
|
4540 while (count2 > UCOL_BOT_COUNT2) { |
|
4541 result.Append(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
|
4542 count2 -= (uint32_t)UCOL_BOT_COUNT2; |
|
4543 } |
|
4544 result.Append(UCOL_COMMON_BOT2 + (count2-1)); |
|
4545 } |
|
4546 } |
|
4547 |
|
4548 #define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0 |
|
4549 |
|
4550 /* This is the sortkey work horse function */ |
|
4551 U_CFUNC void U_CALLCONV |
|
4552 ucol_calcSortKey(const UCollator *coll, |
|
4553 const UChar *source, |
|
4554 int32_t sourceLength, |
|
4555 SortKeyByteSink &result, |
|
4556 UErrorCode *status) |
|
4557 { |
|
4558 if(U_FAILURE(*status)) { |
|
4559 return; |
|
4560 } |
|
4561 |
|
4562 SortKeyByteSink &primaries = result; |
|
4563 SortKeyLevel secondaries; |
|
4564 SortKeyLevel tertiaries; |
|
4565 SortKeyLevel cases; |
|
4566 SortKeyLevel quads; |
|
4567 |
|
4568 UnicodeString normSource; |
|
4569 |
|
4570 int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength); |
|
4571 |
|
4572 UColAttributeValue strength = coll->strength; |
|
4573 |
|
4574 uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF); |
|
4575 uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF); |
|
4576 uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF); |
|
4577 UBool compareIdent = (strength == UCOL_IDENTICAL); |
|
4578 UBool doCase = (coll->caseLevel == UCOL_ON); |
|
4579 UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0); |
|
4580 UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
|
4581 //UBool qShifted = shifted && (compareQuad == 0); |
|
4582 UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0); |
|
4583 |
|
4584 uint32_t variableTopValue = coll->variableTopValue; |
|
4585 // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no |
|
4586 // qShifted, we don't need to set UCOL_COMMON_BOT4 so high. |
|
4587 uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1); |
|
4588 uint8_t UCOL_HIRAGANA_QUAD = 0; |
|
4589 if(doHiragana) { |
|
4590 UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++; |
|
4591 /* allocate one more space for hiragana, value for hiragana */ |
|
4592 } |
|
4593 uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4); |
|
4594 |
|
4595 /* support for special features like caselevel and funky secondaries */ |
|
4596 int32_t lastSecondaryLength = 0; |
|
4597 uint32_t caseShift = 0; |
|
4598 |
|
4599 /* If we need to normalize, we'll do it all at once at the beginning! */ |
|
4600 const Normalizer2 *norm2; |
|
4601 if(compareIdent) { |
|
4602 norm2 = Normalizer2Factory::getNFDInstance(*status); |
|
4603 } else if(coll->normalizationMode != UCOL_OFF) { |
|
4604 norm2 = Normalizer2Factory::getFCDInstance(*status); |
|
4605 } else { |
|
4606 norm2 = NULL; |
|
4607 } |
|
4608 if(norm2 != NULL) { |
|
4609 normSource.setTo(FALSE, source, len); |
|
4610 int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); |
|
4611 if(qcYesLength != len) { |
|
4612 UnicodeString unnormalized = normSource.tempSubString(qcYesLength); |
|
4613 normSource.truncate(qcYesLength); |
|
4614 norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); |
|
4615 source = normSource.getBuffer(); |
|
4616 len = normSource.length(); |
|
4617 } |
|
4618 } |
|
4619 collIterate s; |
|
4620 IInit_collIterate(coll, source, len, &s, status); |
|
4621 if(U_FAILURE(*status)) { |
|
4622 return; |
|
4623 } |
|
4624 s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
|
4625 |
|
4626 uint32_t order = 0; |
|
4627 |
|
4628 uint8_t primary1 = 0; |
|
4629 uint8_t primary2 = 0; |
|
4630 uint8_t secondary = 0; |
|
4631 uint8_t tertiary = 0; |
|
4632 uint8_t caseSwitch = coll->caseSwitch; |
|
4633 uint8_t tertiaryMask = coll->tertiaryMask; |
|
4634 int8_t tertiaryAddition = coll->tertiaryAddition; |
|
4635 uint8_t tertiaryTop = coll->tertiaryTop; |
|
4636 uint8_t tertiaryBottom = coll->tertiaryBottom; |
|
4637 uint8_t tertiaryCommon = coll->tertiaryCommon; |
|
4638 uint8_t caseBits = 0; |
|
4639 |
|
4640 UBool wasShifted = FALSE; |
|
4641 UBool notIsContinuation = FALSE; |
|
4642 |
|
4643 uint32_t count2 = 0, count3 = 0, count4 = 0; |
|
4644 uint8_t leadPrimary = 0; |
|
4645 |
|
4646 for(;;) { |
|
4647 order = ucol_IGetNextCE(coll, &s, status); |
|
4648 if(order == UCOL_NO_MORE_CES) { |
|
4649 break; |
|
4650 } |
|
4651 |
|
4652 if(order == 0) { |
|
4653 continue; |
|
4654 } |
|
4655 |
|
4656 notIsContinuation = !isContinuation(order); |
|
4657 |
|
4658 if(notIsContinuation) { |
|
4659 tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK); |
|
4660 } else { |
|
4661 tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
|
4662 } |
|
4663 |
|
4664 secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
|
4665 primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
|
4666 primary1 = (uint8_t)(order >> 8); |
|
4667 |
|
4668 uint8_t originalPrimary1 = primary1; |
|
4669 if(notIsContinuation && coll->leadBytePermutationTable != NULL) { |
|
4670 primary1 = coll->leadBytePermutationTable[primary1]; |
|
4671 } |
|
4672 |
|
4673 if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0) |
|
4674 || (!notIsContinuation && wasShifted))) |
|
4675 || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
|
4676 { |
|
4677 /* and other ignorables should be removed if following a shifted code point */ |
|
4678 if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */ |
|
4679 /* we should just completely ignore it */ |
|
4680 continue; |
|
4681 } |
|
4682 if(compareQuad == 0) { |
|
4683 if(count4 > 0) { |
|
4684 while (count4 > UCOL_BOT_COUNT4) { |
|
4685 quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
|
4686 count4 -= UCOL_BOT_COUNT4; |
|
4687 } |
|
4688 quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
|
4689 count4 = 0; |
|
4690 } |
|
4691 /* We are dealing with a variable and we're treating them as shifted */ |
|
4692 /* This is a shifted ignorable */ |
|
4693 if(primary1 != 0) { /* we need to check this since we could be in continuation */ |
|
4694 quads.appendByte(primary1); |
|
4695 } |
|
4696 if(primary2 != 0) { |
|
4697 quads.appendByte(primary2); |
|
4698 } |
|
4699 } |
|
4700 wasShifted = TRUE; |
|
4701 } else { |
|
4702 wasShifted = FALSE; |
|
4703 /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
|
4704 /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
|
4705 /* regular and simple sortkey calc */ |
|
4706 if(primary1 != UCOL_IGNORABLE) { |
|
4707 if(notIsContinuation) { |
|
4708 if(leadPrimary == primary1) { |
|
4709 primaries.Append(primary2); |
|
4710 } else { |
|
4711 if(leadPrimary != 0) { |
|
4712 primaries.Append((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
|
4713 } |
|
4714 if(primary2 == UCOL_IGNORABLE) { |
|
4715 /* one byter, not compressed */ |
|
4716 primaries.Append(primary1); |
|
4717 leadPrimary = 0; |
|
4718 } else if(isCompressible(coll, originalPrimary1)) { |
|
4719 /* compress */ |
|
4720 primaries.Append(leadPrimary = primary1, primary2); |
|
4721 } else { |
|
4722 leadPrimary = 0; |
|
4723 primaries.Append(primary1, primary2); |
|
4724 } |
|
4725 } |
|
4726 } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
|
4727 if(primary2 == UCOL_IGNORABLE) { |
|
4728 primaries.Append(primary1); |
|
4729 } else { |
|
4730 primaries.Append(primary1, primary2); |
|
4731 } |
|
4732 } |
|
4733 } |
|
4734 |
|
4735 if(secondary > compareSec) { |
|
4736 if(!isFrenchSec) { |
|
4737 /* This is compression code. */ |
|
4738 if (secondary == UCOL_COMMON2 && notIsContinuation) { |
|
4739 ++count2; |
|
4740 } else { |
|
4741 if (count2 > 0) { |
|
4742 if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
|
4743 while (count2 > UCOL_TOP_COUNT2) { |
|
4744 secondaries.appendByte(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
|
4745 count2 -= (uint32_t)UCOL_TOP_COUNT2; |
|
4746 } |
|
4747 secondaries.appendByte(UCOL_COMMON_TOP2 - (count2-1)); |
|
4748 } else { |
|
4749 while (count2 > UCOL_BOT_COUNT2) { |
|
4750 secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
|
4751 count2 -= (uint32_t)UCOL_BOT_COUNT2; |
|
4752 } |
|
4753 secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
|
4754 } |
|
4755 count2 = 0; |
|
4756 } |
|
4757 secondaries.appendByte(secondary); |
|
4758 } |
|
4759 } else { |
|
4760 /* Do the special handling for French secondaries */ |
|
4761 /* We need to get continuation elements and do intermediate restore */ |
|
4762 /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */ |
|
4763 if(notIsContinuation) { |
|
4764 if (lastSecondaryLength > 1) { |
|
4765 uint8_t *frenchStartPtr = secondaries.getLastFewBytes(lastSecondaryLength); |
|
4766 if (frenchStartPtr != NULL) { |
|
4767 /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ |
|
4768 uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; |
|
4769 uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
|
4770 } |
|
4771 } |
|
4772 lastSecondaryLength = 1; |
|
4773 } else { |
|
4774 ++lastSecondaryLength; |
|
4775 } |
|
4776 secondaries.appendByte(secondary); |
|
4777 } |
|
4778 } |
|
4779 |
|
4780 if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) { |
|
4781 // do the case level if we need to do it. We don't want to calculate |
|
4782 // case level for primary ignorables if we have only primary strength and case level |
|
4783 // otherwise we would break well formedness of CEs |
|
4784 doCaseShift(cases, caseShift); |
|
4785 if(notIsContinuation) { |
|
4786 caseBits = (uint8_t)(tertiary & 0xC0); |
|
4787 |
|
4788 if(tertiary != 0) { |
|
4789 if(coll->caseFirst == UCOL_UPPER_FIRST) { |
|
4790 if((caseBits & 0xC0) == 0) { |
|
4791 cases.lastByte() |= 1 << (--caseShift); |
|
4792 } else { |
|
4793 cases.lastByte() |= 0 << (--caseShift); |
|
4794 /* second bit */ |
|
4795 doCaseShift(cases, caseShift); |
|
4796 cases.lastByte() |= ((caseBits>>6)&1) << (--caseShift); |
|
4797 } |
|
4798 } else { |
|
4799 if((caseBits & 0xC0) == 0) { |
|
4800 cases.lastByte() |= 0 << (--caseShift); |
|
4801 } else { |
|
4802 cases.lastByte() |= 1 << (--caseShift); |
|
4803 /* second bit */ |
|
4804 doCaseShift(cases, caseShift); |
|
4805 cases.lastByte() |= ((caseBits>>7)&1) << (--caseShift); |
|
4806 } |
|
4807 } |
|
4808 } |
|
4809 } |
|
4810 } else { |
|
4811 if(notIsContinuation) { |
|
4812 tertiary ^= caseSwitch; |
|
4813 } |
|
4814 } |
|
4815 |
|
4816 tertiary &= tertiaryMask; |
|
4817 if(tertiary > compareTer) { |
|
4818 /* This is compression code. */ |
|
4819 /* sequence size check is included in the if clause */ |
|
4820 if (tertiary == tertiaryCommon && notIsContinuation) { |
|
4821 ++count3; |
|
4822 } else { |
|
4823 if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
|
4824 tertiary += tertiaryAddition; |
|
4825 } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { |
|
4826 tertiary -= tertiaryAddition; |
|
4827 } |
|
4828 if (count3 > 0) { |
|
4829 if ((tertiary > tertiaryCommon)) { |
|
4830 while (count3 > coll->tertiaryTopCount) { |
|
4831 tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
|
4832 count3 -= (uint32_t)coll->tertiaryTopCount; |
|
4833 } |
|
4834 tertiaries.appendByte(tertiaryTop - (count3-1)); |
|
4835 } else { |
|
4836 while (count3 > coll->tertiaryBottomCount) { |
|
4837 tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
|
4838 count3 -= (uint32_t)coll->tertiaryBottomCount; |
|
4839 } |
|
4840 tertiaries.appendByte(tertiaryBottom + (count3-1)); |
|
4841 } |
|
4842 count3 = 0; |
|
4843 } |
|
4844 tertiaries.appendByte(tertiary); |
|
4845 } |
|
4846 } |
|
4847 |
|
4848 if(/*qShifted*/(compareQuad==0) && notIsContinuation) { |
|
4849 if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
|
4850 if(count4>0) { // Close this part |
|
4851 while (count4 > UCOL_BOT_COUNT4) { |
|
4852 quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
|
4853 count4 -= UCOL_BOT_COUNT4; |
|
4854 } |
|
4855 quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
|
4856 count4 = 0; |
|
4857 } |
|
4858 quads.appendByte(UCOL_HIRAGANA_QUAD); // Add the Hiragana |
|
4859 } else { // This wasn't Hiragana, so we can continue adding stuff |
|
4860 count4++; |
|
4861 } |
|
4862 } |
|
4863 } |
|
4864 } |
|
4865 |
|
4866 /* Here, we are generally done with processing */ |
|
4867 /* bailing out would not be too productive */ |
|
4868 |
|
4869 UBool ok = TRUE; |
|
4870 if(U_SUCCESS(*status)) { |
|
4871 /* we have done all the CE's, now let's put them together to form a key */ |
|
4872 if(compareSec == 0) { |
|
4873 if (count2 > 0) { |
|
4874 while (count2 > UCOL_BOT_COUNT2) { |
|
4875 secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
|
4876 count2 -= (uint32_t)UCOL_BOT_COUNT2; |
|
4877 } |
|
4878 secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
|
4879 } |
|
4880 result.Append(UCOL_LEVELTERMINATOR); |
|
4881 if(!secondaries.isOk()) { |
|
4882 ok = FALSE; |
|
4883 } else if(!isFrenchSec) { |
|
4884 secondaries.appendTo(result); |
|
4885 } else { |
|
4886 // If there are any unresolved continuation secondaries, |
|
4887 // reverse them here so that we can reverse the whole secondary thing. |
|
4888 if (lastSecondaryLength > 1) { |
|
4889 uint8_t *frenchStartPtr = secondaries.getLastFewBytes(lastSecondaryLength); |
|
4890 if (frenchStartPtr != NULL) { |
|
4891 /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ |
|
4892 uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; |
|
4893 uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
|
4894 } |
|
4895 } |
|
4896 packFrench(secondaries.data(), secondaries.length(), result); |
|
4897 } |
|
4898 } |
|
4899 |
|
4900 if(doCase) { |
|
4901 ok &= cases.isOk(); |
|
4902 result.Append(UCOL_LEVELTERMINATOR); |
|
4903 cases.appendTo(result); |
|
4904 } |
|
4905 |
|
4906 if(compareTer == 0) { |
|
4907 if (count3 > 0) { |
|
4908 if (coll->tertiaryCommon != UCOL_COMMON_BOT3) { |
|
4909 while (count3 >= coll->tertiaryTopCount) { |
|
4910 tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
|
4911 count3 -= (uint32_t)coll->tertiaryTopCount; |
|
4912 } |
|
4913 tertiaries.appendByte(tertiaryTop - count3); |
|
4914 } else { |
|
4915 while (count3 > coll->tertiaryBottomCount) { |
|
4916 tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
|
4917 count3 -= (uint32_t)coll->tertiaryBottomCount; |
|
4918 } |
|
4919 tertiaries.appendByte(tertiaryBottom + (count3-1)); |
|
4920 } |
|
4921 } |
|
4922 ok &= tertiaries.isOk(); |
|
4923 result.Append(UCOL_LEVELTERMINATOR); |
|
4924 tertiaries.appendTo(result); |
|
4925 |
|
4926 if(compareQuad == 0/*qShifted == TRUE*/) { |
|
4927 if(count4 > 0) { |
|
4928 while (count4 > UCOL_BOT_COUNT4) { |
|
4929 quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
|
4930 count4 -= UCOL_BOT_COUNT4; |
|
4931 } |
|
4932 quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
|
4933 } |
|
4934 ok &= quads.isOk(); |
|
4935 result.Append(UCOL_LEVELTERMINATOR); |
|
4936 quads.appendTo(result); |
|
4937 } |
|
4938 |
|
4939 if(compareIdent) { |
|
4940 result.Append(UCOL_LEVELTERMINATOR); |
|
4941 u_writeIdenticalLevelRun(s.string, len, result); |
|
4942 } |
|
4943 } |
|
4944 result.Append(0); |
|
4945 } |
|
4946 |
|
4947 /* To avoid memory leak, free the offset buffer if necessary. */ |
|
4948 ucol_freeOffsetBuffer(&s); |
|
4949 |
|
4950 ok &= result.IsOk(); |
|
4951 if(!ok && U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } |
|
4952 } |
|
4953 |
|
4954 |
|
4955 U_CFUNC void U_CALLCONV |
|
4956 ucol_calcSortKeySimpleTertiary(const UCollator *coll, |
|
4957 const UChar *source, |
|
4958 int32_t sourceLength, |
|
4959 SortKeyByteSink &result, |
|
4960 UErrorCode *status) |
|
4961 { |
|
4962 U_ALIGN_CODE(16); |
|
4963 |
|
4964 if(U_FAILURE(*status)) { |
|
4965 return; |
|
4966 } |
|
4967 |
|
4968 SortKeyByteSink &primaries = result; |
|
4969 SortKeyLevel secondaries; |
|
4970 SortKeyLevel tertiaries; |
|
4971 |
|
4972 UnicodeString normSource; |
|
4973 |
|
4974 int32_t len = sourceLength; |
|
4975 |
|
4976 /* If we need to normalize, we'll do it all at once at the beginning! */ |
|
4977 if(coll->normalizationMode != UCOL_OFF) { |
|
4978 normSource.setTo(len < 0, source, len); |
|
4979 const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status); |
|
4980 int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); |
|
4981 if(qcYesLength != normSource.length()) { |
|
4982 UnicodeString unnormalized = normSource.tempSubString(qcYesLength); |
|
4983 normSource.truncate(qcYesLength); |
|
4984 norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); |
|
4985 source = normSource.getBuffer(); |
|
4986 len = normSource.length(); |
|
4987 } |
|
4988 } |
|
4989 collIterate s; |
|
4990 IInit_collIterate(coll, (UChar *)source, len, &s, status); |
|
4991 if(U_FAILURE(*status)) { |
|
4992 return; |
|
4993 } |
|
4994 s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
|
4995 |
|
4996 uint32_t order = 0; |
|
4997 |
|
4998 uint8_t primary1 = 0; |
|
4999 uint8_t primary2 = 0; |
|
5000 uint8_t secondary = 0; |
|
5001 uint8_t tertiary = 0; |
|
5002 uint8_t caseSwitch = coll->caseSwitch; |
|
5003 uint8_t tertiaryMask = coll->tertiaryMask; |
|
5004 int8_t tertiaryAddition = coll->tertiaryAddition; |
|
5005 uint8_t tertiaryTop = coll->tertiaryTop; |
|
5006 uint8_t tertiaryBottom = coll->tertiaryBottom; |
|
5007 uint8_t tertiaryCommon = coll->tertiaryCommon; |
|
5008 |
|
5009 UBool notIsContinuation = FALSE; |
|
5010 |
|
5011 uint32_t count2 = 0, count3 = 0; |
|
5012 uint8_t leadPrimary = 0; |
|
5013 |
|
5014 for(;;) { |
|
5015 order = ucol_IGetNextCE(coll, &s, status); |
|
5016 |
|
5017 if(order == 0) { |
|
5018 continue; |
|
5019 } |
|
5020 |
|
5021 if(order == UCOL_NO_MORE_CES) { |
|
5022 break; |
|
5023 } |
|
5024 |
|
5025 notIsContinuation = !isContinuation(order); |
|
5026 |
|
5027 if(notIsContinuation) { |
|
5028 tertiary = (uint8_t)((order & tertiaryMask)); |
|
5029 } else { |
|
5030 tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
|
5031 } |
|
5032 |
|
5033 secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
|
5034 primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
|
5035 primary1 = (uint8_t)(order >> 8); |
|
5036 |
|
5037 uint8_t originalPrimary1 = primary1; |
|
5038 if (coll->leadBytePermutationTable != NULL && notIsContinuation) { |
|
5039 primary1 = coll->leadBytePermutationTable[primary1]; |
|
5040 } |
|
5041 |
|
5042 /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
|
5043 /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
|
5044 /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */ |
|
5045 /* regular and simple sortkey calc */ |
|
5046 if(primary1 != UCOL_IGNORABLE) { |
|
5047 if(notIsContinuation) { |
|
5048 if(leadPrimary == primary1) { |
|
5049 primaries.Append(primary2); |
|
5050 } else { |
|
5051 if(leadPrimary != 0) { |
|
5052 primaries.Append((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
|
5053 } |
|
5054 if(primary2 == UCOL_IGNORABLE) { |
|
5055 /* one byter, not compressed */ |
|
5056 primaries.Append(primary1); |
|
5057 leadPrimary = 0; |
|
5058 } else if(isCompressible(coll, originalPrimary1)) { |
|
5059 /* compress */ |
|
5060 primaries.Append(leadPrimary = primary1, primary2); |
|
5061 } else { |
|
5062 leadPrimary = 0; |
|
5063 primaries.Append(primary1, primary2); |
|
5064 } |
|
5065 } |
|
5066 } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
|
5067 if(primary2 == UCOL_IGNORABLE) { |
|
5068 primaries.Append(primary1); |
|
5069 } else { |
|
5070 primaries.Append(primary1, primary2); |
|
5071 } |
|
5072 } |
|
5073 } |
|
5074 |
|
5075 if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */ |
|
5076 /* This is compression code. */ |
|
5077 if (secondary == UCOL_COMMON2 && notIsContinuation) { |
|
5078 ++count2; |
|
5079 } else { |
|
5080 if (count2 > 0) { |
|
5081 if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
|
5082 while (count2 > UCOL_TOP_COUNT2) { |
|
5083 secondaries.appendByte(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
|
5084 count2 -= (uint32_t)UCOL_TOP_COUNT2; |
|
5085 } |
|
5086 secondaries.appendByte(UCOL_COMMON_TOP2 - (count2-1)); |
|
5087 } else { |
|
5088 while (count2 > UCOL_BOT_COUNT2) { |
|
5089 secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
|
5090 count2 -= (uint32_t)UCOL_BOT_COUNT2; |
|
5091 } |
|
5092 secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
|
5093 } |
|
5094 count2 = 0; |
|
5095 } |
|
5096 secondaries.appendByte(secondary); |
|
5097 } |
|
5098 } |
|
5099 |
|
5100 if(notIsContinuation) { |
|
5101 tertiary ^= caseSwitch; |
|
5102 } |
|
5103 |
|
5104 if(tertiary > 0) { |
|
5105 /* This is compression code. */ |
|
5106 /* sequence size check is included in the if clause */ |
|
5107 if (tertiary == tertiaryCommon && notIsContinuation) { |
|
5108 ++count3; |
|
5109 } else { |
|
5110 if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
|
5111 tertiary += tertiaryAddition; |
|
5112 } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { |
|
5113 tertiary -= tertiaryAddition; |
|
5114 } |
|
5115 if (count3 > 0) { |
|
5116 if ((tertiary > tertiaryCommon)) { |
|
5117 while (count3 > coll->tertiaryTopCount) { |
|
5118 tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
|
5119 count3 -= (uint32_t)coll->tertiaryTopCount; |
|
5120 } |
|
5121 tertiaries.appendByte(tertiaryTop - (count3-1)); |
|
5122 } else { |
|
5123 while (count3 > coll->tertiaryBottomCount) { |
|
5124 tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
|
5125 count3 -= (uint32_t)coll->tertiaryBottomCount; |
|
5126 } |
|
5127 tertiaries.appendByte(tertiaryBottom + (count3-1)); |
|
5128 } |
|
5129 count3 = 0; |
|
5130 } |
|
5131 tertiaries.appendByte(tertiary); |
|
5132 } |
|
5133 } |
|
5134 } |
|
5135 |
|
5136 UBool ok = TRUE; |
|
5137 if(U_SUCCESS(*status)) { |
|
5138 /* we have done all the CE's, now let's put them together to form a key */ |
|
5139 if (count2 > 0) { |
|
5140 while (count2 > UCOL_BOT_COUNT2) { |
|
5141 secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
|
5142 count2 -= (uint32_t)UCOL_BOT_COUNT2; |
|
5143 } |
|
5144 secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
|
5145 } |
|
5146 ok &= secondaries.isOk(); |
|
5147 result.Append(UCOL_LEVELTERMINATOR); |
|
5148 secondaries.appendTo(result); |
|
5149 |
|
5150 if (count3 > 0) { |
|
5151 if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) { |
|
5152 while (count3 >= coll->tertiaryTopCount) { |
|
5153 tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
|
5154 count3 -= (uint32_t)coll->tertiaryTopCount; |
|
5155 } |
|
5156 tertiaries.appendByte(tertiaryTop - count3); |
|
5157 } else { |
|
5158 while (count3 > coll->tertiaryBottomCount) { |
|
5159 tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
|
5160 count3 -= (uint32_t)coll->tertiaryBottomCount; |
|
5161 } |
|
5162 tertiaries.appendByte(tertiaryBottom + (count3-1)); |
|
5163 } |
|
5164 } |
|
5165 ok &= tertiaries.isOk(); |
|
5166 result.Append(UCOL_LEVELTERMINATOR); |
|
5167 tertiaries.appendTo(result); |
|
5168 |
|
5169 result.Append(0); |
|
5170 } |
|
5171 |
|
5172 /* To avoid memory leak, free the offset buffer if necessary. */ |
|
5173 ucol_freeOffsetBuffer(&s); |
|
5174 |
|
5175 ok &= result.IsOk(); |
|
5176 if(!ok && U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } |
|
5177 } |
|
5178 |
|
5179 static inline |
|
5180 UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) { |
|
5181 UBool notIsContinuation = !isContinuation(CE); |
|
5182 uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF); |
|
5183 if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0) |
|
5184 || (!notIsContinuation && *wasShifted))) |
|
5185 || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
|
5186 { |
|
5187 // The stuff below should probably be in the sortkey code... maybe not... |
|
5188 if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */ |
|
5189 /* we should just completely ignore it */ |
|
5190 *wasShifted = TRUE; |
|
5191 //continue; |
|
5192 } |
|
5193 //*wasShifted = TRUE; |
|
5194 return TRUE; |
|
5195 } else { |
|
5196 *wasShifted = FALSE; |
|
5197 return FALSE; |
|
5198 } |
|
5199 } |
|
5200 static inline |
|
5201 void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) { |
|
5202 if(level < maxLevel) { |
|
5203 dest[i++] = UCOL_LEVELTERMINATOR; |
|
5204 } else { |
|
5205 dest[i++] = 0; |
|
5206 } |
|
5207 } |
|
5208 |
|
5209 /** enumeration of level identifiers for partial sort key generation */ |
|
5210 enum { |
|
5211 UCOL_PSK_PRIMARY = 0, |
|
5212 UCOL_PSK_SECONDARY = 1, |
|
5213 UCOL_PSK_CASE = 2, |
|
5214 UCOL_PSK_TERTIARY = 3, |
|
5215 UCOL_PSK_QUATERNARY = 4, |
|
5216 UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */ |
|
5217 UCOL_PSK_IDENTICAL = 6, |
|
5218 UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */ |
|
5219 UCOL_PSK_LIMIT |
|
5220 }; |
|
5221 |
|
5222 /** collation state enum. *_SHIFT value is how much to shift right |
|
5223 * to get the state piece to the right. *_MASK value should be |
|
5224 * ANDed with the shifted state. This data is stored in state[1] |
|
5225 * field. |
|
5226 */ |
|
5227 enum { |
|
5228 UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */ |
|
5229 UCOL_PSK_LEVEL_MASK = 7, /** three bits */ |
|
5230 UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */ |
|
5231 UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1, |
|
5232 /** can be only 0 or 1, since we get up to two bytes from primary or quaternary |
|
5233 * This field is also used to denote that the French secondary level is finished |
|
5234 */ |
|
5235 UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */ |
|
5236 UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */ |
|
5237 UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */ |
|
5238 UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */ |
|
5239 /** When we do French we need to reverse secondary values. However, continuations |
|
5240 * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba |
|
5241 */ |
|
5242 UCOL_PSK_BOCSU_BYTES_SHIFT = 7, |
|
5243 UCOL_PSK_BOCSU_BYTES_MASK = 3, |
|
5244 UCOL_PSK_CONSUMED_CES_SHIFT = 9, |
|
5245 UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF |
|
5246 }; |
|
5247 |
|
5248 // macro calculating the number of expansion CEs available |
|
5249 #define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn |
|
5250 |
|
5251 |
|
5252 /** main sortkey part procedure. On the first call, |
|
5253 * you should pass in a collator, an iterator, empty state |
|
5254 * state[0] == state[1] == 0, a buffer to hold results |
|
5255 * number of bytes you need and an error code pointer. |
|
5256 * Make sure your buffer is big enough to hold the wanted |
|
5257 * number of sortkey bytes. I don't check. |
|
5258 * The only meaningful status you can get back is |
|
5259 * U_BUFFER_OVERFLOW_ERROR, which basically means that you |
|
5260 * have been dealt a raw deal and that you probably won't |
|
5261 * be able to use partial sortkey generation for this |
|
5262 * particular combination of string and collator. This |
|
5263 * is highly unlikely, but you should still check the error code. |
|
5264 * Any other status means that you're not in a sane situation |
|
5265 * anymore. After the first call, preserve state values and |
|
5266 * use them on subsequent calls to obtain more bytes of a sortkey. |
|
5267 * Use until the number of bytes written is smaller than the requested |
|
5268 * number of bytes. Generated sortkey is not compatible with the |
|
5269 * one generated by ucol_getSortKey, as we don't do any compression. |
|
5270 * However, levels are still terminated by a 1 (one) and the sortkey |
|
5271 * is terminated by a 0 (zero). Identical level is the same as in the |
|
5272 * regular sortkey - internal bocu-1 implementation is used. |
|
5273 * For curious, although you cannot do much about this, here is |
|
5274 * the structure of state words. |
|
5275 * state[0] - iterator state. Depends on the iterator implementation, |
|
5276 * but allows the iterator to continue where it stopped in |
|
5277 * the last iteration. |
|
5278 * state[1] - collation processing state. Here is the distribution |
|
5279 * of the bits: |
|
5280 * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary |
|
5281 * quaternary, quin (we don't use this one), identical and |
|
5282 * null (producing only zeroes - first one to terminate the |
|
5283 * sortkey and subsequent to fill the buffer). |
|
5284 * 3 - byte count. Number of bytes written on the primary level. |
|
5285 * 4 - was shifted. Whether the previous iteration finished in the |
|
5286 * shifted state. |
|
5287 * 5, 6 - French continuation bytes written. See the comment in the enum |
|
5288 * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on |
|
5289 * the identical level. |
|
5290 * 9..31 - CEs consumed. Number of getCE or next32 operations performed |
|
5291 * since thes last successful update of the iterator state. |
|
5292 */ |
|
5293 U_CAPI int32_t U_EXPORT2 |
|
5294 ucol_nextSortKeyPart(const UCollator *coll, |
|
5295 UCharIterator *iter, |
|
5296 uint32_t state[2], |
|
5297 uint8_t *dest, int32_t count, |
|
5298 UErrorCode *status) |
|
5299 { |
|
5300 /* error checking */ |
|
5301 if(status==NULL || U_FAILURE(*status)) { |
|
5302 return 0; |
|
5303 } |
|
5304 UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART); |
|
5305 if( coll==NULL || iter==NULL || |
|
5306 state==NULL || |
|
5307 count<0 || (count>0 && dest==NULL) |
|
5308 ) { |
|
5309 *status=U_ILLEGAL_ARGUMENT_ERROR; |
|
5310 UTRACE_EXIT_STATUS(status); |
|
5311 return 0; |
|
5312 } |
|
5313 |
|
5314 UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d", |
|
5315 coll, iter, state[0], state[1], dest, count); |
|
5316 |
|
5317 if(count==0) { |
|
5318 /* nothing to do */ |
|
5319 UTRACE_EXIT_VALUE(0); |
|
5320 return 0; |
|
5321 } |
|
5322 /** Setting up situation according to the state we got from the previous iteration */ |
|
5323 // The state of the iterator from the previous invocation |
|
5324 uint32_t iterState = state[0]; |
|
5325 // Has the last iteration ended in the shifted state |
|
5326 UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE; |
|
5327 // What is the current level of the sortkey? |
|
5328 int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK; |
|
5329 // Have we written only one byte from a two byte primary in the previous iteration? |
|
5330 // Also on secondary level - have we finished with the French secondary? |
|
5331 int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK; |
|
5332 // number of bytes in the continuation buffer for French |
|
5333 int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK; |
|
5334 // Number of bytes already written from a bocsu sequence. Since |
|
5335 // the longes bocsu sequence is 4 long, this can be up to 3. |
|
5336 int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK; |
|
5337 // Number of elements that need to be consumed in this iteration because |
|
5338 // the iterator returned UITER_NO_STATE at the end of the last iteration, |
|
5339 // so we had to save the last valid state. |
|
5340 int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK; |
|
5341 |
|
5342 /** values that depend on the collator attributes */ |
|
5343 // strength of the collator. |
|
5344 int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status); |
|
5345 // maximal level of the partial sortkey. Need to take whether case level is done |
|
5346 int32_t maxLevel = 0; |
|
5347 if(strength < UCOL_TERTIARY) { |
|
5348 if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
|
5349 maxLevel = UCOL_PSK_CASE; |
|
5350 } else { |
|
5351 maxLevel = strength; |
|
5352 } |
|
5353 } else { |
|
5354 if(strength == UCOL_TERTIARY) { |
|
5355 maxLevel = UCOL_PSK_TERTIARY; |
|
5356 } else if(strength == UCOL_QUATERNARY) { |
|
5357 maxLevel = UCOL_PSK_QUATERNARY; |
|
5358 } else { // identical |
|
5359 maxLevel = UCOL_IDENTICAL; |
|
5360 } |
|
5361 } |
|
5362 // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation |
|
5363 uint8_t UCOL_HIRAGANA_QUAD = |
|
5364 (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF; |
|
5365 // Boundary value that decides whether a CE is shifted or not |
|
5366 uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0; |
|
5367 // Are we doing French collation? |
|
5368 UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON); |
|
5369 |
|
5370 /** initializing the collation state */ |
|
5371 UBool notIsContinuation = FALSE; |
|
5372 uint32_t CE = UCOL_NO_MORE_CES; |
|
5373 |
|
5374 collIterate s; |
|
5375 IInit_collIterate(coll, NULL, -1, &s, status); |
|
5376 if(U_FAILURE(*status)) { |
|
5377 UTRACE_EXIT_STATUS(*status); |
|
5378 return 0; |
|
5379 } |
|
5380 s.iterator = iter; |
|
5381 s.flags |= UCOL_USE_ITERATOR; |
|
5382 // This variable tells us whether we have produced some other levels in this iteration |
|
5383 // before we moved to the identical level. In that case, we need to switch the |
|
5384 // type of the iterator. |
|
5385 UBool doingIdenticalFromStart = FALSE; |
|
5386 // Normalizing iterator |
|
5387 // The division for the array length may truncate the array size to |
|
5388 // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
|
5389 // for all platforms anyway. |
|
5390 UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
5391 UNormIterator *normIter = NULL; |
|
5392 // If the normalization is turned on for the collator and we are below identical level |
|
5393 // we will use a FCD normalizing iterator |
|
5394 if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) { |
|
5395 normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
|
5396 s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status); |
|
5397 s.flags &= ~UCOL_ITER_NORM; |
|
5398 if(U_FAILURE(*status)) { |
|
5399 UTRACE_EXIT_STATUS(*status); |
|
5400 return 0; |
|
5401 } |
|
5402 } else if(level == UCOL_PSK_IDENTICAL) { |
|
5403 // for identical level, we need a NFD iterator. We need to instantiate it here, since we |
|
5404 // will be updating the state - and this cannot be done on an ordinary iterator. |
|
5405 normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
|
5406 s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
|
5407 s.flags &= ~UCOL_ITER_NORM; |
|
5408 if(U_FAILURE(*status)) { |
|
5409 UTRACE_EXIT_STATUS(*status); |
|
5410 return 0; |
|
5411 } |
|
5412 doingIdenticalFromStart = TRUE; |
|
5413 } |
|
5414 |
|
5415 // This is the tentative new state of the iterator. The problem |
|
5416 // is that the iterator might return an undefined state, in |
|
5417 // which case we should save the last valid state and increase |
|
5418 // the iterator skip value. |
|
5419 uint32_t newState = 0; |
|
5420 |
|
5421 // First, we set the iterator to the last valid position |
|
5422 // from the last iteration. This was saved in state[0]. |
|
5423 if(iterState == 0) { |
|
5424 /* initial state */ |
|
5425 if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) { |
|
5426 s.iterator->move(s.iterator, 0, UITER_LIMIT); |
|
5427 } else { |
|
5428 s.iterator->move(s.iterator, 0, UITER_START); |
|
5429 } |
|
5430 } else { |
|
5431 /* reset to previous state */ |
|
5432 s.iterator->setState(s.iterator, iterState, status); |
|
5433 if(U_FAILURE(*status)) { |
|
5434 UTRACE_EXIT_STATUS(*status); |
|
5435 return 0; |
|
5436 } |
|
5437 } |
|
5438 |
|
5439 |
|
5440 |
|
5441 // This variable tells us whether we can attempt to update the state |
|
5442 // of iterator. Situations where we don't want to update iterator state |
|
5443 // are the existence of expansion CEs that are not yet processed, and |
|
5444 // finishing the case level without enough space in the buffer to insert |
|
5445 // a level terminator. |
|
5446 UBool canUpdateState = TRUE; |
|
5447 |
|
5448 // Consume all the CEs that were consumed at the end of the previous |
|
5449 // iteration without updating the iterator state. On identical level, |
|
5450 // consume the code points. |
|
5451 int32_t counter = cces; |
|
5452 if(level < UCOL_PSK_IDENTICAL) { |
|
5453 while(counter-->0) { |
|
5454 // If we're doing French and we are on the secondary level, |
|
5455 // we go backwards. |
|
5456 if(level == UCOL_PSK_SECONDARY && doingFrench) { |
|
5457 CE = ucol_IGetPrevCE(coll, &s, status); |
|
5458 } else { |
|
5459 CE = ucol_IGetNextCE(coll, &s, status); |
|
5460 } |
|
5461 if(CE==UCOL_NO_MORE_CES) { |
|
5462 /* should not happen */ |
|
5463 *status=U_INTERNAL_PROGRAM_ERROR; |
|
5464 UTRACE_EXIT_STATUS(*status); |
|
5465 return 0; |
|
5466 } |
|
5467 if(uprv_numAvailableExpCEs(s)) { |
|
5468 canUpdateState = FALSE; |
|
5469 } |
|
5470 } |
|
5471 } else { |
|
5472 while(counter-->0) { |
|
5473 uiter_next32(s.iterator); |
|
5474 } |
|
5475 } |
|
5476 |
|
5477 // French secondary needs to know whether the iterator state of zero came from previous level OR |
|
5478 // from a new invocation... |
|
5479 UBool wasDoingPrimary = FALSE; |
|
5480 // destination buffer byte counter. When this guy |
|
5481 // gets to count, we're done with the iteration |
|
5482 int32_t i = 0; |
|
5483 // used to count the zero bytes written after we |
|
5484 // have finished with the sort key |
|
5485 int32_t j = 0; |
|
5486 |
|
5487 |
|
5488 // Hm.... I think we're ready to plunge in. Basic story is as following: |
|
5489 // we have a fall through case based on level. This is used for initial |
|
5490 // positioning on iteration start. Every level processor contains a |
|
5491 // for(;;) which will be broken when we exhaust all the CEs. Other |
|
5492 // way to exit is a goto saveState, which happens when we have filled |
|
5493 // out our buffer. |
|
5494 switch(level) { |
|
5495 case UCOL_PSK_PRIMARY: |
|
5496 wasDoingPrimary = TRUE; |
|
5497 for(;;) { |
|
5498 if(i==count) { |
|
5499 goto saveState; |
|
5500 } |
|
5501 // We should save the state only if we |
|
5502 // are sure that we are done with the |
|
5503 // previous iterator state |
|
5504 if(canUpdateState && byteCountOrFrenchDone == 0) { |
|
5505 newState = s.iterator->getState(s.iterator); |
|
5506 if(newState != UITER_NO_STATE) { |
|
5507 iterState = newState; |
|
5508 cces = 0; |
|
5509 } |
|
5510 } |
|
5511 CE = ucol_IGetNextCE(coll, &s, status); |
|
5512 cces++; |
|
5513 if(CE==UCOL_NO_MORE_CES) { |
|
5514 // Add the level separator |
|
5515 terminatePSKLevel(level, maxLevel, i, dest); |
|
5516 byteCountOrFrenchDone=0; |
|
5517 // Restart the iteration an move to the |
|
5518 // second level |
|
5519 s.iterator->move(s.iterator, 0, UITER_START); |
|
5520 cces = 0; |
|
5521 level = UCOL_PSK_SECONDARY; |
|
5522 break; |
|
5523 } |
|
5524 if(!isContinuation(CE)){ |
|
5525 if(coll->leadBytePermutationTable != NULL){ |
|
5526 CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF); |
|
5527 } |
|
5528 } |
|
5529 if(!isShiftedCE(CE, LVT, &wasShifted)) { |
|
5530 CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */ |
|
5531 if(CE != 0) { |
|
5532 if(byteCountOrFrenchDone == 0) { |
|
5533 // get the second byte of primary |
|
5534 dest[i++]=(uint8_t)(CE >> 8); |
|
5535 } else { |
|
5536 byteCountOrFrenchDone = 0; |
|
5537 } |
|
5538 if((CE &=0xff)!=0) { |
|
5539 if(i==count) { |
|
5540 /* overflow */ |
|
5541 byteCountOrFrenchDone = 1; |
|
5542 cces--; |
|
5543 goto saveState; |
|
5544 } |
|
5545 dest[i++]=(uint8_t)CE; |
|
5546 } |
|
5547 } |
|
5548 } |
|
5549 if(uprv_numAvailableExpCEs(s)) { |
|
5550 canUpdateState = FALSE; |
|
5551 } else { |
|
5552 canUpdateState = TRUE; |
|
5553 } |
|
5554 } |
|
5555 /* fall through to next level */ |
|
5556 case UCOL_PSK_SECONDARY: |
|
5557 if(strength >= UCOL_SECONDARY) { |
|
5558 if(!doingFrench) { |
|
5559 for(;;) { |
|
5560 if(i == count) { |
|
5561 goto saveState; |
|
5562 } |
|
5563 // We should save the state only if we |
|
5564 // are sure that we are done with the |
|
5565 // previous iterator state |
|
5566 if(canUpdateState) { |
|
5567 newState = s.iterator->getState(s.iterator); |
|
5568 if(newState != UITER_NO_STATE) { |
|
5569 iterState = newState; |
|
5570 cces = 0; |
|
5571 } |
|
5572 } |
|
5573 CE = ucol_IGetNextCE(coll, &s, status); |
|
5574 cces++; |
|
5575 if(CE==UCOL_NO_MORE_CES) { |
|
5576 // Add the level separator |
|
5577 terminatePSKLevel(level, maxLevel, i, dest); |
|
5578 byteCountOrFrenchDone = 0; |
|
5579 // Restart the iteration an move to the |
|
5580 // second level |
|
5581 s.iterator->move(s.iterator, 0, UITER_START); |
|
5582 cces = 0; |
|
5583 level = UCOL_PSK_CASE; |
|
5584 break; |
|
5585 } |
|
5586 if(!isShiftedCE(CE, LVT, &wasShifted)) { |
|
5587 CE >>= 8; /* get secondary */ |
|
5588 if(CE != 0) { |
|
5589 dest[i++]=(uint8_t)CE; |
|
5590 } |
|
5591 } |
|
5592 if(uprv_numAvailableExpCEs(s)) { |
|
5593 canUpdateState = FALSE; |
|
5594 } else { |
|
5595 canUpdateState = TRUE; |
|
5596 } |
|
5597 } |
|
5598 } else { // French secondary processing |
|
5599 uint8_t frenchBuff[UCOL_MAX_BUFFER]; |
|
5600 int32_t frenchIndex = 0; |
|
5601 // Here we are going backwards. |
|
5602 // If the iterator is at the beggining, it should be |
|
5603 // moved to end. |
|
5604 if(wasDoingPrimary) { |
|
5605 s.iterator->move(s.iterator, 0, UITER_LIMIT); |
|
5606 cces = 0; |
|
5607 } |
|
5608 for(;;) { |
|
5609 if(i == count) { |
|
5610 goto saveState; |
|
5611 } |
|
5612 if(canUpdateState) { |
|
5613 newState = s.iterator->getState(s.iterator); |
|
5614 if(newState != UITER_NO_STATE) { |
|
5615 iterState = newState; |
|
5616 cces = 0; |
|
5617 } |
|
5618 } |
|
5619 CE = ucol_IGetPrevCE(coll, &s, status); |
|
5620 cces++; |
|
5621 if(CE==UCOL_NO_MORE_CES) { |
|
5622 // Add the level separator |
|
5623 terminatePSKLevel(level, maxLevel, i, dest); |
|
5624 byteCountOrFrenchDone = 0; |
|
5625 // Restart the iteration an move to the next level |
|
5626 s.iterator->move(s.iterator, 0, UITER_START); |
|
5627 level = UCOL_PSK_CASE; |
|
5628 break; |
|
5629 } |
|
5630 if(isContinuation(CE)) { // if it's a continuation, we want to save it and |
|
5631 // reverse when we get a first non-continuation CE. |
|
5632 CE >>= 8; |
|
5633 frenchBuff[frenchIndex++] = (uint8_t)CE; |
|
5634 } else if(!isShiftedCE(CE, LVT, &wasShifted)) { |
|
5635 CE >>= 8; /* get secondary */ |
|
5636 if(!frenchIndex) { |
|
5637 if(CE != 0) { |
|
5638 dest[i++]=(uint8_t)CE; |
|
5639 } |
|
5640 } else { |
|
5641 frenchBuff[frenchIndex++] = (uint8_t)CE; |
|
5642 frenchIndex -= usedFrench; |
|
5643 usedFrench = 0; |
|
5644 while(i < count && frenchIndex) { |
|
5645 dest[i++] = frenchBuff[--frenchIndex]; |
|
5646 usedFrench++; |
|
5647 } |
|
5648 } |
|
5649 } |
|
5650 if(uprv_numAvailableExpCEs(s)) { |
|
5651 canUpdateState = FALSE; |
|
5652 } else { |
|
5653 canUpdateState = TRUE; |
|
5654 } |
|
5655 } |
|
5656 } |
|
5657 } else { |
|
5658 level = UCOL_PSK_CASE; |
|
5659 } |
|
5660 /* fall through to next level */ |
|
5661 case UCOL_PSK_CASE: |
|
5662 if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
|
5663 uint32_t caseShift = UCOL_CASE_SHIFT_START; |
|
5664 uint8_t caseByte = UCOL_CASE_BYTE_START; |
|
5665 uint8_t caseBits = 0; |
|
5666 |
|
5667 for(;;) { |
|
5668 U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START); |
|
5669 if(i == count) { |
|
5670 goto saveState; |
|
5671 } |
|
5672 // We should save the state only if we |
|
5673 // are sure that we are done with the |
|
5674 // previous iterator state |
|
5675 if(canUpdateState) { |
|
5676 newState = s.iterator->getState(s.iterator); |
|
5677 if(newState != UITER_NO_STATE) { |
|
5678 iterState = newState; |
|
5679 cces = 0; |
|
5680 } |
|
5681 } |
|
5682 CE = ucol_IGetNextCE(coll, &s, status); |
|
5683 cces++; |
|
5684 if(CE==UCOL_NO_MORE_CES) { |
|
5685 // On the case level we might have an unfinished |
|
5686 // case byte. Add one if it's started. |
|
5687 if(caseShift != UCOL_CASE_SHIFT_START) { |
|
5688 dest[i++] = caseByte; |
|
5689 } |
|
5690 cces = 0; |
|
5691 // We have finished processing CEs on this level. |
|
5692 // However, we don't know if we have enough space |
|
5693 // to add a case level terminator. |
|
5694 if(i < count) { |
|
5695 // Add the level separator |
|
5696 terminatePSKLevel(level, maxLevel, i, dest); |
|
5697 // Restart the iteration and move to the |
|
5698 // next level |
|
5699 s.iterator->move(s.iterator, 0, UITER_START); |
|
5700 level = UCOL_PSK_TERTIARY; |
|
5701 } else { |
|
5702 canUpdateState = FALSE; |
|
5703 } |
|
5704 break; |
|
5705 } |
|
5706 |
|
5707 if(!isShiftedCE(CE, LVT, &wasShifted)) { |
|
5708 if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) { |
|
5709 // do the case level if we need to do it. We don't want to calculate |
|
5710 // case level for primary ignorables if we have only primary strength and case level |
|
5711 // otherwise we would break well formedness of CEs |
|
5712 CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); |
|
5713 caseBits = (uint8_t)(CE & 0xC0); |
|
5714 // this copies the case level logic from the |
|
5715 // sort key generation code |
|
5716 if(CE != 0) { |
|
5717 if (caseShift == 0) { |
|
5718 dest[i++] = caseByte; |
|
5719 caseShift = UCOL_CASE_SHIFT_START; |
|
5720 caseByte = UCOL_CASE_BYTE_START; |
|
5721 } |
|
5722 if(coll->caseFirst == UCOL_UPPER_FIRST) { |
|
5723 if((caseBits & 0xC0) == 0) { |
|
5724 caseByte |= 1 << (--caseShift); |
|
5725 } else { |
|
5726 caseByte |= 0 << (--caseShift); |
|
5727 /* second bit */ |
|
5728 if(caseShift == 0) { |
|
5729 dest[i++] = caseByte; |
|
5730 caseShift = UCOL_CASE_SHIFT_START; |
|
5731 caseByte = UCOL_CASE_BYTE_START; |
|
5732 } |
|
5733 caseByte |= ((caseBits>>6)&1) << (--caseShift); |
|
5734 } |
|
5735 } else { |
|
5736 if((caseBits & 0xC0) == 0) { |
|
5737 caseByte |= 0 << (--caseShift); |
|
5738 } else { |
|
5739 caseByte |= 1 << (--caseShift); |
|
5740 /* second bit */ |
|
5741 if(caseShift == 0) { |
|
5742 dest[i++] = caseByte; |
|
5743 caseShift = UCOL_CASE_SHIFT_START; |
|
5744 caseByte = UCOL_CASE_BYTE_START; |
|
5745 } |
|
5746 caseByte |= ((caseBits>>7)&1) << (--caseShift); |
|
5747 } |
|
5748 } |
|
5749 } |
|
5750 |
|
5751 } |
|
5752 } |
|
5753 // Not sure this is correct for the case level - revisit |
|
5754 if(uprv_numAvailableExpCEs(s)) { |
|
5755 canUpdateState = FALSE; |
|
5756 } else { |
|
5757 canUpdateState = TRUE; |
|
5758 } |
|
5759 } |
|
5760 } else { |
|
5761 level = UCOL_PSK_TERTIARY; |
|
5762 } |
|
5763 /* fall through to next level */ |
|
5764 case UCOL_PSK_TERTIARY: |
|
5765 if(strength >= UCOL_TERTIARY) { |
|
5766 for(;;) { |
|
5767 if(i == count) { |
|
5768 goto saveState; |
|
5769 } |
|
5770 // We should save the state only if we |
|
5771 // are sure that we are done with the |
|
5772 // previous iterator state |
|
5773 if(canUpdateState) { |
|
5774 newState = s.iterator->getState(s.iterator); |
|
5775 if(newState != UITER_NO_STATE) { |
|
5776 iterState = newState; |
|
5777 cces = 0; |
|
5778 } |
|
5779 } |
|
5780 CE = ucol_IGetNextCE(coll, &s, status); |
|
5781 cces++; |
|
5782 if(CE==UCOL_NO_MORE_CES) { |
|
5783 // Add the level separator |
|
5784 terminatePSKLevel(level, maxLevel, i, dest); |
|
5785 byteCountOrFrenchDone = 0; |
|
5786 // Restart the iteration an move to the |
|
5787 // second level |
|
5788 s.iterator->move(s.iterator, 0, UITER_START); |
|
5789 cces = 0; |
|
5790 level = UCOL_PSK_QUATERNARY; |
|
5791 break; |
|
5792 } |
|
5793 if(!isShiftedCE(CE, LVT, &wasShifted)) { |
|
5794 notIsContinuation = !isContinuation(CE); |
|
5795 |
|
5796 if(notIsContinuation) { |
|
5797 CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); |
|
5798 CE ^= coll->caseSwitch; |
|
5799 CE &= coll->tertiaryMask; |
|
5800 } else { |
|
5801 CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); |
|
5802 } |
|
5803 |
|
5804 if(CE != 0) { |
|
5805 dest[i++]=(uint8_t)CE; |
|
5806 } |
|
5807 } |
|
5808 if(uprv_numAvailableExpCEs(s)) { |
|
5809 canUpdateState = FALSE; |
|
5810 } else { |
|
5811 canUpdateState = TRUE; |
|
5812 } |
|
5813 } |
|
5814 } else { |
|
5815 // if we're not doing tertiary |
|
5816 // skip to the end |
|
5817 level = UCOL_PSK_NULL; |
|
5818 } |
|
5819 /* fall through to next level */ |
|
5820 case UCOL_PSK_QUATERNARY: |
|
5821 if(strength >= UCOL_QUATERNARY) { |
|
5822 for(;;) { |
|
5823 if(i == count) { |
|
5824 goto saveState; |
|
5825 } |
|
5826 // We should save the state only if we |
|
5827 // are sure that we are done with the |
|
5828 // previous iterator state |
|
5829 if(canUpdateState) { |
|
5830 newState = s.iterator->getState(s.iterator); |
|
5831 if(newState != UITER_NO_STATE) { |
|
5832 iterState = newState; |
|
5833 cces = 0; |
|
5834 } |
|
5835 } |
|
5836 CE = ucol_IGetNextCE(coll, &s, status); |
|
5837 cces++; |
|
5838 if(CE==UCOL_NO_MORE_CES) { |
|
5839 // Add the level separator |
|
5840 terminatePSKLevel(level, maxLevel, i, dest); |
|
5841 //dest[i++] = UCOL_LEVELTERMINATOR; |
|
5842 byteCountOrFrenchDone = 0; |
|
5843 // Restart the iteration an move to the |
|
5844 // second level |
|
5845 s.iterator->move(s.iterator, 0, UITER_START); |
|
5846 cces = 0; |
|
5847 level = UCOL_PSK_QUIN; |
|
5848 break; |
|
5849 } |
|
5850 if(CE==0) |
|
5851 continue; |
|
5852 if(isShiftedCE(CE, LVT, &wasShifted)) { |
|
5853 CE >>= 16; /* get primary */ |
|
5854 if(CE != 0) { |
|
5855 if(byteCountOrFrenchDone == 0) { |
|
5856 dest[i++]=(uint8_t)(CE >> 8); |
|
5857 } else { |
|
5858 byteCountOrFrenchDone = 0; |
|
5859 } |
|
5860 if((CE &=0xff)!=0) { |
|
5861 if(i==count) { |
|
5862 /* overflow */ |
|
5863 byteCountOrFrenchDone = 1; |
|
5864 goto saveState; |
|
5865 } |
|
5866 dest[i++]=(uint8_t)CE; |
|
5867 } |
|
5868 } |
|
5869 } else { |
|
5870 notIsContinuation = !isContinuation(CE); |
|
5871 if(notIsContinuation) { |
|
5872 if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
|
5873 dest[i++] = UCOL_HIRAGANA_QUAD; |
|
5874 } else { |
|
5875 dest[i++] = 0xFF; |
|
5876 } |
|
5877 } |
|
5878 } |
|
5879 if(uprv_numAvailableExpCEs(s)) { |
|
5880 canUpdateState = FALSE; |
|
5881 } else { |
|
5882 canUpdateState = TRUE; |
|
5883 } |
|
5884 } |
|
5885 } else { |
|
5886 // if we're not doing quaternary |
|
5887 // skip to the end |
|
5888 level = UCOL_PSK_NULL; |
|
5889 } |
|
5890 /* fall through to next level */ |
|
5891 case UCOL_PSK_QUIN: |
|
5892 level = UCOL_PSK_IDENTICAL; |
|
5893 /* fall through to next level */ |
|
5894 case UCOL_PSK_IDENTICAL: |
|
5895 if(strength >= UCOL_IDENTICAL) { |
|
5896 UChar32 first, second; |
|
5897 int32_t bocsuBytesWritten = 0; |
|
5898 // We always need to do identical on |
|
5899 // the NFD form of the string. |
|
5900 if(normIter == NULL) { |
|
5901 // we arrived from the level below and |
|
5902 // normalization was not turned on. |
|
5903 // therefore, we need to make a fresh NFD iterator |
|
5904 normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
|
5905 s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
|
5906 } else if(!doingIdenticalFromStart) { |
|
5907 // there is an iterator, but we did some other levels. |
|
5908 // therefore, we have a FCD iterator - need to make |
|
5909 // a NFD one. |
|
5910 // normIter being at the beginning does not guarantee |
|
5911 // that the underlying iterator is at the beginning |
|
5912 iter->move(iter, 0, UITER_START); |
|
5913 s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
|
5914 } |
|
5915 // At this point we have a NFD iterator that is positioned |
|
5916 // in the right place |
|
5917 if(U_FAILURE(*status)) { |
|
5918 UTRACE_EXIT_STATUS(*status); |
|
5919 return 0; |
|
5920 } |
|
5921 first = uiter_previous32(s.iterator); |
|
5922 // maybe we're at the start of the string |
|
5923 if(first == U_SENTINEL) { |
|
5924 first = 0; |
|
5925 } else { |
|
5926 uiter_next32(s.iterator); |
|
5927 } |
|
5928 |
|
5929 j = 0; |
|
5930 for(;;) { |
|
5931 if(i == count) { |
|
5932 if(j+1 < bocsuBytesWritten) { |
|
5933 bocsuBytesUsed = j+1; |
|
5934 } |
|
5935 goto saveState; |
|
5936 } |
|
5937 |
|
5938 // On identical level, we will always save |
|
5939 // the state if we reach this point, since |
|
5940 // we don't depend on getNextCE for content |
|
5941 // all the content is in our buffer and we |
|
5942 // already either stored the full buffer OR |
|
5943 // otherwise we won't arrive here. |
|
5944 newState = s.iterator->getState(s.iterator); |
|
5945 if(newState != UITER_NO_STATE) { |
|
5946 iterState = newState; |
|
5947 cces = 0; |
|
5948 } |
|
5949 |
|
5950 uint8_t buff[4]; |
|
5951 second = uiter_next32(s.iterator); |
|
5952 cces++; |
|
5953 |
|
5954 // end condition for identical level |
|
5955 if(second == U_SENTINEL) { |
|
5956 terminatePSKLevel(level, maxLevel, i, dest); |
|
5957 level = UCOL_PSK_NULL; |
|
5958 break; |
|
5959 } |
|
5960 bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff); |
|
5961 first = second; |
|
5962 |
|
5963 j = 0; |
|
5964 if(bocsuBytesUsed != 0) { |
|
5965 while(bocsuBytesUsed-->0) { |
|
5966 j++; |
|
5967 } |
|
5968 } |
|
5969 |
|
5970 while(i < count && j < bocsuBytesWritten) { |
|
5971 dest[i++] = buff[j++]; |
|
5972 } |
|
5973 } |
|
5974 |
|
5975 } else { |
|
5976 level = UCOL_PSK_NULL; |
|
5977 } |
|
5978 /* fall through to next level */ |
|
5979 case UCOL_PSK_NULL: |
|
5980 j = i; |
|
5981 while(j<count) { |
|
5982 dest[j++]=0; |
|
5983 } |
|
5984 break; |
|
5985 default: |
|
5986 *status = U_INTERNAL_PROGRAM_ERROR; |
|
5987 UTRACE_EXIT_STATUS(*status); |
|
5988 return 0; |
|
5989 } |
|
5990 |
|
5991 saveState: |
|
5992 // Now we need to return stuff. First we want to see whether we have |
|
5993 // done everything for the current state of iterator. |
|
5994 if(byteCountOrFrenchDone |
|
5995 || canUpdateState == FALSE |
|
5996 || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE) |
|
5997 { |
|
5998 // Any of above mean that the previous transaction |
|
5999 // wasn't finished and that we should store the |
|
6000 // previous iterator state. |
|
6001 state[0] = iterState; |
|
6002 } else { |
|
6003 // The transaction is complete. We will continue in the next iteration. |
|
6004 state[0] = s.iterator->getState(s.iterator); |
|
6005 cces = 0; |
|
6006 } |
|
6007 // Store the number of bocsu bytes written. |
|
6008 if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) { |
|
6009 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
6010 } |
|
6011 state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT; |
|
6012 |
|
6013 // Next we put in the level of comparison |
|
6014 state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT); |
|
6015 |
|
6016 // If we are doing French, we need to store whether we have just finished the French level |
|
6017 if(level == UCOL_PSK_SECONDARY && doingFrench) { |
|
6018 state[1] |= (((int32_t)(state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
|
6019 } else { |
|
6020 state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
|
6021 } |
|
6022 |
|
6023 // Was the latest CE shifted |
|
6024 if(wasShifted) { |
|
6025 state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT; |
|
6026 } |
|
6027 // Check for cces overflow |
|
6028 if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) { |
|
6029 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
6030 } |
|
6031 // Store cces |
|
6032 state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT); |
|
6033 |
|
6034 // Check for French overflow |
|
6035 if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) { |
|
6036 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
|
6037 } |
|
6038 // Store number of bytes written in the French secondary continuation sequence |
|
6039 state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT); |
|
6040 |
|
6041 |
|
6042 // If we have used normalizing iterator, get rid of it |
|
6043 if(normIter != NULL) { |
|
6044 unorm_closeIter(normIter); |
|
6045 } |
|
6046 |
|
6047 /* To avoid memory leak, free the offset buffer if necessary. */ |
|
6048 ucol_freeOffsetBuffer(&s); |
|
6049 |
|
6050 // Return number of meaningful sortkey bytes. |
|
6051 UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d", |
|
6052 dest,i, state[0], state[1]); |
|
6053 UTRACE_EXIT_VALUE(i); |
|
6054 return i; |
|
6055 } |
|
6056 |
|
6057 /** |
|
6058 * Produce a bound for a given sortkey and a number of levels. |
|
6059 */ |
|
6060 U_CAPI int32_t U_EXPORT2 |
|
6061 ucol_getBound(const uint8_t *source, |
|
6062 int32_t sourceLength, |
|
6063 UColBoundMode boundType, |
|
6064 uint32_t noOfLevels, |
|
6065 uint8_t *result, |
|
6066 int32_t resultLength, |
|
6067 UErrorCode *status) |
|
6068 { |
|
6069 // consistency checks |
|
6070 if(status == NULL || U_FAILURE(*status)) { |
|
6071 return 0; |
|
6072 } |
|
6073 if(source == NULL) { |
|
6074 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6075 return 0; |
|
6076 } |
|
6077 |
|
6078 int32_t sourceIndex = 0; |
|
6079 // Scan the string until we skip enough of the key OR reach the end of the key |
|
6080 do { |
|
6081 sourceIndex++; |
|
6082 if(source[sourceIndex] == UCOL_LEVELTERMINATOR) { |
|
6083 noOfLevels--; |
|
6084 } |
|
6085 } while (noOfLevels > 0 |
|
6086 && (source[sourceIndex] != 0 || sourceIndex < sourceLength)); |
|
6087 |
|
6088 if((source[sourceIndex] == 0 || sourceIndex == sourceLength) |
|
6089 && noOfLevels > 0) { |
|
6090 *status = U_SORT_KEY_TOO_SHORT_WARNING; |
|
6091 } |
|
6092 |
|
6093 |
|
6094 // READ ME: this code assumes that the values for boundType |
|
6095 // enum will not changes. They are set so that the enum value |
|
6096 // corresponds to the number of extra bytes each bound type |
|
6097 // needs. |
|
6098 if(result != NULL && resultLength >= sourceIndex+boundType) { |
|
6099 uprv_memcpy(result, source, sourceIndex); |
|
6100 switch(boundType) { |
|
6101 // Lower bound just gets terminated. No extra bytes |
|
6102 case UCOL_BOUND_LOWER: // = 0 |
|
6103 break; |
|
6104 // Upper bound needs one extra byte |
|
6105 case UCOL_BOUND_UPPER: // = 1 |
|
6106 result[sourceIndex++] = 2; |
|
6107 break; |
|
6108 // Upper long bound needs two extra bytes |
|
6109 case UCOL_BOUND_UPPER_LONG: // = 2 |
|
6110 result[sourceIndex++] = 0xFF; |
|
6111 result[sourceIndex++] = 0xFF; |
|
6112 break; |
|
6113 default: |
|
6114 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6115 return 0; |
|
6116 } |
|
6117 result[sourceIndex++] = 0; |
|
6118 |
|
6119 return sourceIndex; |
|
6120 } else { |
|
6121 return sourceIndex+boundType+1; |
|
6122 } |
|
6123 } |
|
6124 |
|
6125 /****************************************************************************/ |
|
6126 /* Following are the functions that deal with the properties of a collator */ |
|
6127 /* there are new APIs and some compatibility APIs */ |
|
6128 /****************************************************************************/ |
|
6129 |
|
6130 static inline void |
|
6131 ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE, |
|
6132 int32_t *primShift, int32_t *secShift, int32_t *terShift) |
|
6133 { |
|
6134 uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0; |
|
6135 UBool reverseSecondary = FALSE; |
|
6136 UBool continuation = isContinuation(CE); |
|
6137 if(!continuation) { |
|
6138 tertiary = (uint8_t)((CE & coll->tertiaryMask)); |
|
6139 tertiary ^= coll->caseSwitch; |
|
6140 reverseSecondary = TRUE; |
|
6141 } else { |
|
6142 tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); |
|
6143 tertiary &= UCOL_REMOVE_CASE; |
|
6144 reverseSecondary = FALSE; |
|
6145 } |
|
6146 |
|
6147 secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
|
6148 primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
|
6149 primary1 = (uint8_t)(CE >> 8); |
|
6150 |
|
6151 if(primary1 != 0) { |
|
6152 if (coll->leadBytePermutationTable != NULL && !continuation) { |
|
6153 primary1 = coll->leadBytePermutationTable[primary1]; |
|
6154 } |
|
6155 |
|
6156 coll->latinOneCEs[ch] |= (primary1 << *primShift); |
|
6157 *primShift -= 8; |
|
6158 } |
|
6159 if(primary2 != 0) { |
|
6160 if(*primShift < 0) { |
|
6161 coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
|
6162 coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
|
6163 coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
|
6164 return; |
|
6165 } |
|
6166 coll->latinOneCEs[ch] |= (primary2 << *primShift); |
|
6167 *primShift -= 8; |
|
6168 } |
|
6169 if(secondary != 0) { |
|
6170 if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary |
|
6171 coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary |
|
6172 coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24); |
|
6173 } else { // normal case |
|
6174 coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift); |
|
6175 } |
|
6176 *secShift -= 8; |
|
6177 } |
|
6178 if(tertiary != 0) { |
|
6179 coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift); |
|
6180 *terShift -= 8; |
|
6181 } |
|
6182 } |
|
6183 |
|
6184 static inline UBool |
|
6185 ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) { |
|
6186 uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3); |
|
6187 if(newTable == NULL) { |
|
6188 *status = U_MEMORY_ALLOCATION_ERROR; |
|
6189 coll->latinOneFailed = TRUE; |
|
6190 return FALSE; |
|
6191 } |
|
6192 int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t); |
|
6193 uprv_memset(newTable, 0, size*sizeof(uint32_t)*3); |
|
6194 uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy); |
|
6195 uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy); |
|
6196 uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy); |
|
6197 coll->latinOneTableLen = size; |
|
6198 uprv_free(coll->latinOneCEs); |
|
6199 coll->latinOneCEs = newTable; |
|
6200 return TRUE; |
|
6201 } |
|
6202 |
|
6203 static UBool |
|
6204 ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) { |
|
6205 UBool result = TRUE; |
|
6206 if(coll->latinOneCEs == NULL) { |
|
6207 coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3); |
|
6208 if(coll->latinOneCEs == NULL) { |
|
6209 *status = U_MEMORY_ALLOCATION_ERROR; |
|
6210 return FALSE; |
|
6211 } |
|
6212 coll->latinOneTableLen = UCOL_LATINONETABLELEN; |
|
6213 } |
|
6214 UChar ch = 0; |
|
6215 UCollationElements *it = ucol_openElements(coll, &ch, 1, status); |
|
6216 // Check for null pointer |
|
6217 if (U_FAILURE(*status)) { |
|
6218 ucol_closeElements(it); |
|
6219 return FALSE; |
|
6220 } |
|
6221 uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3); |
|
6222 |
|
6223 int32_t primShift = 24, secShift = 24, terShift = 24; |
|
6224 uint32_t CE = 0; |
|
6225 int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1; |
|
6226 |
|
6227 // TODO: make safe if you get more than you wanted... |
|
6228 for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) { |
|
6229 primShift = 24; secShift = 24; terShift = 24; |
|
6230 if(ch < 0x100) { |
|
6231 CE = coll->latinOneMapping[ch]; |
|
6232 } else { |
|
6233 CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
|
6234 if(CE == UCOL_NOT_FOUND && coll->UCA) { |
|
6235 CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
|
6236 } |
|
6237 } |
|
6238 if(CE < UCOL_NOT_FOUND) { |
|
6239 ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
|
6240 } else { |
|
6241 switch (getCETag(CE)) { |
|
6242 case EXPANSION_TAG: |
|
6243 case DIGIT_TAG: |
|
6244 ucol_setText(it, &ch, 1, status); |
|
6245 while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) { |
|
6246 if(primShift < 0 || secShift < 0 || terShift < 0) { |
|
6247 coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
|
6248 coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
|
6249 coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
|
6250 break; |
|
6251 } |
|
6252 ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
|
6253 } |
|
6254 break; |
|
6255 case CONTRACTION_TAG: |
|
6256 // here is the trick |
|
6257 // F2 is contraction. We do something very similar to contractions |
|
6258 // but have two indices, one in the real contraction table and the |
|
6259 // other to where we stuffed things. This hopes that we don't have |
|
6260 // many contractions (this should work for latin-1 tables). |
|
6261 { |
|
6262 if((CE & 0x00FFF000) != 0) { |
|
6263 *status = U_UNSUPPORTED_ERROR; |
|
6264 goto cleanup_after_failure; |
|
6265 } |
|
6266 |
|
6267 const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
|
6268 |
|
6269 CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table |
|
6270 |
|
6271 coll->latinOneCEs[ch] = CE; |
|
6272 coll->latinOneCEs[coll->latinOneTableLen+ch] = CE; |
|
6273 coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE; |
|
6274 |
|
6275 // We're going to jump into contraction table, pick the elements |
|
6276 // and use them |
|
6277 do { |
|
6278 CE = *(coll->contractionCEs + |
|
6279 (UCharOffset - coll->contractionIndex)); |
|
6280 if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) { |
|
6281 uint32_t size; |
|
6282 uint32_t i; /* general counter */ |
|
6283 uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
|
6284 size = getExpansionCount(CE); |
|
6285 //CE = *CEOffset++; |
|
6286 if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ |
|
6287 for(i = 0; i<size; i++) { |
|
6288 if(primShift < 0 || secShift < 0 || terShift < 0) { |
|
6289 coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6290 coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6291 coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6292 break; |
|
6293 } |
|
6294 ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); |
|
6295 } |
|
6296 } else { /* else, we do */ |
|
6297 while(*CEOffset != 0) { |
|
6298 if(primShift < 0 || secShift < 0 || terShift < 0) { |
|
6299 coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6300 coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6301 coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6302 break; |
|
6303 } |
|
6304 ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); |
|
6305 } |
|
6306 } |
|
6307 contractionOffset++; |
|
6308 } else if(CE < UCOL_NOT_FOUND) { |
|
6309 ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift); |
|
6310 } else { |
|
6311 coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6312 coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6313 coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
|
6314 contractionOffset++; |
|
6315 } |
|
6316 UCharOffset++; |
|
6317 primShift = 24; secShift = 24; terShift = 24; |
|
6318 if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate |
|
6319 if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) { |
|
6320 goto cleanup_after_failure; |
|
6321 } |
|
6322 } |
|
6323 } while(*UCharOffset != 0xFFFF); |
|
6324 } |
|
6325 break;; |
|
6326 case SPEC_PROC_TAG: |
|
6327 { |
|
6328 // 0xB7 is a precontext character defined in UCA5.1, a special |
|
6329 // handle is implemeted in order to save LatinOne table for |
|
6330 // most locales. |
|
6331 if (ch==0xb7) { |
|
6332 ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
|
6333 } |
|
6334 else { |
|
6335 goto cleanup_after_failure; |
|
6336 } |
|
6337 } |
|
6338 break; |
|
6339 default: |
|
6340 goto cleanup_after_failure; |
|
6341 } |
|
6342 } |
|
6343 } |
|
6344 // compact table |
|
6345 if(contractionOffset < coll->latinOneTableLen) { |
|
6346 if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) { |
|
6347 goto cleanup_after_failure; |
|
6348 } |
|
6349 } |
|
6350 ucol_closeElements(it); |
|
6351 return result; |
|
6352 |
|
6353 cleanup_after_failure: |
|
6354 // status should already be set before arriving here. |
|
6355 coll->latinOneFailed = TRUE; |
|
6356 ucol_closeElements(it); |
|
6357 return FALSE; |
|
6358 } |
|
6359 |
|
6360 void ucol_updateInternalState(UCollator *coll, UErrorCode *status) { |
|
6361 if(U_SUCCESS(*status)) { |
|
6362 if(coll->caseFirst == UCOL_UPPER_FIRST) { |
|
6363 coll->caseSwitch = UCOL_CASE_SWITCH; |
|
6364 } else { |
|
6365 coll->caseSwitch = UCOL_NO_CASE_SWITCH; |
|
6366 } |
|
6367 |
|
6368 if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) { |
|
6369 coll->tertiaryMask = UCOL_REMOVE_CASE; |
|
6370 coll->tertiaryCommon = UCOL_COMMON3_NORMAL; |
|
6371 coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */ |
|
6372 coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF; |
|
6373 coll->tertiaryBottom = UCOL_COMMON_BOT3; |
|
6374 } else { |
|
6375 coll->tertiaryMask = UCOL_KEEP_CASE; |
|
6376 coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON; |
|
6377 if(coll->caseFirst == UCOL_UPPER_FIRST) { |
|
6378 coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST; |
|
6379 coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER; |
|
6380 coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER; |
|
6381 } else { |
|
6382 coll->tertiaryCommon = UCOL_COMMON3_NORMAL; |
|
6383 coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER; |
|
6384 coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER; |
|
6385 } |
|
6386 } |
|
6387 |
|
6388 /* Set the compression values */ |
|
6389 uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - coll->tertiaryBottom - 1); |
|
6390 coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */ |
|
6391 coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount); |
|
6392 |
|
6393 if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY |
|
6394 && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE) |
|
6395 { |
|
6396 coll->sortKeyGen = ucol_calcSortKeySimpleTertiary; |
|
6397 } else { |
|
6398 coll->sortKeyGen = ucol_calcSortKey; |
|
6399 } |
|
6400 if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF |
|
6401 && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed) |
|
6402 { |
|
6403 if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) { |
|
6404 if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it |
|
6405 //fprintf(stderr, "F"); |
|
6406 coll->latinOneUse = TRUE; |
|
6407 } else { |
|
6408 coll->latinOneUse = FALSE; |
|
6409 } |
|
6410 if(*status == U_UNSUPPORTED_ERROR) { |
|
6411 *status = U_ZERO_ERROR; |
|
6412 } |
|
6413 } else { // latin1Table exists and it doesn't need to be regenerated, just use it |
|
6414 coll->latinOneUse = TRUE; |
|
6415 } |
|
6416 } else { |
|
6417 coll->latinOneUse = FALSE; |
|
6418 } |
|
6419 } |
|
6420 } |
|
6421 |
|
6422 U_CAPI uint32_t U_EXPORT2 |
|
6423 ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) { |
|
6424 if(U_FAILURE(*status) || coll == NULL) { |
|
6425 return 0; |
|
6426 } |
|
6427 if(len == -1) { |
|
6428 len = u_strlen(varTop); |
|
6429 } |
|
6430 if(len == 0) { |
|
6431 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6432 return 0; |
|
6433 } |
|
6434 |
|
6435 if(coll->delegate!=NULL) { |
|
6436 return ((Collator*)coll->delegate)->setVariableTop(varTop, len, *status); |
|
6437 } |
|
6438 |
|
6439 |
|
6440 collIterate s; |
|
6441 IInit_collIterate(coll, varTop, len, &s, status); |
|
6442 if(U_FAILURE(*status)) { |
|
6443 return 0; |
|
6444 } |
|
6445 |
|
6446 uint32_t CE = ucol_IGetNextCE(coll, &s, status); |
|
6447 |
|
6448 /* here we check if we have consumed all characters */ |
|
6449 /* you can put in either one character or a contraction */ |
|
6450 /* you shouldn't put more... */ |
|
6451 if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) { |
|
6452 *status = U_CE_NOT_FOUND_ERROR; |
|
6453 return 0; |
|
6454 } |
|
6455 |
|
6456 uint32_t nextCE = ucol_IGetNextCE(coll, &s, status); |
|
6457 |
|
6458 if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) { |
|
6459 *status = U_PRIMARY_TOO_LONG_ERROR; |
|
6460 return 0; |
|
6461 } |
|
6462 if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) { |
|
6463 coll->variableTopValueisDefault = FALSE; |
|
6464 coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16; |
|
6465 } |
|
6466 |
|
6467 /* To avoid memory leak, free the offset buffer if necessary. */ |
|
6468 ucol_freeOffsetBuffer(&s); |
|
6469 |
|
6470 return CE & UCOL_PRIMARYMASK; |
|
6471 } |
|
6472 |
|
6473 U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) { |
|
6474 if(U_FAILURE(*status) || coll == NULL) { |
|
6475 return 0; |
|
6476 } |
|
6477 if(coll->delegate!=NULL) { |
|
6478 return ((const Collator*)coll->delegate)->getVariableTop(*status); |
|
6479 } |
|
6480 return coll->variableTopValue<<16; |
|
6481 } |
|
6482 |
|
6483 U_CAPI void U_EXPORT2 |
|
6484 ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) { |
|
6485 if(U_FAILURE(*status) || coll == NULL) { |
|
6486 return; |
|
6487 } |
|
6488 |
|
6489 if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) { |
|
6490 coll->variableTopValueisDefault = FALSE; |
|
6491 coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16; |
|
6492 } |
|
6493 } |
|
6494 /* Attribute setter API */ |
|
6495 U_CAPI void U_EXPORT2 |
|
6496 ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) { |
|
6497 if(U_FAILURE(*status) || coll == NULL) { |
|
6498 return; |
|
6499 } |
|
6500 |
|
6501 if(coll->delegate != NULL) { |
|
6502 ((Collator*)coll->delegate)->setAttribute(attr,value,*status); |
|
6503 return; |
|
6504 } |
|
6505 |
|
6506 UColAttributeValue oldFrench = coll->frenchCollation; |
|
6507 UColAttributeValue oldCaseFirst = coll->caseFirst; |
|
6508 switch(attr) { |
|
6509 case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */ |
|
6510 if(value == UCOL_ON) { |
|
6511 coll->numericCollation = UCOL_ON; |
|
6512 coll->numericCollationisDefault = FALSE; |
|
6513 } else if (value == UCOL_OFF) { |
|
6514 coll->numericCollation = UCOL_OFF; |
|
6515 coll->numericCollationisDefault = FALSE; |
|
6516 } else if (value == UCOL_DEFAULT) { |
|
6517 coll->numericCollationisDefault = TRUE; |
|
6518 coll->numericCollation = (UColAttributeValue)coll->options->numericCollation; |
|
6519 } else { |
|
6520 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6521 } |
|
6522 break; |
|
6523 case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */ |
|
6524 if(value == UCOL_ON || value == UCOL_OFF || value == UCOL_DEFAULT) { |
|
6525 // This attribute is an implementation detail of the CLDR Japanese tailoring. |
|
6526 // The implementation might change to use a different mechanism |
|
6527 // to achieve the same Japanese sort order. |
|
6528 // Since ICU 50, this attribute is not settable any more via API functions. |
|
6529 } else { |
|
6530 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6531 } |
|
6532 break; |
|
6533 case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
|
6534 if(value == UCOL_ON) { |
|
6535 coll->frenchCollation = UCOL_ON; |
|
6536 coll->frenchCollationisDefault = FALSE; |
|
6537 } else if (value == UCOL_OFF) { |
|
6538 coll->frenchCollation = UCOL_OFF; |
|
6539 coll->frenchCollationisDefault = FALSE; |
|
6540 } else if (value == UCOL_DEFAULT) { |
|
6541 coll->frenchCollationisDefault = TRUE; |
|
6542 coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation; |
|
6543 } else { |
|
6544 *status = U_ILLEGAL_ARGUMENT_ERROR ; |
|
6545 } |
|
6546 break; |
|
6547 case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ |
|
6548 if(value == UCOL_SHIFTED) { |
|
6549 coll->alternateHandling = UCOL_SHIFTED; |
|
6550 coll->alternateHandlingisDefault = FALSE; |
|
6551 } else if (value == UCOL_NON_IGNORABLE) { |
|
6552 coll->alternateHandling = UCOL_NON_IGNORABLE; |
|
6553 coll->alternateHandlingisDefault = FALSE; |
|
6554 } else if (value == UCOL_DEFAULT) { |
|
6555 coll->alternateHandlingisDefault = TRUE; |
|
6556 coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ; |
|
6557 } else { |
|
6558 *status = U_ILLEGAL_ARGUMENT_ERROR ; |
|
6559 } |
|
6560 break; |
|
6561 case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ |
|
6562 if(value == UCOL_LOWER_FIRST) { |
|
6563 coll->caseFirst = UCOL_LOWER_FIRST; |
|
6564 coll->caseFirstisDefault = FALSE; |
|
6565 } else if (value == UCOL_UPPER_FIRST) { |
|
6566 coll->caseFirst = UCOL_UPPER_FIRST; |
|
6567 coll->caseFirstisDefault = FALSE; |
|
6568 } else if (value == UCOL_OFF) { |
|
6569 coll->caseFirst = UCOL_OFF; |
|
6570 coll->caseFirstisDefault = FALSE; |
|
6571 } else if (value == UCOL_DEFAULT) { |
|
6572 coll->caseFirst = (UColAttributeValue)coll->options->caseFirst; |
|
6573 coll->caseFirstisDefault = TRUE; |
|
6574 } else { |
|
6575 *status = U_ILLEGAL_ARGUMENT_ERROR ; |
|
6576 } |
|
6577 break; |
|
6578 case UCOL_CASE_LEVEL: /* do we have an extra case level */ |
|
6579 if(value == UCOL_ON) { |
|
6580 coll->caseLevel = UCOL_ON; |
|
6581 coll->caseLevelisDefault = FALSE; |
|
6582 } else if (value == UCOL_OFF) { |
|
6583 coll->caseLevel = UCOL_OFF; |
|
6584 coll->caseLevelisDefault = FALSE; |
|
6585 } else if (value == UCOL_DEFAULT) { |
|
6586 coll->caseLevel = (UColAttributeValue)coll->options->caseLevel; |
|
6587 coll->caseLevelisDefault = TRUE; |
|
6588 } else { |
|
6589 *status = U_ILLEGAL_ARGUMENT_ERROR ; |
|
6590 } |
|
6591 break; |
|
6592 case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ |
|
6593 if(value == UCOL_ON) { |
|
6594 coll->normalizationMode = UCOL_ON; |
|
6595 coll->normalizationModeisDefault = FALSE; |
|
6596 initializeFCD(status); |
|
6597 } else if (value == UCOL_OFF) { |
|
6598 coll->normalizationMode = UCOL_OFF; |
|
6599 coll->normalizationModeisDefault = FALSE; |
|
6600 } else if (value == UCOL_DEFAULT) { |
|
6601 coll->normalizationModeisDefault = TRUE; |
|
6602 coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode; |
|
6603 if(coll->normalizationMode == UCOL_ON) { |
|
6604 initializeFCD(status); |
|
6605 } |
|
6606 } else { |
|
6607 *status = U_ILLEGAL_ARGUMENT_ERROR ; |
|
6608 } |
|
6609 break; |
|
6610 case UCOL_STRENGTH: /* attribute for strength */ |
|
6611 if (value == UCOL_DEFAULT) { |
|
6612 coll->strengthisDefault = TRUE; |
|
6613 coll->strength = (UColAttributeValue)coll->options->strength; |
|
6614 } else if (value <= UCOL_IDENTICAL) { |
|
6615 coll->strengthisDefault = FALSE; |
|
6616 coll->strength = value; |
|
6617 } else { |
|
6618 *status = U_ILLEGAL_ARGUMENT_ERROR ; |
|
6619 } |
|
6620 break; |
|
6621 case UCOL_ATTRIBUTE_COUNT: |
|
6622 default: |
|
6623 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6624 break; |
|
6625 } |
|
6626 if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) { |
|
6627 coll->latinOneRegenTable = TRUE; |
|
6628 } else { |
|
6629 coll->latinOneRegenTable = FALSE; |
|
6630 } |
|
6631 ucol_updateInternalState(coll, status); |
|
6632 } |
|
6633 |
|
6634 U_CAPI UColAttributeValue U_EXPORT2 |
|
6635 ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) { |
|
6636 if(U_FAILURE(*status) || coll == NULL) { |
|
6637 return UCOL_DEFAULT; |
|
6638 } |
|
6639 |
|
6640 if(coll->delegate != NULL) { |
|
6641 return ((Collator*)coll->delegate)->getAttribute(attr,*status); |
|
6642 } |
|
6643 |
|
6644 switch(attr) { |
|
6645 case UCOL_NUMERIC_COLLATION: |
|
6646 return coll->numericCollation; |
|
6647 case UCOL_HIRAGANA_QUATERNARY_MODE: |
|
6648 return coll->hiraganaQ; |
|
6649 case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
|
6650 return coll->frenchCollation; |
|
6651 case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ |
|
6652 return coll->alternateHandling; |
|
6653 case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ |
|
6654 return coll->caseFirst; |
|
6655 case UCOL_CASE_LEVEL: /* do we have an extra case level */ |
|
6656 return coll->caseLevel; |
|
6657 case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ |
|
6658 return coll->normalizationMode; |
|
6659 case UCOL_STRENGTH: /* attribute for strength */ |
|
6660 return coll->strength; |
|
6661 case UCOL_ATTRIBUTE_COUNT: |
|
6662 default: |
|
6663 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6664 break; |
|
6665 } |
|
6666 return UCOL_DEFAULT; |
|
6667 } |
|
6668 |
|
6669 U_CAPI void U_EXPORT2 |
|
6670 ucol_setStrength( UCollator *coll, |
|
6671 UCollationStrength strength) |
|
6672 { |
|
6673 UErrorCode status = U_ZERO_ERROR; |
|
6674 ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status); |
|
6675 } |
|
6676 |
|
6677 U_CAPI UCollationStrength U_EXPORT2 |
|
6678 ucol_getStrength(const UCollator *coll) |
|
6679 { |
|
6680 UErrorCode status = U_ZERO_ERROR; |
|
6681 return ucol_getAttribute(coll, UCOL_STRENGTH, &status); |
|
6682 } |
|
6683 |
|
6684 U_CAPI int32_t U_EXPORT2 |
|
6685 ucol_getReorderCodes(const UCollator *coll, |
|
6686 int32_t *dest, |
|
6687 int32_t destCapacity, |
|
6688 UErrorCode *status) { |
|
6689 if (U_FAILURE(*status)) { |
|
6690 return 0; |
|
6691 } |
|
6692 |
|
6693 if(coll->delegate!=NULL) { |
|
6694 return ((const Collator*)coll->delegate)->getReorderCodes(dest, destCapacity, *status); |
|
6695 } |
|
6696 |
|
6697 if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { |
|
6698 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6699 return 0; |
|
6700 } |
|
6701 |
|
6702 #ifdef UCOL_DEBUG |
|
6703 printf("coll->reorderCodesLength = %d\n", coll->reorderCodesLength); |
|
6704 printf("coll->defaultReorderCodesLength = %d\n", coll->defaultReorderCodesLength); |
|
6705 #endif |
|
6706 |
|
6707 if (coll->reorderCodesLength > destCapacity) { |
|
6708 *status = U_BUFFER_OVERFLOW_ERROR; |
|
6709 return coll->reorderCodesLength; |
|
6710 } |
|
6711 for (int32_t i = 0; i < coll->reorderCodesLength; i++) { |
|
6712 dest[i] = coll->reorderCodes[i]; |
|
6713 } |
|
6714 return coll->reorderCodesLength; |
|
6715 } |
|
6716 |
|
6717 U_CAPI void U_EXPORT2 |
|
6718 ucol_setReorderCodes(UCollator* coll, |
|
6719 const int32_t* reorderCodes, |
|
6720 int32_t reorderCodesLength, |
|
6721 UErrorCode *status) { |
|
6722 if (U_FAILURE(*status)) { |
|
6723 return; |
|
6724 } |
|
6725 |
|
6726 if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) { |
|
6727 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
6728 return; |
|
6729 } |
|
6730 |
|
6731 if(coll->delegate!=NULL) { |
|
6732 ((Collator*)coll->delegate)->setReorderCodes(reorderCodes, reorderCodesLength, *status); |
|
6733 return; |
|
6734 } |
|
6735 |
|
6736 if (coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { |
|
6737 uprv_free(coll->reorderCodes); |
|
6738 } |
|
6739 coll->reorderCodes = NULL; |
|
6740 coll->freeReorderCodesOnClose = FALSE; |
|
6741 coll->reorderCodesLength = 0; |
|
6742 if (reorderCodesLength == 0) { |
|
6743 if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { |
|
6744 uprv_free(coll->leadBytePermutationTable); |
|
6745 } |
|
6746 coll->leadBytePermutationTable = NULL; |
|
6747 coll->freeLeadBytePermutationTableOnClose = FALSE; |
|
6748 return; |
|
6749 } |
|
6750 coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t)); |
|
6751 if (coll->reorderCodes == NULL) { |
|
6752 *status = U_MEMORY_ALLOCATION_ERROR; |
|
6753 return; |
|
6754 } |
|
6755 coll->freeReorderCodesOnClose = TRUE; |
|
6756 for (int32_t i = 0; i < reorderCodesLength; i++) { |
|
6757 coll->reorderCodes[i] = reorderCodes[i]; |
|
6758 } |
|
6759 coll->reorderCodesLength = reorderCodesLength; |
|
6760 ucol_buildPermutationTable(coll, status); |
|
6761 } |
|
6762 |
|
6763 U_CAPI int32_t U_EXPORT2 |
|
6764 ucol_getEquivalentReorderCodes(int32_t reorderCode, |
|
6765 int32_t* dest, |
|
6766 int32_t destCapacity, |
|
6767 UErrorCode *pErrorCode) { |
|
6768 bool equivalentCodesSet[USCRIPT_CODE_LIMIT]; |
|
6769 uint16_t leadBytes[256]; |
|
6770 int leadBytesCount; |
|
6771 int leadByteIndex; |
|
6772 int16_t reorderCodesForLeadByte[USCRIPT_CODE_LIMIT]; |
|
6773 int reorderCodesForLeadByteCount; |
|
6774 int reorderCodeIndex; |
|
6775 |
|
6776 int32_t equivalentCodesCount = 0; |
|
6777 int setIndex; |
|
6778 |
|
6779 if (U_FAILURE(*pErrorCode)) { |
|
6780 return 0; |
|
6781 } |
|
6782 |
|
6783 if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { |
|
6784 *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; |
|
6785 return 0; |
|
6786 } |
|
6787 |
|
6788 uprv_memset(equivalentCodesSet, 0, USCRIPT_CODE_LIMIT * sizeof(bool)); |
|
6789 |
|
6790 const UCollator* uca = ucol_initUCA(pErrorCode); |
|
6791 if (U_FAILURE(*pErrorCode)) { |
|
6792 return 0; |
|
6793 } |
|
6794 leadBytesCount = ucol_getLeadBytesForReorderCode(uca, reorderCode, leadBytes, 256); |
|
6795 for (leadByteIndex = 0; leadByteIndex < leadBytesCount; leadByteIndex++) { |
|
6796 reorderCodesForLeadByteCount = ucol_getReorderCodesForLeadByte( |
|
6797 uca, leadBytes[leadByteIndex], reorderCodesForLeadByte, USCRIPT_CODE_LIMIT); |
|
6798 for (reorderCodeIndex = 0; reorderCodeIndex < reorderCodesForLeadByteCount; reorderCodeIndex++) { |
|
6799 equivalentCodesSet[reorderCodesForLeadByte[reorderCodeIndex]] = true; |
|
6800 } |
|
6801 } |
|
6802 |
|
6803 for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { |
|
6804 if (equivalentCodesSet[setIndex] == true) { |
|
6805 equivalentCodesCount++; |
|
6806 } |
|
6807 } |
|
6808 |
|
6809 if (destCapacity == 0) { |
|
6810 return equivalentCodesCount; |
|
6811 } |
|
6812 |
|
6813 equivalentCodesCount = 0; |
|
6814 for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { |
|
6815 if (equivalentCodesSet[setIndex] == true) { |
|
6816 dest[equivalentCodesCount++] = setIndex; |
|
6817 if (equivalentCodesCount >= destCapacity) { |
|
6818 break; |
|
6819 } |
|
6820 } |
|
6821 } |
|
6822 return equivalentCodesCount; |
|
6823 } |
|
6824 |
|
6825 |
|
6826 /****************************************************************************/ |
|
6827 /* Following are misc functions */ |
|
6828 /* there are new APIs and some compatibility APIs */ |
|
6829 /****************************************************************************/ |
|
6830 |
|
6831 U_CAPI void U_EXPORT2 |
|
6832 ucol_getVersion(const UCollator* coll, |
|
6833 UVersionInfo versionInfo) |
|
6834 { |
|
6835 if(coll->delegate!=NULL) { |
|
6836 ((const Collator*)coll->delegate)->getVersion(versionInfo); |
|
6837 return; |
|
6838 } |
|
6839 /* RunTime version */ |
|
6840 uint8_t rtVersion = UCOL_RUNTIME_VERSION; |
|
6841 /* Builder version*/ |
|
6842 uint8_t bdVersion = coll->image->version[0]; |
|
6843 |
|
6844 /* Charset Version. Need to get the version from cnv files |
|
6845 * makeconv should populate cnv files with version and |
|
6846 * an api has to be provided in ucnv.h to obtain this version |
|
6847 */ |
|
6848 uint8_t csVersion = 0; |
|
6849 |
|
6850 /* combine the version info */ |
|
6851 uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion)); |
|
6852 |
|
6853 /* Tailoring rules */ |
|
6854 versionInfo[0] = (uint8_t)(cmbVersion>>8); |
|
6855 versionInfo[1] = (uint8_t)cmbVersion; |
|
6856 versionInfo[2] = coll->image->version[1]; |
|
6857 if(coll->UCA) { |
|
6858 /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */ |
|
6859 versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07); |
|
6860 } else { |
|
6861 versionInfo[3] = 0; |
|
6862 } |
|
6863 } |
|
6864 |
|
6865 |
|
6866 /* This internal API checks whether a character is tailored or not */ |
|
6867 U_CAPI UBool U_EXPORT2 |
|
6868 ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) { |
|
6869 if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) { |
|
6870 return FALSE; |
|
6871 } |
|
6872 |
|
6873 uint32_t CE = UCOL_NOT_FOUND; |
|
6874 const UChar *ContractionStart = NULL; |
|
6875 if(u < 0x100) { /* latin-1 */ |
|
6876 CE = coll->latinOneMapping[u]; |
|
6877 if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) { |
|
6878 return FALSE; |
|
6879 } |
|
6880 } else { /* regular */ |
|
6881 CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u); |
|
6882 } |
|
6883 |
|
6884 if(isContraction(CE)) { |
|
6885 ContractionStart = (UChar *)coll->image+getContractOffset(CE); |
|
6886 CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex)); |
|
6887 } |
|
6888 |
|
6889 return (UBool)(CE != UCOL_NOT_FOUND); |
|
6890 } |
|
6891 |
|
6892 |
|
6893 /****************************************************************************/ |
|
6894 /* Following are the string compare functions */ |
|
6895 /* */ |
|
6896 /****************************************************************************/ |
|
6897 |
|
6898 |
|
6899 /* ucol_checkIdent internal function. Does byte level string compare. */ |
|
6900 /* Used by strcoll if strength == identical and strings */ |
|
6901 /* are otherwise equal. */ |
|
6902 /* */ |
|
6903 /* Comparison must be done on NFD normalized strings. */ |
|
6904 /* FCD is not good enough. */ |
|
6905 |
|
6906 static |
|
6907 UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status) |
|
6908 { |
|
6909 // When we arrive here, we can have normal strings or UCharIterators. Currently they are both |
|
6910 // of same type, but that doesn't really mean that it will stay that way. |
|
6911 int32_t comparison; |
|
6912 |
|
6913 if (sColl->flags & UCOL_USE_ITERATOR) { |
|
6914 // The division for the array length may truncate the array size to |
|
6915 // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
|
6916 // for all platforms anyway. |
|
6917 UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
6918 UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
6919 UNormIterator *sNIt = NULL, *tNIt = NULL; |
|
6920 sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
|
6921 tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
|
6922 sColl->iterator->move(sColl->iterator, 0, UITER_START); |
|
6923 tColl->iterator->move(tColl->iterator, 0, UITER_START); |
|
6924 UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status); |
|
6925 UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status); |
|
6926 comparison = u_strCompareIter(sIt, tIt, TRUE); |
|
6927 unorm_closeIter(sNIt); |
|
6928 unorm_closeIter(tNIt); |
|
6929 } else { |
|
6930 int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1; |
|
6931 const UChar *sBuf = sColl->string; |
|
6932 int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1; |
|
6933 const UChar *tBuf = tColl->string; |
|
6934 |
|
6935 if (normalize) { |
|
6936 *status = U_ZERO_ERROR; |
|
6937 // Note: We could use Normalizer::compare() or similar, but for short strings |
|
6938 // which may not be in FCD it might be faster to just NFD them. |
|
6939 // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than |
|
6940 // NFD'ing immediately might be faster for long strings, |
|
6941 // but string comparison is usually done on relatively short strings. |
|
6942 sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen), |
|
6943 sColl->writableBuffer, |
|
6944 *status); |
|
6945 tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen), |
|
6946 tColl->writableBuffer, |
|
6947 *status); |
|
6948 if(U_FAILURE(*status)) { |
|
6949 return UCOL_LESS; |
|
6950 } |
|
6951 comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer); |
|
6952 } else { |
|
6953 comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE); |
|
6954 } |
|
6955 } |
|
6956 |
|
6957 if (comparison < 0) { |
|
6958 return UCOL_LESS; |
|
6959 } else if (comparison == 0) { |
|
6960 return UCOL_EQUAL; |
|
6961 } else /* comparison > 0 */ { |
|
6962 return UCOL_GREATER; |
|
6963 } |
|
6964 } |
|
6965 |
|
6966 /* CEBuf - A struct and some inline functions to handle the saving */ |
|
6967 /* of CEs in a buffer within ucol_strcoll */ |
|
6968 |
|
6969 #define UCOL_CEBUF_SIZE 512 |
|
6970 typedef struct ucol_CEBuf { |
|
6971 uint32_t *buf; |
|
6972 uint32_t *endp; |
|
6973 uint32_t *pos; |
|
6974 uint32_t localArray[UCOL_CEBUF_SIZE]; |
|
6975 } ucol_CEBuf; |
|
6976 |
|
6977 |
|
6978 static |
|
6979 inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) { |
|
6980 (b)->buf = (b)->pos = (b)->localArray; |
|
6981 (b)->endp = (b)->buf + UCOL_CEBUF_SIZE; |
|
6982 } |
|
6983 |
|
6984 static |
|
6985 void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) { |
|
6986 uint32_t oldSize; |
|
6987 uint32_t newSize; |
|
6988 uint32_t *newBuf; |
|
6989 |
|
6990 ci->flags |= UCOL_ITER_ALLOCATED; |
|
6991 oldSize = (uint32_t)(b->pos - b->buf); |
|
6992 newSize = oldSize * 2; |
|
6993 newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t)); |
|
6994 if(newBuf == NULL) { |
|
6995 *status = U_MEMORY_ALLOCATION_ERROR; |
|
6996 } |
|
6997 else { |
|
6998 uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t)); |
|
6999 if (b->buf != b->localArray) { |
|
7000 uprv_free(b->buf); |
|
7001 } |
|
7002 b->buf = newBuf; |
|
7003 b->endp = b->buf + newSize; |
|
7004 b->pos = b->buf + oldSize; |
|
7005 } |
|
7006 } |
|
7007 |
|
7008 static |
|
7009 inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) { |
|
7010 if (b->pos == b->endp) { |
|
7011 ucol_CEBuf_Expand(b, ci, status); |
|
7012 } |
|
7013 if (U_SUCCESS(*status)) { |
|
7014 *(b)->pos++ = ce; |
|
7015 } |
|
7016 } |
|
7017 |
|
7018 /* This is a trick string compare function that goes in and uses sortkeys to compare */ |
|
7019 /* It is used when compare gets in trouble and needs to bail out */ |
|
7020 static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl, |
|
7021 collIterate *tColl, |
|
7022 UErrorCode *status) |
|
7023 { |
|
7024 uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER]; |
|
7025 uint8_t *sourceKeyP = sourceKey; |
|
7026 uint8_t *targetKeyP = targetKey; |
|
7027 int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER; |
|
7028 const UCollator *coll = sColl->coll; |
|
7029 const UChar *source = NULL; |
|
7030 const UChar *target = NULL; |
|
7031 int32_t result = UCOL_EQUAL; |
|
7032 UnicodeString sourceString, targetString; |
|
7033 int32_t sourceLength; |
|
7034 int32_t targetLength; |
|
7035 |
|
7036 if(sColl->flags & UCOL_USE_ITERATOR) { |
|
7037 sColl->iterator->move(sColl->iterator, 0, UITER_START); |
|
7038 tColl->iterator->move(tColl->iterator, 0, UITER_START); |
|
7039 UChar32 c; |
|
7040 while((c=sColl->iterator->next(sColl->iterator))>=0) { |
|
7041 sourceString.append((UChar)c); |
|
7042 } |
|
7043 while((c=tColl->iterator->next(tColl->iterator))>=0) { |
|
7044 targetString.append((UChar)c); |
|
7045 } |
|
7046 source = sourceString.getBuffer(); |
|
7047 sourceLength = sourceString.length(); |
|
7048 target = targetString.getBuffer(); |
|
7049 targetLength = targetString.length(); |
|
7050 } else { // no iterators |
|
7051 sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1; |
|
7052 targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1; |
|
7053 source = sColl->string; |
|
7054 target = tColl->string; |
|
7055 } |
|
7056 |
|
7057 |
|
7058 |
|
7059 sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
|
7060 if(sourceKeyLen > UCOL_MAX_BUFFER) { |
|
7061 sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t)); |
|
7062 if(sourceKeyP == NULL) { |
|
7063 *status = U_MEMORY_ALLOCATION_ERROR; |
|
7064 goto cleanup_and_do_compare; |
|
7065 } |
|
7066 sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
|
7067 } |
|
7068 |
|
7069 targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
|
7070 if(targetKeyLen > UCOL_MAX_BUFFER) { |
|
7071 targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t)); |
|
7072 if(targetKeyP == NULL) { |
|
7073 *status = U_MEMORY_ALLOCATION_ERROR; |
|
7074 goto cleanup_and_do_compare; |
|
7075 } |
|
7076 targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
|
7077 } |
|
7078 |
|
7079 result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP); |
|
7080 |
|
7081 cleanup_and_do_compare: |
|
7082 if(sourceKeyP != NULL && sourceKeyP != sourceKey) { |
|
7083 uprv_free(sourceKeyP); |
|
7084 } |
|
7085 |
|
7086 if(targetKeyP != NULL && targetKeyP != targetKey) { |
|
7087 uprv_free(targetKeyP); |
|
7088 } |
|
7089 |
|
7090 if(result<0) { |
|
7091 return UCOL_LESS; |
|
7092 } else if(result>0) { |
|
7093 return UCOL_GREATER; |
|
7094 } else { |
|
7095 return UCOL_EQUAL; |
|
7096 } |
|
7097 } |
|
7098 |
|
7099 |
|
7100 static UCollationResult |
|
7101 ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status) |
|
7102 { |
|
7103 U_ALIGN_CODE(16); |
|
7104 |
|
7105 const UCollator *coll = sColl->coll; |
|
7106 |
|
7107 |
|
7108 // setting up the collator parameters |
|
7109 UColAttributeValue strength = coll->strength; |
|
7110 UBool initialCheckSecTer = (strength >= UCOL_SECONDARY); |
|
7111 |
|
7112 UBool checkSecTer = initialCheckSecTer; |
|
7113 UBool checkTertiary = (strength >= UCOL_TERTIARY); |
|
7114 UBool checkQuad = (strength >= UCOL_QUATERNARY); |
|
7115 UBool checkIdent = (strength == UCOL_IDENTICAL); |
|
7116 UBool checkCase = (coll->caseLevel == UCOL_ON); |
|
7117 UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer; |
|
7118 UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
|
7119 UBool qShifted = shifted && checkQuad; |
|
7120 UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad; |
|
7121 |
|
7122 if(doHiragana && shifted) { |
|
7123 return (ucol_compareUsingSortKeys(sColl, tColl, status)); |
|
7124 } |
|
7125 uint8_t caseSwitch = coll->caseSwitch; |
|
7126 uint8_t tertiaryMask = coll->tertiaryMask; |
|
7127 |
|
7128 // This is the lowest primary value that will not be ignored if shifted |
|
7129 uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0; |
|
7130 |
|
7131 UCollationResult result = UCOL_EQUAL; |
|
7132 UCollationResult hirResult = UCOL_EQUAL; |
|
7133 |
|
7134 // Preparing the CE buffers. They will be filled during the primary phase |
|
7135 ucol_CEBuf sCEs; |
|
7136 ucol_CEBuf tCEs; |
|
7137 UCOL_INIT_CEBUF(&sCEs); |
|
7138 UCOL_INIT_CEBUF(&tCEs); |
|
7139 |
|
7140 uint32_t secS = 0, secT = 0; |
|
7141 uint32_t sOrder=0, tOrder=0; |
|
7142 |
|
7143 // Non shifted primary processing is quite simple |
|
7144 if(!shifted) { |
|
7145 for(;;) { |
|
7146 // We fetch CEs until we hit a non ignorable primary or end. |
|
7147 uint32_t sPrimary; |
|
7148 do { |
|
7149 // We get the next CE |
|
7150 sOrder = ucol_IGetNextCE(coll, sColl, status); |
|
7151 // Stuff it in the buffer |
|
7152 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7153 // And keep just the primary part. |
|
7154 sPrimary = sOrder & UCOL_PRIMARYMASK; |
|
7155 } while(sPrimary == 0); |
|
7156 |
|
7157 // see the comments on the above block |
|
7158 uint32_t tPrimary; |
|
7159 do { |
|
7160 tOrder = ucol_IGetNextCE(coll, tColl, status); |
|
7161 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7162 tPrimary = tOrder & UCOL_PRIMARYMASK; |
|
7163 } while(tPrimary == 0); |
|
7164 |
|
7165 // if both primaries are the same |
|
7166 if(sPrimary == tPrimary) { |
|
7167 // and there are no more CEs, we advance to the next level |
|
7168 if(sPrimary == UCOL_NO_MORE_CES_PRIMARY) { |
|
7169 break; |
|
7170 } |
|
7171 if(doHiragana && hirResult == UCOL_EQUAL) { |
|
7172 if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) { |
|
7173 hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA)) |
|
7174 ? UCOL_LESS:UCOL_GREATER; |
|
7175 } |
|
7176 } |
|
7177 } else { |
|
7178 // only need to check one for continuation |
|
7179 // if one is then the other must be or the preceding CE would be a prefix of the other |
|
7180 if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) { |
|
7181 sPrimary = (coll->leadBytePermutationTable[sPrimary>>24] << 24) | (sPrimary & 0x00FFFFFF); |
|
7182 tPrimary = (coll->leadBytePermutationTable[tPrimary>>24] << 24) | (tPrimary & 0x00FFFFFF); |
|
7183 } |
|
7184 // if two primaries are different, we are done |
|
7185 result = (sPrimary < tPrimary) ? UCOL_LESS: UCOL_GREATER; |
|
7186 goto commonReturn; |
|
7187 } |
|
7188 } // no primary difference... do the rest from the buffers |
|
7189 } else { // shifted - do a slightly more complicated processing :) |
|
7190 for(;;) { |
|
7191 UBool sInShifted = FALSE; |
|
7192 UBool tInShifted = FALSE; |
|
7193 // This version of code can be refactored. However, it seems easier to understand this way. |
|
7194 // Source loop. Same as the target loop. |
|
7195 for(;;) { |
|
7196 sOrder = ucol_IGetNextCE(coll, sColl, status); |
|
7197 if(sOrder == UCOL_NO_MORE_CES) { |
|
7198 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7199 break; |
|
7200 } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) { |
|
7201 /* UCA amendment - ignore ignorables that follow shifted code points */ |
|
7202 continue; |
|
7203 } else if(isContinuation(sOrder)) { |
|
7204 if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ |
|
7205 if(sInShifted) { |
|
7206 sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ |
|
7207 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7208 continue; |
|
7209 } else { |
|
7210 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7211 break; |
|
7212 } |
|
7213 } else { /* Just lower level values */ |
|
7214 if(sInShifted) { |
|
7215 continue; |
|
7216 } else { |
|
7217 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7218 continue; |
|
7219 } |
|
7220 } |
|
7221 } else { /* regular */ |
|
7222 if(coll->leadBytePermutationTable != NULL){ |
|
7223 sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); |
|
7224 } |
|
7225 if((sOrder & UCOL_PRIMARYMASK) > LVT) { |
|
7226 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7227 break; |
|
7228 } else { |
|
7229 if((sOrder & UCOL_PRIMARYMASK) > 0) { |
|
7230 sInShifted = TRUE; |
|
7231 sOrder &= UCOL_PRIMARYMASK; |
|
7232 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7233 continue; |
|
7234 } else { |
|
7235 UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
|
7236 sInShifted = FALSE; |
|
7237 continue; |
|
7238 } |
|
7239 } |
|
7240 } |
|
7241 } |
|
7242 sOrder &= UCOL_PRIMARYMASK; |
|
7243 sInShifted = FALSE; |
|
7244 |
|
7245 for(;;) { |
|
7246 tOrder = ucol_IGetNextCE(coll, tColl, status); |
|
7247 if(tOrder == UCOL_NO_MORE_CES) { |
|
7248 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7249 break; |
|
7250 } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) { |
|
7251 /* UCA amendment - ignore ignorables that follow shifted code points */ |
|
7252 continue; |
|
7253 } else if(isContinuation(tOrder)) { |
|
7254 if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ |
|
7255 if(tInShifted) { |
|
7256 tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ |
|
7257 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7258 continue; |
|
7259 } else { |
|
7260 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7261 break; |
|
7262 } |
|
7263 } else { /* Just lower level values */ |
|
7264 if(tInShifted) { |
|
7265 continue; |
|
7266 } else { |
|
7267 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7268 continue; |
|
7269 } |
|
7270 } |
|
7271 } else { /* regular */ |
|
7272 if(coll->leadBytePermutationTable != NULL){ |
|
7273 tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); |
|
7274 } |
|
7275 if((tOrder & UCOL_PRIMARYMASK) > LVT) { |
|
7276 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7277 break; |
|
7278 } else { |
|
7279 if((tOrder & UCOL_PRIMARYMASK) > 0) { |
|
7280 tInShifted = TRUE; |
|
7281 tOrder &= UCOL_PRIMARYMASK; |
|
7282 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7283 continue; |
|
7284 } else { |
|
7285 UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
|
7286 tInShifted = FALSE; |
|
7287 continue; |
|
7288 } |
|
7289 } |
|
7290 } |
|
7291 } |
|
7292 tOrder &= UCOL_PRIMARYMASK; |
|
7293 tInShifted = FALSE; |
|
7294 |
|
7295 if(sOrder == tOrder) { |
|
7296 /* |
|
7297 if(doHiragana && hirResult == UCOL_EQUAL) { |
|
7298 if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) { |
|
7299 hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA)) |
|
7300 ? UCOL_LESS:UCOL_GREATER; |
|
7301 } |
|
7302 } |
|
7303 */ |
|
7304 if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { |
|
7305 break; |
|
7306 } else { |
|
7307 sOrder = 0; |
|
7308 tOrder = 0; |
|
7309 continue; |
|
7310 } |
|
7311 } else { |
|
7312 result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER; |
|
7313 goto commonReturn; |
|
7314 } |
|
7315 } /* no primary difference... do the rest from the buffers */ |
|
7316 } |
|
7317 |
|
7318 /* now, we're gonna reexamine collected CEs */ |
|
7319 uint32_t *sCE; |
|
7320 uint32_t *tCE; |
|
7321 |
|
7322 /* This is the secondary level of comparison */ |
|
7323 if(checkSecTer) { |
|
7324 if(!isFrenchSec) { /* normal */ |
|
7325 sCE = sCEs.buf; |
|
7326 tCE = tCEs.buf; |
|
7327 for(;;) { |
|
7328 while (secS == 0) { |
|
7329 secS = *(sCE++) & UCOL_SECONDARYMASK; |
|
7330 } |
|
7331 |
|
7332 while(secT == 0) { |
|
7333 secT = *(tCE++) & UCOL_SECONDARYMASK; |
|
7334 } |
|
7335 |
|
7336 if(secS == secT) { |
|
7337 if(secS == UCOL_NO_MORE_CES_SECONDARY) { |
|
7338 break; |
|
7339 } else { |
|
7340 secS = 0; secT = 0; |
|
7341 continue; |
|
7342 } |
|
7343 } else { |
|
7344 result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
|
7345 goto commonReturn; |
|
7346 } |
|
7347 } |
|
7348 } else { /* do the French */ |
|
7349 uint32_t *sCESave = NULL; |
|
7350 uint32_t *tCESave = NULL; |
|
7351 sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */ |
|
7352 tCE = tCEs.pos-2; |
|
7353 for(;;) { |
|
7354 while (secS == 0 && sCE >= sCEs.buf) { |
|
7355 if(sCESave == NULL) { |
|
7356 secS = *(sCE--); |
|
7357 if(isContinuation(secS)) { |
|
7358 while(isContinuation(secS = *(sCE--))) |
|
7359 ; |
|
7360 /* after this, secS has the start of continuation, and sCEs points before that */ |
|
7361 sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */ |
|
7362 sCE+=2; /* need to point to the first continuation CP */ |
|
7363 /* However, now you can just continue doing stuff */ |
|
7364 } |
|
7365 } else { |
|
7366 secS = *(sCE++); |
|
7367 if(!isContinuation(secS)) { /* This means we have finished with this cont */ |
|
7368 sCE = sCESave; /* reset the pointer to before continuation */ |
|
7369 sCESave = NULL; |
|
7370 secS = 0; /* Fetch a fresh CE before the continuation sequence. */ |
|
7371 continue; |
|
7372 } |
|
7373 } |
|
7374 secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */ |
|
7375 } |
|
7376 |
|
7377 while(secT == 0 && tCE >= tCEs.buf) { |
|
7378 if(tCESave == NULL) { |
|
7379 secT = *(tCE--); |
|
7380 if(isContinuation(secT)) { |
|
7381 while(isContinuation(secT = *(tCE--))) |
|
7382 ; |
|
7383 /* after this, secS has the start of continuation, and sCEs points before that */ |
|
7384 tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */ |
|
7385 tCE+=2; /* need to point to the first continuation CP */ |
|
7386 /* However, now you can just continue doing stuff */ |
|
7387 } |
|
7388 } else { |
|
7389 secT = *(tCE++); |
|
7390 if(!isContinuation(secT)) { /* This means we have finished with this cont */ |
|
7391 tCE = tCESave; /* reset the pointer to before continuation */ |
|
7392 tCESave = NULL; |
|
7393 secT = 0; /* Fetch a fresh CE before the continuation sequence. */ |
|
7394 continue; |
|
7395 } |
|
7396 } |
|
7397 secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */ |
|
7398 } |
|
7399 |
|
7400 if(secS == secT) { |
|
7401 if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) { |
|
7402 break; |
|
7403 } else { |
|
7404 secS = 0; secT = 0; |
|
7405 continue; |
|
7406 } |
|
7407 } else { |
|
7408 result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
|
7409 goto commonReturn; |
|
7410 } |
|
7411 } |
|
7412 } |
|
7413 } |
|
7414 |
|
7415 /* doing the case bit */ |
|
7416 if(checkCase) { |
|
7417 sCE = sCEs.buf; |
|
7418 tCE = tCEs.buf; |
|
7419 for(;;) { |
|
7420 while((secS & UCOL_REMOVE_CASE) == 0) { |
|
7421 if(!isContinuation(*sCE++)) { |
|
7422 secS =*(sCE-1); |
|
7423 if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { |
|
7424 // primary ignorables should not be considered on the case level when the strength is primary |
|
7425 // otherwise, the CEs stop being well-formed |
|
7426 secS &= UCOL_TERT_CASE_MASK; |
|
7427 secS ^= caseSwitch; |
|
7428 } else { |
|
7429 secS = 0; |
|
7430 } |
|
7431 } else { |
|
7432 secS = 0; |
|
7433 } |
|
7434 } |
|
7435 |
|
7436 while((secT & UCOL_REMOVE_CASE) == 0) { |
|
7437 if(!isContinuation(*tCE++)) { |
|
7438 secT = *(tCE-1); |
|
7439 if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { |
|
7440 // primary ignorables should not be considered on the case level when the strength is primary |
|
7441 // otherwise, the CEs stop being well-formed |
|
7442 secT &= UCOL_TERT_CASE_MASK; |
|
7443 secT ^= caseSwitch; |
|
7444 } else { |
|
7445 secT = 0; |
|
7446 } |
|
7447 } else { |
|
7448 secT = 0; |
|
7449 } |
|
7450 } |
|
7451 |
|
7452 if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) { |
|
7453 result = UCOL_LESS; |
|
7454 goto commonReturn; |
|
7455 } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) { |
|
7456 result = UCOL_GREATER; |
|
7457 goto commonReturn; |
|
7458 } |
|
7459 |
|
7460 if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) { |
|
7461 break; |
|
7462 } else { |
|
7463 secS = 0; |
|
7464 secT = 0; |
|
7465 } |
|
7466 } |
|
7467 } |
|
7468 |
|
7469 /* Tertiary level */ |
|
7470 if(checkTertiary) { |
|
7471 secS = 0; |
|
7472 secT = 0; |
|
7473 sCE = sCEs.buf; |
|
7474 tCE = tCEs.buf; |
|
7475 for(;;) { |
|
7476 while((secS & UCOL_REMOVE_CASE) == 0) { |
|
7477 sOrder = *sCE++; |
|
7478 secS = sOrder & tertiaryMask; |
|
7479 if(!isContinuation(sOrder)) { |
|
7480 secS ^= caseSwitch; |
|
7481 } else { |
|
7482 secS &= UCOL_REMOVE_CASE; |
|
7483 } |
|
7484 } |
|
7485 |
|
7486 while((secT & UCOL_REMOVE_CASE) == 0) { |
|
7487 tOrder = *tCE++; |
|
7488 secT = tOrder & tertiaryMask; |
|
7489 if(!isContinuation(tOrder)) { |
|
7490 secT ^= caseSwitch; |
|
7491 } else { |
|
7492 secT &= UCOL_REMOVE_CASE; |
|
7493 } |
|
7494 } |
|
7495 |
|
7496 if(secS == secT) { |
|
7497 if((secS & UCOL_REMOVE_CASE) == 1) { |
|
7498 break; |
|
7499 } else { |
|
7500 secS = 0; secT = 0; |
|
7501 continue; |
|
7502 } |
|
7503 } else { |
|
7504 result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
|
7505 goto commonReturn; |
|
7506 } |
|
7507 } |
|
7508 } |
|
7509 |
|
7510 |
|
7511 if(qShifted /*checkQuad*/) { |
|
7512 UBool sInShifted = TRUE; |
|
7513 UBool tInShifted = TRUE; |
|
7514 secS = 0; |
|
7515 secT = 0; |
|
7516 sCE = sCEs.buf; |
|
7517 tCE = tCEs.buf; |
|
7518 for(;;) { |
|
7519 while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) { |
|
7520 secS = *(sCE++); |
|
7521 if(isContinuation(secS)) { |
|
7522 if(!sInShifted) { |
|
7523 continue; |
|
7524 } |
|
7525 } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */ |
|
7526 secS = UCOL_PRIMARYMASK; |
|
7527 sInShifted = FALSE; |
|
7528 } else { |
|
7529 sInShifted = TRUE; |
|
7530 } |
|
7531 } |
|
7532 secS &= UCOL_PRIMARYMASK; |
|
7533 |
|
7534 |
|
7535 while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) { |
|
7536 secT = *(tCE++); |
|
7537 if(isContinuation(secT)) { |
|
7538 if(!tInShifted) { |
|
7539 continue; |
|
7540 } |
|
7541 } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) { |
|
7542 secT = UCOL_PRIMARYMASK; |
|
7543 tInShifted = FALSE; |
|
7544 } else { |
|
7545 tInShifted = TRUE; |
|
7546 } |
|
7547 } |
|
7548 secT &= UCOL_PRIMARYMASK; |
|
7549 |
|
7550 if(secS == secT) { |
|
7551 if(secS == UCOL_NO_MORE_CES_PRIMARY) { |
|
7552 break; |
|
7553 } else { |
|
7554 secS = 0; secT = 0; |
|
7555 continue; |
|
7556 } |
|
7557 } else { |
|
7558 result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
|
7559 goto commonReturn; |
|
7560 } |
|
7561 } |
|
7562 } else if(doHiragana && hirResult != UCOL_EQUAL) { |
|
7563 // If we're fine on quaternaries, we might be different |
|
7564 // on Hiragana. This, however, might fail us in shifted. |
|
7565 result = hirResult; |
|
7566 goto commonReturn; |
|
7567 } |
|
7568 |
|
7569 /* For IDENTICAL comparisons, we use a bitwise character comparison */ |
|
7570 /* as a tiebreaker if all else is equal. */ |
|
7571 /* Getting here should be quite rare - strings are not identical - */ |
|
7572 /* that is checked first, but compared == through all other checks. */ |
|
7573 if(checkIdent) |
|
7574 { |
|
7575 //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON); |
|
7576 result = ucol_checkIdent(sColl, tColl, TRUE, status); |
|
7577 } |
|
7578 |
|
7579 commonReturn: |
|
7580 if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) { |
|
7581 if (sCEs.buf != sCEs.localArray ) { |
|
7582 uprv_free(sCEs.buf); |
|
7583 } |
|
7584 if (tCEs.buf != tCEs.localArray ) { |
|
7585 uprv_free(tCEs.buf); |
|
7586 } |
|
7587 } |
|
7588 |
|
7589 return result; |
|
7590 } |
|
7591 |
|
7592 static UCollationResult |
|
7593 ucol_strcollRegular(const UCollator *coll, |
|
7594 const UChar *source, int32_t sourceLength, |
|
7595 const UChar *target, int32_t targetLength, |
|
7596 UErrorCode *status) { |
|
7597 collIterate sColl, tColl; |
|
7598 // Preparing the context objects for iterating over strings |
|
7599 IInit_collIterate(coll, source, sourceLength, &sColl, status); |
|
7600 IInit_collIterate(coll, target, targetLength, &tColl, status); |
|
7601 if(U_FAILURE(*status)) { |
|
7602 return UCOL_LESS; |
|
7603 } |
|
7604 return ucol_strcollRegular(&sColl, &tColl, status); |
|
7605 } |
|
7606 |
|
7607 static inline uint32_t |
|
7608 ucol_getLatinOneContraction(const UCollator *coll, int32_t strength, |
|
7609 uint32_t CE, const UChar *s, int32_t *index, int32_t len) |
|
7610 { |
|
7611 const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); |
|
7612 int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; |
|
7613 int32_t offset = 1; |
|
7614 UChar schar = 0, tchar = 0; |
|
7615 |
|
7616 for(;;) { |
|
7617 if(len == -1) { |
|
7618 if(s[*index] == 0) { // end of string |
|
7619 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
|
7620 } else { |
|
7621 schar = s[*index]; |
|
7622 } |
|
7623 } else { |
|
7624 if(*index == len) { |
|
7625 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
|
7626 } else { |
|
7627 schar = s[*index]; |
|
7628 } |
|
7629 } |
|
7630 |
|
7631 while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
|
7632 offset++; |
|
7633 } |
|
7634 |
|
7635 if (schar == tchar) { |
|
7636 (*index)++; |
|
7637 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); |
|
7638 } |
|
7639 else |
|
7640 { |
|
7641 if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { |
|
7642 return UCOL_BAIL_OUT_CE; |
|
7643 } |
|
7644 // skip completely ignorables |
|
7645 uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
|
7646 if(isZeroCE == 0) { // we have to ignore completely ignorables |
|
7647 (*index)++; |
|
7648 continue; |
|
7649 } |
|
7650 |
|
7651 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
|
7652 } |
|
7653 } |
|
7654 } |
|
7655 |
|
7656 |
|
7657 /** |
|
7658 * This is a fast strcoll, geared towards text in Latin-1. |
|
7659 * It supports contractions of size two, French secondaries |
|
7660 * and case switching. You can use it with strengths primary |
|
7661 * to tertiary. It does not support shifted and case level. |
|
7662 * It relies on the table build by setupLatin1Table. If it |
|
7663 * doesn't understand something, it will go to the regular |
|
7664 * strcoll. |
|
7665 */ |
|
7666 static UCollationResult |
|
7667 ucol_strcollUseLatin1( const UCollator *coll, |
|
7668 const UChar *source, |
|
7669 int32_t sLen, |
|
7670 const UChar *target, |
|
7671 int32_t tLen, |
|
7672 UErrorCode *status) |
|
7673 { |
|
7674 U_ALIGN_CODE(16); |
|
7675 int32_t strength = coll->strength; |
|
7676 |
|
7677 int32_t sIndex = 0, tIndex = 0; |
|
7678 UChar sChar = 0, tChar = 0; |
|
7679 uint32_t sOrder=0, tOrder=0; |
|
7680 |
|
7681 UBool endOfSource = FALSE; |
|
7682 |
|
7683 uint32_t *elements = coll->latinOneCEs; |
|
7684 |
|
7685 UBool haveContractions = FALSE; // if we have contractions in our string |
|
7686 // we cannot do French secondary |
|
7687 |
|
7688 // Do the primary level |
|
7689 for(;;) { |
|
7690 while(sOrder==0) { // this loop skips primary ignorables |
|
7691 // sOrder=getNextlatinOneCE(source); |
|
7692 if(sLen==-1) { // handling zero terminated strings |
|
7693 sChar=source[sIndex++]; |
|
7694 if(sChar==0) { |
|
7695 endOfSource = TRUE; |
|
7696 break; |
|
7697 } |
|
7698 } else { // handling strings with known length |
|
7699 if(sIndex==sLen) { |
|
7700 endOfSource = TRUE; |
|
7701 break; |
|
7702 } |
|
7703 sChar=source[sIndex++]; |
|
7704 } |
|
7705 if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
|
7706 //fprintf(stderr, "R"); |
|
7707 return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
|
7708 } |
|
7709 sOrder = elements[sChar]; |
|
7710 if(sOrder >= UCOL_NOT_FOUND) { // if we got a special |
|
7711 // specials can basically be either contractions or bail-out signs. If we get anything |
|
7712 // else, we'll bail out anywasy |
|
7713 if(getCETag(sOrder) == CONTRACTION_TAG) { |
|
7714 sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); |
|
7715 haveContractions = TRUE; // if there are contractions, we cannot do French secondary |
|
7716 // However, if there are contractions in the table, but we always use just one char, |
|
7717 // we might be able to do French. This should be checked out. |
|
7718 } |
|
7719 if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
|
7720 //fprintf(stderr, "S"); |
|
7721 return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
|
7722 } |
|
7723 } |
|
7724 } |
|
7725 |
|
7726 while(tOrder==0) { // this loop skips primary ignorables |
|
7727 // tOrder=getNextlatinOneCE(target); |
|
7728 if(tLen==-1) { // handling zero terminated strings |
|
7729 tChar=target[tIndex++]; |
|
7730 if(tChar==0) { |
|
7731 if(endOfSource) { // this is different than source loop, |
|
7732 // as we already know that source loop is done here, |
|
7733 // so we can either finish the primary loop if both |
|
7734 // strings are done or anounce the result if only |
|
7735 // target is done. Same below. |
|
7736 goto endOfPrimLoop; |
|
7737 } else { |
|
7738 return UCOL_GREATER; |
|
7739 } |
|
7740 } |
|
7741 } else { // handling strings with known length |
|
7742 if(tIndex==tLen) { |
|
7743 if(endOfSource) { |
|
7744 goto endOfPrimLoop; |
|
7745 } else { |
|
7746 return UCOL_GREATER; |
|
7747 } |
|
7748 } |
|
7749 tChar=target[tIndex++]; |
|
7750 } |
|
7751 if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
|
7752 //fprintf(stderr, "R"); |
|
7753 return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
|
7754 } |
|
7755 tOrder = elements[tChar]; |
|
7756 if(tOrder >= UCOL_NOT_FOUND) { |
|
7757 // Handling specials, see the comments for source |
|
7758 if(getCETag(tOrder) == CONTRACTION_TAG) { |
|
7759 tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); |
|
7760 haveContractions = TRUE; |
|
7761 } |
|
7762 if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
|
7763 //fprintf(stderr, "S"); |
|
7764 return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
|
7765 } |
|
7766 } |
|
7767 } |
|
7768 if(endOfSource) { // source is finished, but target is not, say the result. |
|
7769 return UCOL_LESS; |
|
7770 } |
|
7771 |
|
7772 if(sOrder == tOrder) { // if we have same CEs, we continue the loop |
|
7773 sOrder = 0; tOrder = 0; |
|
7774 continue; |
|
7775 } else { |
|
7776 // compare current top bytes |
|
7777 if(((sOrder^tOrder)&0xFF000000)!=0) { |
|
7778 // top bytes differ, return difference |
|
7779 if(sOrder < tOrder) { |
|
7780 return UCOL_LESS; |
|
7781 } else if(sOrder > tOrder) { |
|
7782 return UCOL_GREATER; |
|
7783 } |
|
7784 // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); |
|
7785 // since we must return enum value |
|
7786 } |
|
7787 |
|
7788 // top bytes match, continue with following bytes |
|
7789 sOrder<<=8; |
|
7790 tOrder<<=8; |
|
7791 } |
|
7792 } |
|
7793 |
|
7794 endOfPrimLoop: |
|
7795 // after primary loop, we definitely know the sizes of strings, |
|
7796 // so we set it and use simpler loop for secondaries and tertiaries |
|
7797 sLen = sIndex; tLen = tIndex; |
|
7798 if(strength >= UCOL_SECONDARY) { |
|
7799 // adjust the table beggining |
|
7800 elements += coll->latinOneTableLen; |
|
7801 endOfSource = FALSE; |
|
7802 |
|
7803 if(coll->frenchCollation == UCOL_OFF) { // non French |
|
7804 // This loop is a simplified copy of primary loop |
|
7805 // at this point we know that whole strings are latin-1, so we don't |
|
7806 // check for that. We also know that we only have contractions as |
|
7807 // specials. |
|
7808 sIndex = 0; tIndex = 0; |
|
7809 for(;;) { |
|
7810 while(sOrder==0) { |
|
7811 if(sIndex==sLen) { |
|
7812 endOfSource = TRUE; |
|
7813 break; |
|
7814 } |
|
7815 sChar=source[sIndex++]; |
|
7816 sOrder = elements[sChar]; |
|
7817 if(sOrder > UCOL_NOT_FOUND) { |
|
7818 sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); |
|
7819 } |
|
7820 } |
|
7821 |
|
7822 while(tOrder==0) { |
|
7823 if(tIndex==tLen) { |
|
7824 if(endOfSource) { |
|
7825 goto endOfSecLoop; |
|
7826 } else { |
|
7827 return UCOL_GREATER; |
|
7828 } |
|
7829 } |
|
7830 tChar=target[tIndex++]; |
|
7831 tOrder = elements[tChar]; |
|
7832 if(tOrder > UCOL_NOT_FOUND) { |
|
7833 tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); |
|
7834 } |
|
7835 } |
|
7836 if(endOfSource) { |
|
7837 return UCOL_LESS; |
|
7838 } |
|
7839 |
|
7840 if(sOrder == tOrder) { |
|
7841 sOrder = 0; tOrder = 0; |
|
7842 continue; |
|
7843 } else { |
|
7844 // see primary loop for comments on this |
|
7845 if(((sOrder^tOrder)&0xFF000000)!=0) { |
|
7846 if(sOrder < tOrder) { |
|
7847 return UCOL_LESS; |
|
7848 } else if(sOrder > tOrder) { |
|
7849 return UCOL_GREATER; |
|
7850 } |
|
7851 } |
|
7852 sOrder<<=8; |
|
7853 tOrder<<=8; |
|
7854 } |
|
7855 } |
|
7856 } else { // French |
|
7857 if(haveContractions) { // if we have contractions, we have to bail out |
|
7858 // since we don't really know how to handle them here |
|
7859 return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
|
7860 } |
|
7861 // For French, we go backwards |
|
7862 sIndex = sLen; tIndex = tLen; |
|
7863 for(;;) { |
|
7864 while(sOrder==0) { |
|
7865 if(sIndex==0) { |
|
7866 endOfSource = TRUE; |
|
7867 break; |
|
7868 } |
|
7869 sChar=source[--sIndex]; |
|
7870 sOrder = elements[sChar]; |
|
7871 // don't even look for contractions |
|
7872 } |
|
7873 |
|
7874 while(tOrder==0) { |
|
7875 if(tIndex==0) { |
|
7876 if(endOfSource) { |
|
7877 goto endOfSecLoop; |
|
7878 } else { |
|
7879 return UCOL_GREATER; |
|
7880 } |
|
7881 } |
|
7882 tChar=target[--tIndex]; |
|
7883 tOrder = elements[tChar]; |
|
7884 // don't even look for contractions |
|
7885 } |
|
7886 if(endOfSource) { |
|
7887 return UCOL_LESS; |
|
7888 } |
|
7889 |
|
7890 if(sOrder == tOrder) { |
|
7891 sOrder = 0; tOrder = 0; |
|
7892 continue; |
|
7893 } else { |
|
7894 // see the primary loop for comments |
|
7895 if(((sOrder^tOrder)&0xFF000000)!=0) { |
|
7896 if(sOrder < tOrder) { |
|
7897 return UCOL_LESS; |
|
7898 } else if(sOrder > tOrder) { |
|
7899 return UCOL_GREATER; |
|
7900 } |
|
7901 } |
|
7902 sOrder<<=8; |
|
7903 tOrder<<=8; |
|
7904 } |
|
7905 } |
|
7906 } |
|
7907 } |
|
7908 |
|
7909 endOfSecLoop: |
|
7910 if(strength >= UCOL_TERTIARY) { |
|
7911 // tertiary loop is the same as secondary (except no French) |
|
7912 elements += coll->latinOneTableLen; |
|
7913 sIndex = 0; tIndex = 0; |
|
7914 endOfSource = FALSE; |
|
7915 for(;;) { |
|
7916 while(sOrder==0) { |
|
7917 if(sIndex==sLen) { |
|
7918 endOfSource = TRUE; |
|
7919 break; |
|
7920 } |
|
7921 sChar=source[sIndex++]; |
|
7922 sOrder = elements[sChar]; |
|
7923 if(sOrder > UCOL_NOT_FOUND) { |
|
7924 sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); |
|
7925 } |
|
7926 } |
|
7927 while(tOrder==0) { |
|
7928 if(tIndex==tLen) { |
|
7929 if(endOfSource) { |
|
7930 return UCOL_EQUAL; // if both strings are at the end, they are equal |
|
7931 } else { |
|
7932 return UCOL_GREATER; |
|
7933 } |
|
7934 } |
|
7935 tChar=target[tIndex++]; |
|
7936 tOrder = elements[tChar]; |
|
7937 if(tOrder > UCOL_NOT_FOUND) { |
|
7938 tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); |
|
7939 } |
|
7940 } |
|
7941 if(endOfSource) { |
|
7942 return UCOL_LESS; |
|
7943 } |
|
7944 if(sOrder == tOrder) { |
|
7945 sOrder = 0; tOrder = 0; |
|
7946 continue; |
|
7947 } else { |
|
7948 if(((sOrder^tOrder)&0xff000000)!=0) { |
|
7949 if(sOrder < tOrder) { |
|
7950 return UCOL_LESS; |
|
7951 } else if(sOrder > tOrder) { |
|
7952 return UCOL_GREATER; |
|
7953 } |
|
7954 } |
|
7955 sOrder<<=8; |
|
7956 tOrder<<=8; |
|
7957 } |
|
7958 } |
|
7959 } |
|
7960 return UCOL_EQUAL; |
|
7961 } |
|
7962 |
|
7963 /* |
|
7964 Note: ucol_strcollUTF8 supports null terminated input. Calculating length of |
|
7965 null terminated input string takes extra amount of CPU cycles. |
|
7966 */ |
|
7967 static UCollationResult |
|
7968 ucol_strcollRegularUTF8( |
|
7969 const UCollator *coll, |
|
7970 const char *source, |
|
7971 int32_t sourceLength, |
|
7972 const char *target, |
|
7973 int32_t targetLength, |
|
7974 UErrorCode *status) |
|
7975 { |
|
7976 UCharIterator src; |
|
7977 UCharIterator tgt; |
|
7978 |
|
7979 uiter_setUTF8(&src, source, sourceLength); |
|
7980 uiter_setUTF8(&tgt, target, targetLength); |
|
7981 |
|
7982 // Preparing the context objects for iterating over strings |
|
7983 collIterate sColl, tColl; |
|
7984 IInit_collIterate(coll, NULL, -1, &sColl, status); |
|
7985 IInit_collIterate(coll, NULL, -1, &tColl, status); |
|
7986 if(U_FAILURE(*status)) { |
|
7987 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
|
7988 return UCOL_EQUAL; |
|
7989 } |
|
7990 // The division for the array length may truncate the array size to |
|
7991 // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
|
7992 // for all platforms anyway. |
|
7993 UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
7994 UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
7995 UNormIterator *sNormIter = NULL, *tNormIter = NULL; |
|
7996 |
|
7997 sColl.iterator = &src; |
|
7998 sColl.flags |= UCOL_USE_ITERATOR; |
|
7999 tColl.flags |= UCOL_USE_ITERATOR; |
|
8000 tColl.iterator = &tgt; |
|
8001 |
|
8002 if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { |
|
8003 sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
|
8004 sColl.iterator = unorm_setIter(sNormIter, &src, UNORM_FCD, status); |
|
8005 sColl.flags &= ~UCOL_ITER_NORM; |
|
8006 |
|
8007 tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
|
8008 tColl.iterator = unorm_setIter(tNormIter, &tgt, UNORM_FCD, status); |
|
8009 tColl.flags &= ~UCOL_ITER_NORM; |
|
8010 } |
|
8011 |
|
8012 return ucol_strcollRegular(&sColl, &tColl, status); |
|
8013 } |
|
8014 |
|
8015 static inline uint32_t |
|
8016 ucol_getLatinOneContractionUTF8(const UCollator *coll, int32_t strength, |
|
8017 uint32_t CE, const char *s, int32_t *index, int32_t len) |
|
8018 { |
|
8019 const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); |
|
8020 int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; |
|
8021 int32_t offset = 1; |
|
8022 UChar32 schar = 0, tchar = 0; |
|
8023 |
|
8024 for(;;) { |
|
8025 if (*index == len) { |
|
8026 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
|
8027 } |
|
8028 U8_GET_OR_FFFD((const uint8_t*)s, 0, *index, len, schar); |
|
8029 if (len < 0 && schar == 0) { |
|
8030 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
|
8031 } |
|
8032 |
|
8033 while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
|
8034 offset++; |
|
8035 } |
|
8036 |
|
8037 if (schar == tchar) { |
|
8038 U8_FWD_1(s, *index, len); |
|
8039 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); |
|
8040 } |
|
8041 else |
|
8042 { |
|
8043 if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { |
|
8044 return UCOL_BAIL_OUT_CE; |
|
8045 } |
|
8046 // skip completely ignorables |
|
8047 uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
|
8048 if(isZeroCE == 0) { // we have to ignore completely ignorables |
|
8049 U8_FWD_1(s, *index, len); |
|
8050 continue; |
|
8051 } |
|
8052 |
|
8053 return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
|
8054 } |
|
8055 } |
|
8056 } |
|
8057 |
|
8058 static inline UCollationResult |
|
8059 ucol_strcollUseLatin1UTF8( |
|
8060 const UCollator *coll, |
|
8061 const char *source, |
|
8062 int32_t sLen, |
|
8063 const char *target, |
|
8064 int32_t tLen, |
|
8065 UErrorCode *status) |
|
8066 { |
|
8067 U_ALIGN_CODE(16); |
|
8068 int32_t strength = coll->strength; |
|
8069 |
|
8070 int32_t sIndex = 0, tIndex = 0; |
|
8071 UChar32 sChar = 0, tChar = 0; |
|
8072 uint32_t sOrder=0, tOrder=0; |
|
8073 |
|
8074 UBool endOfSource = FALSE; |
|
8075 |
|
8076 uint32_t *elements = coll->latinOneCEs; |
|
8077 |
|
8078 UBool haveContractions = FALSE; // if we have contractions in our string |
|
8079 // we cannot do French secondary |
|
8080 |
|
8081 // Do the primary level |
|
8082 for(;;) { |
|
8083 while(sOrder==0) { // this loop skips primary ignorables |
|
8084 // sOrder=getNextlatinOneCE(source); |
|
8085 if (sIndex == sLen) { |
|
8086 endOfSource = TRUE; |
|
8087 break; |
|
8088 } |
|
8089 U8_NEXT_OR_FFFD(source, sIndex, sLen ,sChar); |
|
8090 if (sLen < 0 && sChar == 0) { |
|
8091 endOfSource = TRUE; |
|
8092 sLen = sIndex; |
|
8093 break; |
|
8094 } |
|
8095 if(sChar&0xFFFFFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
|
8096 //fprintf(stderr, "R"); |
|
8097 return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
|
8098 } |
|
8099 sOrder = elements[sChar]; |
|
8100 if(sOrder >= UCOL_NOT_FOUND) { // if we got a special |
|
8101 // specials can basically be either contractions or bail-out signs. If we get anything |
|
8102 // else, we'll bail out anywasy |
|
8103 if(getCETag(sOrder) == CONTRACTION_TAG) { |
|
8104 sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); |
|
8105 haveContractions = TRUE; // if there are contractions, we cannot do French secondary |
|
8106 // However, if there are contractions in the table, but we always use just one char, |
|
8107 // we might be able to do French. This should be checked out. |
|
8108 } |
|
8109 if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
|
8110 //fprintf(stderr, "S"); |
|
8111 return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
|
8112 } |
|
8113 } |
|
8114 } |
|
8115 |
|
8116 while(tOrder==0) { // this loop skips primary ignorables |
|
8117 // tOrder=getNextlatinOneCE(target); |
|
8118 if (tIndex == tLen) { |
|
8119 if(endOfSource) { |
|
8120 goto endOfPrimLoopU8; |
|
8121 } else { |
|
8122 return UCOL_GREATER; |
|
8123 } |
|
8124 } |
|
8125 U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); |
|
8126 if (tLen < 0 && tChar == 0) { |
|
8127 if(endOfSource) { |
|
8128 tLen = tIndex; |
|
8129 goto endOfPrimLoopU8; |
|
8130 } else { |
|
8131 return UCOL_GREATER; |
|
8132 } |
|
8133 } |
|
8134 if(tChar&0xFFFFFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
|
8135 //fprintf(stderr, "R"); |
|
8136 return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
|
8137 } |
|
8138 tOrder = elements[tChar]; |
|
8139 if(tOrder >= UCOL_NOT_FOUND) { |
|
8140 // Handling specials, see the comments for source |
|
8141 if(getCETag(tOrder) == CONTRACTION_TAG) { |
|
8142 tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); |
|
8143 haveContractions = TRUE; |
|
8144 } |
|
8145 if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
|
8146 //fprintf(stderr, "S"); |
|
8147 return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
|
8148 } |
|
8149 } |
|
8150 } |
|
8151 if(endOfSource) { // source is finished, but target is not, say the result. |
|
8152 return UCOL_LESS; |
|
8153 } |
|
8154 |
|
8155 if(sOrder == tOrder) { // if we have same CEs, we continue the loop |
|
8156 sOrder = 0; tOrder = 0; |
|
8157 continue; |
|
8158 } else { |
|
8159 // compare current top bytes |
|
8160 if(((sOrder^tOrder)&0xFF000000)!=0) { |
|
8161 // top bytes differ, return difference |
|
8162 if(sOrder < tOrder) { |
|
8163 return UCOL_LESS; |
|
8164 } else if(sOrder > tOrder) { |
|
8165 return UCOL_GREATER; |
|
8166 } |
|
8167 // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); |
|
8168 // since we must return enum value |
|
8169 } |
|
8170 |
|
8171 // top bytes match, continue with following bytes |
|
8172 sOrder<<=8; |
|
8173 tOrder<<=8; |
|
8174 } |
|
8175 } |
|
8176 |
|
8177 endOfPrimLoopU8: |
|
8178 // after primary loop, we definitely know the sizes of strings, |
|
8179 // so we set it and use simpler loop for secondaries and tertiaries |
|
8180 sLen = sIndex; tLen = tIndex; |
|
8181 if(strength >= UCOL_SECONDARY) { |
|
8182 // adjust the table beggining |
|
8183 elements += coll->latinOneTableLen; |
|
8184 endOfSource = FALSE; |
|
8185 |
|
8186 if(coll->frenchCollation == UCOL_OFF) { // non French |
|
8187 // This loop is a simplified copy of primary loop |
|
8188 // at this point we know that whole strings are latin-1, so we don't |
|
8189 // check for that. We also know that we only have contractions as |
|
8190 // specials. |
|
8191 sIndex = 0; tIndex = 0; |
|
8192 for(;;) { |
|
8193 while(sOrder==0) { |
|
8194 if(sIndex==sLen) { |
|
8195 endOfSource = TRUE; |
|
8196 break; |
|
8197 } |
|
8198 U_ASSERT(sLen >= 0); |
|
8199 U8_NEXT_OR_FFFD(source, sIndex, sLen, sChar); |
|
8200 U_ASSERT(sChar >= 0 && sChar <= 0xFF); |
|
8201 sOrder = elements[sChar]; |
|
8202 if(sOrder > UCOL_NOT_FOUND) { |
|
8203 sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); |
|
8204 } |
|
8205 } |
|
8206 |
|
8207 while(tOrder==0) { |
|
8208 if(tIndex==tLen) { |
|
8209 if(endOfSource) { |
|
8210 goto endOfSecLoopU8; |
|
8211 } else { |
|
8212 return UCOL_GREATER; |
|
8213 } |
|
8214 } |
|
8215 U_ASSERT(tLen >= 0); |
|
8216 U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); |
|
8217 U_ASSERT(tChar >= 0 && tChar <= 0xFF); |
|
8218 tOrder = elements[tChar]; |
|
8219 if(tOrder > UCOL_NOT_FOUND) { |
|
8220 tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); |
|
8221 } |
|
8222 } |
|
8223 if(endOfSource) { |
|
8224 return UCOL_LESS; |
|
8225 } |
|
8226 |
|
8227 if(sOrder == tOrder) { |
|
8228 sOrder = 0; tOrder = 0; |
|
8229 continue; |
|
8230 } else { |
|
8231 // see primary loop for comments on this |
|
8232 if(((sOrder^tOrder)&0xFF000000)!=0) { |
|
8233 if(sOrder < tOrder) { |
|
8234 return UCOL_LESS; |
|
8235 } else if(sOrder > tOrder) { |
|
8236 return UCOL_GREATER; |
|
8237 } |
|
8238 } |
|
8239 sOrder<<=8; |
|
8240 tOrder<<=8; |
|
8241 } |
|
8242 } |
|
8243 } else { // French |
|
8244 if(haveContractions) { // if we have contractions, we have to bail out |
|
8245 // since we don't really know how to handle them here |
|
8246 return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); |
|
8247 } |
|
8248 // For French, we go backwards |
|
8249 sIndex = sLen; tIndex = tLen; |
|
8250 for(;;) { |
|
8251 while(sOrder==0) { |
|
8252 if(sIndex==0) { |
|
8253 endOfSource = TRUE; |
|
8254 break; |
|
8255 } |
|
8256 U8_PREV_OR_FFFD(source, 0, sIndex, sChar); |
|
8257 U_ASSERT(sChar >= 0 && sChar <= 0xFF); |
|
8258 sOrder = elements[sChar]; |
|
8259 // don't even look for contractions |
|
8260 } |
|
8261 |
|
8262 while(tOrder==0) { |
|
8263 if(tIndex==0) { |
|
8264 if(endOfSource) { |
|
8265 goto endOfSecLoopU8; |
|
8266 } else { |
|
8267 return UCOL_GREATER; |
|
8268 } |
|
8269 } |
|
8270 U8_PREV_OR_FFFD(target, 0, tIndex, tChar); |
|
8271 U_ASSERT(tChar >= 0 && tChar <= 0xFF); |
|
8272 tOrder = elements[tChar]; |
|
8273 // don't even look for contractions |
|
8274 } |
|
8275 if(endOfSource) { |
|
8276 return UCOL_LESS; |
|
8277 } |
|
8278 |
|
8279 if(sOrder == tOrder) { |
|
8280 sOrder = 0; tOrder = 0; |
|
8281 continue; |
|
8282 } else { |
|
8283 // see the primary loop for comments |
|
8284 if(((sOrder^tOrder)&0xFF000000)!=0) { |
|
8285 if(sOrder < tOrder) { |
|
8286 return UCOL_LESS; |
|
8287 } else if(sOrder > tOrder) { |
|
8288 return UCOL_GREATER; |
|
8289 } |
|
8290 } |
|
8291 sOrder<<=8; |
|
8292 tOrder<<=8; |
|
8293 } |
|
8294 } |
|
8295 } |
|
8296 } |
|
8297 |
|
8298 endOfSecLoopU8: |
|
8299 if(strength >= UCOL_TERTIARY) { |
|
8300 // tertiary loop is the same as secondary (except no French) |
|
8301 elements += coll->latinOneTableLen; |
|
8302 sIndex = 0; tIndex = 0; |
|
8303 endOfSource = FALSE; |
|
8304 for(;;) { |
|
8305 while(sOrder==0) { |
|
8306 if(sIndex==sLen) { |
|
8307 endOfSource = TRUE; |
|
8308 break; |
|
8309 } |
|
8310 U_ASSERT(sLen >= 0); |
|
8311 U8_NEXT_OR_FFFD(source, sIndex, sLen, sChar); |
|
8312 U_ASSERT(sChar >= 0 && sChar <= 0xFF); |
|
8313 sOrder = elements[sChar]; |
|
8314 if(sOrder > UCOL_NOT_FOUND) { |
|
8315 sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); |
|
8316 } |
|
8317 } |
|
8318 while(tOrder==0) { |
|
8319 if(tIndex==tLen) { |
|
8320 if(endOfSource) { |
|
8321 return UCOL_EQUAL; // if both strings are at the end, they are equal |
|
8322 } else { |
|
8323 return UCOL_GREATER; |
|
8324 } |
|
8325 } |
|
8326 U_ASSERT(tLen >= 0); |
|
8327 U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); |
|
8328 U_ASSERT(tChar >= 0 && tChar <= 0xFF); |
|
8329 tOrder = elements[tChar]; |
|
8330 if(tOrder > UCOL_NOT_FOUND) { |
|
8331 tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); |
|
8332 } |
|
8333 } |
|
8334 if(endOfSource) { |
|
8335 return UCOL_LESS; |
|
8336 } |
|
8337 if(sOrder == tOrder) { |
|
8338 sOrder = 0; tOrder = 0; |
|
8339 continue; |
|
8340 } else { |
|
8341 if(((sOrder^tOrder)&0xff000000)!=0) { |
|
8342 if(sOrder < tOrder) { |
|
8343 return UCOL_LESS; |
|
8344 } else if(sOrder > tOrder) { |
|
8345 return UCOL_GREATER; |
|
8346 } |
|
8347 } |
|
8348 sOrder<<=8; |
|
8349 tOrder<<=8; |
|
8350 } |
|
8351 } |
|
8352 } |
|
8353 return UCOL_EQUAL; |
|
8354 } |
|
8355 |
|
8356 U_CAPI UCollationResult U_EXPORT2 |
|
8357 ucol_strcollIter( const UCollator *coll, |
|
8358 UCharIterator *sIter, |
|
8359 UCharIterator *tIter, |
|
8360 UErrorCode *status) |
|
8361 { |
|
8362 if(!status || U_FAILURE(*status)) { |
|
8363 return UCOL_EQUAL; |
|
8364 } |
|
8365 |
|
8366 UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER); |
|
8367 UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter); |
|
8368 |
|
8369 if (sIter == tIter) { |
|
8370 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
|
8371 return UCOL_EQUAL; |
|
8372 } |
|
8373 if(sIter == NULL || tIter == NULL || coll == NULL) { |
|
8374 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
8375 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
|
8376 return UCOL_EQUAL; |
|
8377 } |
|
8378 |
|
8379 UCollationResult result = UCOL_EQUAL; |
|
8380 |
|
8381 // Preparing the context objects for iterating over strings |
|
8382 collIterate sColl, tColl; |
|
8383 IInit_collIterate(coll, NULL, -1, &sColl, status); |
|
8384 IInit_collIterate(coll, NULL, -1, &tColl, status); |
|
8385 if(U_FAILURE(*status)) { |
|
8386 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
|
8387 return UCOL_EQUAL; |
|
8388 } |
|
8389 // The division for the array length may truncate the array size to |
|
8390 // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
|
8391 // for all platforms anyway. |
|
8392 UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
8393 UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
|
8394 UNormIterator *sNormIter = NULL, *tNormIter = NULL; |
|
8395 |
|
8396 sColl.iterator = sIter; |
|
8397 sColl.flags |= UCOL_USE_ITERATOR; |
|
8398 tColl.flags |= UCOL_USE_ITERATOR; |
|
8399 tColl.iterator = tIter; |
|
8400 |
|
8401 if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { |
|
8402 sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
|
8403 sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status); |
|
8404 sColl.flags &= ~UCOL_ITER_NORM; |
|
8405 |
|
8406 tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
|
8407 tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status); |
|
8408 tColl.flags &= ~UCOL_ITER_NORM; |
|
8409 } |
|
8410 |
|
8411 UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL; |
|
8412 |
|
8413 while((sChar = sColl.iterator->next(sColl.iterator)) == |
|
8414 (tChar = tColl.iterator->next(tColl.iterator))) { |
|
8415 if(sChar == U_SENTINEL) { |
|
8416 result = UCOL_EQUAL; |
|
8417 goto end_compare; |
|
8418 } |
|
8419 } |
|
8420 |
|
8421 if(sChar == U_SENTINEL) { |
|
8422 tChar = tColl.iterator->previous(tColl.iterator); |
|
8423 } |
|
8424 |
|
8425 if(tChar == U_SENTINEL) { |
|
8426 sChar = sColl.iterator->previous(sColl.iterator); |
|
8427 } |
|
8428 |
|
8429 sChar = sColl.iterator->previous(sColl.iterator); |
|
8430 tChar = tColl.iterator->previous(tColl.iterator); |
|
8431 |
|
8432 if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll)) |
|
8433 { |
|
8434 // We are stopped in the middle of a contraction. |
|
8435 // Scan backwards through the == part of the string looking for the start of the contraction. |
|
8436 // It doesn't matter which string we scan, since they are the same in this region. |
|
8437 do |
|
8438 { |
|
8439 sChar = sColl.iterator->previous(sColl.iterator); |
|
8440 tChar = tColl.iterator->previous(tColl.iterator); |
|
8441 } |
|
8442 while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll)); |
|
8443 } |
|
8444 |
|
8445 |
|
8446 if(U_SUCCESS(*status)) { |
|
8447 result = ucol_strcollRegular(&sColl, &tColl, status); |
|
8448 } |
|
8449 |
|
8450 end_compare: |
|
8451 if(sNormIter || tNormIter) { |
|
8452 unorm_closeIter(sNormIter); |
|
8453 unorm_closeIter(tNormIter); |
|
8454 } |
|
8455 |
|
8456 UTRACE_EXIT_VALUE_STATUS(result, *status) |
|
8457 return result; |
|
8458 } |
|
8459 |
|
8460 |
|
8461 /* */ |
|
8462 /* ucol_strcoll Main public API string comparison function */ |
|
8463 /* */ |
|
8464 U_CAPI UCollationResult U_EXPORT2 |
|
8465 ucol_strcoll( const UCollator *coll, |
|
8466 const UChar *source, |
|
8467 int32_t sourceLength, |
|
8468 const UChar *target, |
|
8469 int32_t targetLength) |
|
8470 { |
|
8471 U_ALIGN_CODE(16); |
|
8472 |
|
8473 UTRACE_ENTRY(UTRACE_UCOL_STRCOLL); |
|
8474 if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
|
8475 UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target); |
|
8476 UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength); |
|
8477 UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength); |
|
8478 } |
|
8479 |
|
8480 if((source == NULL && sourceLength != 0) || (target == NULL && targetLength != 0)) { |
|
8481 // do not crash, but return. Should have |
|
8482 // status argument to return error. |
|
8483 UTRACE_EXIT_VALUE(UCOL_EQUAL); |
|
8484 return UCOL_EQUAL; |
|
8485 } |
|
8486 |
|
8487 /* Quick check if source and target are same strings. */ |
|
8488 /* They should either both be NULL terminated or the explicit length should be set on both. */ |
|
8489 if (source==target && sourceLength==targetLength) { |
|
8490 UTRACE_EXIT_VALUE(UCOL_EQUAL); |
|
8491 return UCOL_EQUAL; |
|
8492 } |
|
8493 |
|
8494 if(coll->delegate != NULL) { |
|
8495 UErrorCode status = U_ZERO_ERROR; |
|
8496 return ((const Collator*)coll->delegate)->compare(source,sourceLength,target,targetLength, status); |
|
8497 } |
|
8498 |
|
8499 /* Scan the strings. Find: */ |
|
8500 /* The length of any leading portion that is equal */ |
|
8501 /* Whether they are exactly equal. (in which case we just return) */ |
|
8502 const UChar *pSrc = source; |
|
8503 const UChar *pTarg = target; |
|
8504 int32_t equalLength; |
|
8505 |
|
8506 if (sourceLength == -1 && targetLength == -1) { |
|
8507 // Both strings are null terminated. |
|
8508 // Scan through any leading equal portion. |
|
8509 while (*pSrc == *pTarg && *pSrc != 0) { |
|
8510 pSrc++; |
|
8511 pTarg++; |
|
8512 } |
|
8513 if (*pSrc == 0 && *pTarg == 0) { |
|
8514 UTRACE_EXIT_VALUE(UCOL_EQUAL); |
|
8515 return UCOL_EQUAL; |
|
8516 } |
|
8517 equalLength = (int32_t)(pSrc - source); |
|
8518 } |
|
8519 else |
|
8520 { |
|
8521 // One or both strings has an explicit length. |
|
8522 const UChar *pSrcEnd = source + sourceLength; |
|
8523 const UChar *pTargEnd = target + targetLength; |
|
8524 |
|
8525 // Scan while the strings are bitwise ==, or until one is exhausted. |
|
8526 for (;;) { |
|
8527 if (pSrc == pSrcEnd || pTarg == pTargEnd) { |
|
8528 break; |
|
8529 } |
|
8530 if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { |
|
8531 break; |
|
8532 } |
|
8533 if (*pSrc != *pTarg) { |
|
8534 break; |
|
8535 } |
|
8536 pSrc++; |
|
8537 pTarg++; |
|
8538 } |
|
8539 equalLength = (int32_t)(pSrc - source); |
|
8540 |
|
8541 // If we made it all the way through both strings, we are done. They are == |
|
8542 if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */ |
|
8543 (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */ |
|
8544 { |
|
8545 UTRACE_EXIT_VALUE(UCOL_EQUAL); |
|
8546 return UCOL_EQUAL; |
|
8547 } |
|
8548 } |
|
8549 if (equalLength > 0) { |
|
8550 /* There is an identical portion at the beginning of the two strings. */ |
|
8551 /* If the identical portion ends within a contraction or a comibining */ |
|
8552 /* character sequence, back up to the start of that sequence. */ |
|
8553 |
|
8554 // These values should already be set by the code above. |
|
8555 //pSrc = source + equalLength; /* point to the first differing chars */ |
|
8556 //pTarg = target + equalLength; |
|
8557 if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) || |
|
8558 (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))) |
|
8559 { |
|
8560 // We are stopped in the middle of a contraction. |
|
8561 // Scan backwards through the == part of the string looking for the start of the contraction. |
|
8562 // It doesn't matter which string we scan, since they are the same in this region. |
|
8563 do |
|
8564 { |
|
8565 equalLength--; |
|
8566 pSrc--; |
|
8567 } |
|
8568 while (equalLength>0 && ucol_unsafeCP(*pSrc, coll)); |
|
8569 } |
|
8570 |
|
8571 source += equalLength; |
|
8572 target += equalLength; |
|
8573 if (sourceLength > 0) { |
|
8574 sourceLength -= equalLength; |
|
8575 } |
|
8576 if (targetLength > 0) { |
|
8577 targetLength -= equalLength; |
|
8578 } |
|
8579 } |
|
8580 |
|
8581 UErrorCode status = U_ZERO_ERROR; |
|
8582 UCollationResult returnVal; |
|
8583 if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) { |
|
8584 returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status); |
|
8585 } else { |
|
8586 returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status); |
|
8587 } |
|
8588 UTRACE_EXIT_VALUE(returnVal); |
|
8589 return returnVal; |
|
8590 } |
|
8591 |
|
8592 U_CAPI UCollationResult U_EXPORT2 |
|
8593 ucol_strcollUTF8( |
|
8594 const UCollator *coll, |
|
8595 const char *source, |
|
8596 int32_t sourceLength, |
|
8597 const char *target, |
|
8598 int32_t targetLength, |
|
8599 UErrorCode *status) |
|
8600 { |
|
8601 U_ALIGN_CODE(16); |
|
8602 |
|
8603 UTRACE_ENTRY(UTRACE_UCOL_STRCOLLUTF8); |
|
8604 if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
|
8605 UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target); |
|
8606 UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vb ", source, sourceLength); |
|
8607 UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vb ", target, targetLength); |
|
8608 } |
|
8609 |
|
8610 if (U_FAILURE(*status)) { |
|
8611 /* do nothing */ |
|
8612 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
|
8613 return UCOL_EQUAL; |
|
8614 } |
|
8615 |
|
8616 if((source == NULL && sourceLength != 0) || (target == NULL && targetLength != 0)) { |
|
8617 *status = U_ILLEGAL_ARGUMENT_ERROR; |
|
8618 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
|
8619 return UCOL_EQUAL; |
|
8620 } |
|
8621 |
|
8622 /* Quick check if source and target are same strings. */ |
|
8623 /* They should either both be NULL terminated or the explicit length should be set on both. */ |
|
8624 if (source==target && sourceLength==targetLength) { |
|
8625 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
|
8626 return UCOL_EQUAL; |
|
8627 } |
|
8628 |
|
8629 if(coll->delegate != NULL) { |
|
8630 return ((const Collator*)coll->delegate)->compareUTF8( |
|
8631 StringPiece(source, (sourceLength < 0) ? uprv_strlen(source) : sourceLength), |
|
8632 StringPiece(target, (targetLength < 0) ? uprv_strlen(target) : targetLength), |
|
8633 *status); |
|
8634 } |
|
8635 |
|
8636 /* Scan the strings. Find: */ |
|
8637 /* The length of any leading portion that is equal */ |
|
8638 /* Whether they are exactly equal. (in which case we just return) */ |
|
8639 const char *pSrc = source; |
|
8640 const char *pTarg = target; |
|
8641 UBool bSrcLimit = FALSE; |
|
8642 UBool bTargLimit = FALSE; |
|
8643 |
|
8644 if (sourceLength == -1 && targetLength == -1) { |
|
8645 // Both strings are null terminated. |
|
8646 // Scan through any leading equal portion. |
|
8647 while (*pSrc == *pTarg && *pSrc != 0) { |
|
8648 pSrc++; |
|
8649 pTarg++; |
|
8650 } |
|
8651 if (*pSrc == 0 && *pTarg == 0) { |
|
8652 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
|
8653 return UCOL_EQUAL; |
|
8654 } |
|
8655 bSrcLimit = (*pSrc == 0); |
|
8656 bTargLimit = (*pTarg == 0); |
|
8657 } |
|
8658 else |
|
8659 { |
|
8660 // One or both strings has an explicit length. |
|
8661 const char *pSrcEnd = source + sourceLength; |
|
8662 const char *pTargEnd = target + targetLength; |
|
8663 |
|
8664 // Scan while the strings are bitwise ==, or until one is exhausted. |
|
8665 for (;;) { |
|
8666 if (pSrc == pSrcEnd || pTarg == pTargEnd) { |
|
8667 break; |
|
8668 } |
|
8669 if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { |
|
8670 break; |
|
8671 } |
|
8672 if (*pSrc != *pTarg) { |
|
8673 break; |
|
8674 } |
|
8675 pSrc++; |
|
8676 pTarg++; |
|
8677 } |
|
8678 bSrcLimit = (pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)); |
|
8679 bTargLimit = (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0)); |
|
8680 |
|
8681 // If we made it all the way through both strings, we are done. They are == |
|
8682 if (bSrcLimit && /* At end of src string, however it was specified. */ |
|
8683 bTargLimit) /* and also at end of dest string */ |
|
8684 { |
|
8685 UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); |
|
8686 return UCOL_EQUAL; |
|
8687 } |
|
8688 } |
|
8689 |
|
8690 U_ASSERT(!(bSrcLimit && bTargLimit)); |
|
8691 |
|
8692 int32_t equalLength = pSrc - source; |
|
8693 UBool bSawNonLatin1 = FALSE; |
|
8694 |
|
8695 if (equalLength > 0) { |
|
8696 // Align position to the start of UTF-8 code point. |
|
8697 if (bTargLimit) { |
|
8698 U8_SET_CP_START((const uint8_t*)source, 0, equalLength); |
|
8699 } else { |
|
8700 U8_SET_CP_START((const uint8_t*)target, 0, equalLength); |
|
8701 } |
|
8702 pSrc = source + equalLength; |
|
8703 pTarg = target + equalLength; |
|
8704 } |
|
8705 |
|
8706 if (equalLength > 0) { |
|
8707 /* There is an identical portion at the beginning of the two strings. */ |
|
8708 /* If the identical portion ends within a contraction or a comibining */ |
|
8709 /* character sequence, back up to the start of that sequence. */ |
|
8710 UBool bUnsafeCP = FALSE; |
|
8711 UChar32 uc32 = -1; |
|
8712 |
|
8713 if (!bSrcLimit) { |
|
8714 U8_GET_OR_FFFD((const uint8_t*)source, 0, equalLength, sourceLength, uc32); |
|
8715 if (uc32 >= 0x10000 || ucol_unsafeCP((UChar)uc32, coll)) { |
|
8716 bUnsafeCP = TRUE; |
|
8717 } |
|
8718 bSawNonLatin1 |= (uc32 > 0xff); |
|
8719 } |
|
8720 if (!bTargLimit) { |
|
8721 U8_GET_OR_FFFD((const uint8_t*)target, 0, equalLength, targetLength, uc32); |
|
8722 if (uc32 >= 0x10000 || ucol_unsafeCP((UChar)uc32, coll)) { |
|
8723 bUnsafeCP = TRUE; |
|
8724 } |
|
8725 bSawNonLatin1 |= (uc32 > 0xff); |
|
8726 } |
|
8727 |
|
8728 if (bUnsafeCP) { |
|
8729 while (equalLength > 0) { |
|
8730 // We are stopped in the middle of a contraction. |
|
8731 // Scan backwards through the == part of the string looking for the start of the contraction. |
|
8732 // It doesn't matter which string we scan, since they are the same in this region. |
|
8733 U8_PREV_OR_FFFD((uint8_t*)source, 0, equalLength, uc32); |
|
8734 bSawNonLatin1 |= (uc32 > 0xff); |
|
8735 if (uc32 < 0x10000 && !ucol_unsafeCP((UChar)uc32, coll)) { |
|
8736 break; |
|
8737 } |
|
8738 } |
|
8739 } |
|
8740 source += equalLength; |
|
8741 target += equalLength; |
|
8742 if (sourceLength > 0) { |
|
8743 sourceLength -= equalLength; |
|
8744 } |
|
8745 if (targetLength > 0) { |
|
8746 targetLength -= equalLength; |
|
8747 } |
|
8748 } else { |
|
8749 // Lead byte of Latin 1 character is 0x00 - 0xC3 |
|
8750 bSawNonLatin1 = (source && (sourceLength != 0) && (uint8_t)*source > 0xc3); |
|
8751 bSawNonLatin1 |= (target && (targetLength != 0) && (uint8_t)*target > 0xc3); |
|
8752 } |
|
8753 |
|
8754 UCollationResult returnVal; |
|
8755 |
|
8756 if(!coll->latinOneUse || bSawNonLatin1) { |
|
8757 returnVal = ucol_strcollRegularUTF8(coll, source, sourceLength, target, targetLength, status); |
|
8758 } else { |
|
8759 returnVal = ucol_strcollUseLatin1UTF8(coll, source, sourceLength, target, targetLength, status); |
|
8760 } |
|
8761 UTRACE_EXIT_VALUE_STATUS(returnVal, *status); |
|
8762 return returnVal; |
|
8763 } |
|
8764 |
|
8765 |
|
8766 /* convenience function for comparing strings */ |
|
8767 U_CAPI UBool U_EXPORT2 |
|
8768 ucol_greater( const UCollator *coll, |
|
8769 const UChar *source, |
|
8770 int32_t sourceLength, |
|
8771 const UChar *target, |
|
8772 int32_t targetLength) |
|
8773 { |
|
8774 return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
|
8775 == UCOL_GREATER); |
|
8776 } |
|
8777 |
|
8778 /* convenience function for comparing strings */ |
|
8779 U_CAPI UBool U_EXPORT2 |
|
8780 ucol_greaterOrEqual( const UCollator *coll, |
|
8781 const UChar *source, |
|
8782 int32_t sourceLength, |
|
8783 const UChar *target, |
|
8784 int32_t targetLength) |
|
8785 { |
|
8786 return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
|
8787 != UCOL_LESS); |
|
8788 } |
|
8789 |
|
8790 /* convenience function for comparing strings */ |
|
8791 U_CAPI UBool U_EXPORT2 |
|
8792 ucol_equal( const UCollator *coll, |
|
8793 const UChar *source, |
|
8794 int32_t sourceLength, |
|
8795 const UChar *target, |
|
8796 int32_t targetLength) |
|
8797 { |
|
8798 return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
|
8799 == UCOL_EQUAL); |
|
8800 } |
|
8801 |
|
8802 U_CAPI void U_EXPORT2 |
|
8803 ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) { |
|
8804 if(coll && coll->UCA) { |
|
8805 uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo)); |
|
8806 } |
|
8807 } |
|
8808 |
|
8809 #endif /* #if !UCONFIG_NO_COLLATION */ |