| |
1 /* |
| |
2 ******************************************************************************* |
| |
3 * |
| |
4 * Copyright (C) 2001-2012, International Business Machines |
| |
5 * Corporation and others. All Rights Reserved. |
| |
6 * |
| |
7 ******************************************************************************* |
| |
8 * file name: ucaelems.cpp |
| |
9 * encoding: US-ASCII |
| |
10 * tab size: 8 (not used) |
| |
11 * indentation:4 |
| |
12 * |
| |
13 * created 02/22/2001 |
| |
14 * created by: Vladimir Weinstein |
| |
15 * |
| |
16 * This program reads the Franctional UCA table and generates |
| |
17 * internal format for UCA table as well as inverse UCA table. |
| |
18 * It then writes binary files containing the data: ucadata.dat |
| |
19 * & invuca.dat |
| |
20 * |
| |
21 * date name comments |
| |
22 * 03/02/2001 synwee added setMaxExpansion |
| |
23 * 03/07/2001 synwee merged UCA's maxexpansion and tailoring's |
| |
24 */ |
| |
25 |
| |
26 #include "unicode/utypes.h" |
| |
27 |
| |
28 #if !UCONFIG_NO_COLLATION |
| |
29 |
| |
30 #include "unicode/uchar.h" |
| |
31 #include "unicode/unistr.h" |
| |
32 #include "unicode/ucoleitr.h" |
| |
33 #include "unicode/normlzr.h" |
| |
34 #include "unicode/utf16.h" |
| |
35 #include "normalizer2impl.h" |
| |
36 #include "ucol_elm.h" |
| |
37 #include "ucol_tok.h" |
| |
38 #include "ucol_cnt.h" |
| |
39 #include "unicode/caniter.h" |
| |
40 #include "cmemory.h" |
| |
41 #include "uassert.h" |
| |
42 |
| |
43 U_NAMESPACE_USE |
| |
44 |
| |
45 static uint32_t uprv_uca_processContraction(CntTable *contractions, UCAElements *element, uint32_t existingCE, UErrorCode *status); |
| |
46 |
| |
47 U_CDECL_BEGIN |
| |
48 static int32_t U_CALLCONV |
| |
49 prefixLookupHash(const UHashTok e) { |
| |
50 UCAElements *element = (UCAElements *)e.pointer; |
| |
51 UChar buf[256]; |
| |
52 UHashTok key; |
| |
53 key.pointer = buf; |
| |
54 uprv_memcpy(buf, element->cPoints, element->cSize*sizeof(UChar)); |
| |
55 buf[element->cSize] = 0; |
| |
56 //key.pointer = element->cPoints; |
| |
57 //element->cPoints[element->cSize] = 0; |
| |
58 return uhash_hashUChars(key); |
| |
59 } |
| |
60 |
| |
61 static int8_t U_CALLCONV |
| |
62 prefixLookupComp(const UHashTok e1, const UHashTok e2) { |
| |
63 UCAElements *element1 = (UCAElements *)e1.pointer; |
| |
64 UCAElements *element2 = (UCAElements *)e2.pointer; |
| |
65 |
| |
66 UChar buf1[256]; |
| |
67 UHashTok key1; |
| |
68 key1.pointer = buf1; |
| |
69 uprv_memcpy(buf1, element1->cPoints, element1->cSize*sizeof(UChar)); |
| |
70 buf1[element1->cSize] = 0; |
| |
71 |
| |
72 UChar buf2[256]; |
| |
73 UHashTok key2; |
| |
74 key2.pointer = buf2; |
| |
75 uprv_memcpy(buf2, element2->cPoints, element2->cSize*sizeof(UChar)); |
| |
76 buf2[element2->cSize] = 0; |
| |
77 |
| |
78 return uhash_compareUChars(key1, key2); |
| |
79 } |
| |
80 U_CDECL_END |
| |
81 |
| |
82 static int32_t uprv_uca_addExpansion(ExpansionTable *expansions, uint32_t value, UErrorCode *status) { |
| |
83 if(U_FAILURE(*status)) { |
| |
84 return 0; |
| |
85 } |
| |
86 if(expansions->CEs == NULL) { |
| |
87 expansions->CEs = (uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE*sizeof(uint32_t)); |
| |
88 /* test for NULL */ |
| |
89 if (expansions->CEs == NULL) { |
| |
90 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
91 return 0; |
| |
92 } |
| |
93 expansions->size = INIT_EXP_TABLE_SIZE; |
| |
94 expansions->position = 0; |
| |
95 } |
| |
96 |
| |
97 if(expansions->position == expansions->size) { |
| |
98 uint32_t *newData = (uint32_t *)uprv_realloc(expansions->CEs, 2*expansions->size*sizeof(uint32_t)); |
| |
99 if(newData == NULL) { |
| |
100 #ifdef UCOL_DEBUG |
| |
101 fprintf(stderr, "out of memory for expansions\n"); |
| |
102 #endif |
| |
103 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
104 return -1; |
| |
105 } |
| |
106 expansions->CEs = newData; |
| |
107 expansions->size *= 2; |
| |
108 } |
| |
109 |
| |
110 expansions->CEs[expansions->position] = value; |
| |
111 return(expansions->position++); |
| |
112 } |
| |
113 |
| |
114 U_CAPI tempUCATable* U_EXPORT2 |
| |
115 uprv_uca_initTempTable(UCATableHeader *image, UColOptionSet *opts, const UCollator *UCA, UColCETags initTag, UColCETags supplementaryInitTag, UErrorCode *status) { |
| |
116 MaxJamoExpansionTable *maxjet; |
| |
117 MaxExpansionTable *maxet; |
| |
118 tempUCATable *t = (tempUCATable *)uprv_malloc(sizeof(tempUCATable)); |
| |
119 /* test for NULL */ |
| |
120 if (t == NULL) { |
| |
121 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
122 return NULL; |
| |
123 } |
| |
124 uprv_memset(t, 0, sizeof(tempUCATable)); |
| |
125 |
| |
126 maxet = (MaxExpansionTable *)uprv_malloc(sizeof(MaxExpansionTable)); |
| |
127 if (maxet == NULL) { |
| |
128 goto allocation_failure; |
| |
129 } |
| |
130 uprv_memset(maxet, 0, sizeof(MaxExpansionTable)); |
| |
131 t->maxExpansions = maxet; |
| |
132 |
| |
133 maxjet = (MaxJamoExpansionTable *)uprv_malloc(sizeof(MaxJamoExpansionTable)); |
| |
134 if (maxjet == NULL) { |
| |
135 goto allocation_failure; |
| |
136 } |
| |
137 uprv_memset(maxjet, 0, sizeof(MaxJamoExpansionTable)); |
| |
138 t->maxJamoExpansions = maxjet; |
| |
139 |
| |
140 t->image = image; |
| |
141 t->options = opts; |
| |
142 |
| |
143 t->UCA = UCA; |
| |
144 t->expansions = (ExpansionTable *)uprv_malloc(sizeof(ExpansionTable)); |
| |
145 /* test for NULL */ |
| |
146 if (t->expansions == NULL) { |
| |
147 goto allocation_failure; |
| |
148 } |
| |
149 uprv_memset(t->expansions, 0, sizeof(ExpansionTable)); |
| |
150 |
| |
151 t->mapping = utrie_open(NULL, NULL, UCOL_ELM_TRIE_CAPACITY, |
| |
152 UCOL_SPECIAL_FLAG | (initTag<<24), |
| |
153 UCOL_SPECIAL_FLAG | (supplementaryInitTag << 24), |
| |
154 TRUE); // Do your own mallocs for the structure, array and have linear Latin 1 |
| |
155 if (U_FAILURE(*status)) { |
| |
156 goto allocation_failure; |
| |
157 } |
| |
158 t->prefixLookup = uhash_open(prefixLookupHash, prefixLookupComp, NULL, status); |
| |
159 if (U_FAILURE(*status)) { |
| |
160 goto allocation_failure; |
| |
161 } |
| |
162 uhash_setValueDeleter(t->prefixLookup, uprv_free); |
| |
163 |
| |
164 t->contractions = uprv_cnttab_open(t->mapping, status); |
| |
165 if (U_FAILURE(*status)) { |
| |
166 goto cleanup; |
| |
167 } |
| |
168 |
| |
169 /* copy UCA's maxexpansion and merge as we go along */ |
| |
170 if (UCA != NULL) { |
| |
171 /* adding an extra initial value for easier manipulation */ |
| |
172 maxet->size = (int32_t)(UCA->lastEndExpansionCE - UCA->endExpansionCE) + 2; |
| |
173 maxet->position = maxet->size - 1; |
| |
174 maxet->endExpansionCE = |
| |
175 (uint32_t *)uprv_malloc(sizeof(uint32_t) * maxet->size); |
| |
176 /* test for NULL */ |
| |
177 if (maxet->endExpansionCE == NULL) { |
| |
178 goto allocation_failure; |
| |
179 } |
| |
180 maxet->expansionCESize = |
| |
181 (uint8_t *)uprv_malloc(sizeof(uint8_t) * maxet->size); |
| |
182 /* test for NULL */ |
| |
183 if (maxet->expansionCESize == NULL) { |
| |
184 goto allocation_failure; |
| |
185 } |
| |
186 /* initialized value */ |
| |
187 *(maxet->endExpansionCE) = 0; |
| |
188 *(maxet->expansionCESize) = 0; |
| |
189 uprv_memcpy(maxet->endExpansionCE + 1, UCA->endExpansionCE, |
| |
190 sizeof(uint32_t) * (maxet->size - 1)); |
| |
191 uprv_memcpy(maxet->expansionCESize + 1, UCA->expansionCESize, |
| |
192 sizeof(uint8_t) * (maxet->size - 1)); |
| |
193 } |
| |
194 else { |
| |
195 maxet->size = 0; |
| |
196 } |
| |
197 maxjet->endExpansionCE = NULL; |
| |
198 maxjet->isV = NULL; |
| |
199 maxjet->size = 0; |
| |
200 maxjet->position = 0; |
| |
201 maxjet->maxLSize = 1; |
| |
202 maxjet->maxVSize = 1; |
| |
203 maxjet->maxTSize = 1; |
| |
204 |
| |
205 t->unsafeCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE); |
| |
206 /* test for NULL */ |
| |
207 if (t->unsafeCP == NULL) { |
| |
208 goto allocation_failure; |
| |
209 } |
| |
210 t->contrEndCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE); |
| |
211 /* test for NULL */ |
| |
212 if (t->contrEndCP == NULL) { |
| |
213 goto allocation_failure; |
| |
214 } |
| |
215 uprv_memset(t->unsafeCP, 0, UCOL_UNSAFECP_TABLE_SIZE); |
| |
216 uprv_memset(t->contrEndCP, 0, UCOL_UNSAFECP_TABLE_SIZE); |
| |
217 t->cmLookup = NULL; |
| |
218 return t; |
| |
219 |
| |
220 allocation_failure: |
| |
221 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
222 cleanup: |
| |
223 uprv_uca_closeTempTable(t); |
| |
224 return NULL; |
| |
225 } |
| |
226 |
| |
227 static tempUCATable* U_EXPORT2 |
| |
228 uprv_uca_cloneTempTable(tempUCATable *t, UErrorCode *status) { |
| |
229 if(U_FAILURE(*status)) { |
| |
230 return NULL; |
| |
231 } |
| |
232 |
| |
233 tempUCATable *r = (tempUCATable *)uprv_malloc(sizeof(tempUCATable)); |
| |
234 /* test for NULL */ |
| |
235 if (r == NULL) { |
| |
236 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
237 return NULL; |
| |
238 } |
| |
239 uprv_memset(r, 0, sizeof(tempUCATable)); |
| |
240 |
| |
241 /* mapping */ |
| |
242 if(t->mapping != NULL) { |
| |
243 /*r->mapping = ucmpe32_clone(t->mapping, status);*/ |
| |
244 r->mapping = utrie_clone(NULL, t->mapping, NULL, 0); |
| |
245 } |
| |
246 |
| |
247 // a hashing clone function would be very nice. We have none currently... |
| |
248 // However, we should be good, as closing should not produce any prefixed elements. |
| |
249 r->prefixLookup = NULL; // prefixes are not used in closing |
| |
250 |
| |
251 /* expansions */ |
| |
252 if(t->expansions != NULL) { |
| |
253 r->expansions = (ExpansionTable *)uprv_malloc(sizeof(ExpansionTable)); |
| |
254 /* test for NULL */ |
| |
255 if (r->expansions == NULL) { |
| |
256 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
257 goto cleanup; |
| |
258 } |
| |
259 r->expansions->position = t->expansions->position; |
| |
260 r->expansions->size = t->expansions->size; |
| |
261 if(t->expansions->CEs != NULL) { |
| |
262 r->expansions->CEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->expansions->size); |
| |
263 /* test for NULL */ |
| |
264 if (r->expansions->CEs == NULL) { |
| |
265 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
266 goto cleanup; |
| |
267 } |
| |
268 uprv_memcpy(r->expansions->CEs, t->expansions->CEs, sizeof(uint32_t)*t->expansions->position); |
| |
269 } else { |
| |
270 r->expansions->CEs = NULL; |
| |
271 } |
| |
272 } |
| |
273 |
| |
274 if(t->contractions != NULL) { |
| |
275 r->contractions = uprv_cnttab_clone(t->contractions, status); |
| |
276 // Check for cloning failure. |
| |
277 if (r->contractions == NULL) { |
| |
278 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
279 goto cleanup; |
| |
280 } |
| |
281 r->contractions->mapping = r->mapping; |
| |
282 } |
| |
283 |
| |
284 if(t->maxExpansions != NULL) { |
| |
285 r->maxExpansions = (MaxExpansionTable *)uprv_malloc(sizeof(MaxExpansionTable)); |
| |
286 /* test for NULL */ |
| |
287 if (r->maxExpansions == NULL) { |
| |
288 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
289 goto cleanup; |
| |
290 } |
| |
291 r->maxExpansions->size = t->maxExpansions->size; |
| |
292 r->maxExpansions->position = t->maxExpansions->position; |
| |
293 if(t->maxExpansions->endExpansionCE != NULL) { |
| |
294 r->maxExpansions->endExpansionCE = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->maxExpansions->size); |
| |
295 /* test for NULL */ |
| |
296 if (r->maxExpansions->endExpansionCE == NULL) { |
| |
297 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
298 goto cleanup; |
| |
299 } |
| |
300 uprv_memset(r->maxExpansions->endExpansionCE, 0xDB, sizeof(uint32_t)*t->maxExpansions->size); |
| |
301 uprv_memcpy(r->maxExpansions->endExpansionCE, t->maxExpansions->endExpansionCE, t->maxExpansions->position*sizeof(uint32_t)); |
| |
302 } else { |
| |
303 r->maxExpansions->endExpansionCE = NULL; |
| |
304 } |
| |
305 if(t->maxExpansions->expansionCESize != NULL) { |
| |
306 r->maxExpansions->expansionCESize = (uint8_t *)uprv_malloc(sizeof(uint8_t)*t->maxExpansions->size); |
| |
307 /* test for NULL */ |
| |
308 if (r->maxExpansions->expansionCESize == NULL) { |
| |
309 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
310 goto cleanup; |
| |
311 } |
| |
312 uprv_memset(r->maxExpansions->expansionCESize, 0xDB, sizeof(uint8_t)*t->maxExpansions->size); |
| |
313 uprv_memcpy(r->maxExpansions->expansionCESize, t->maxExpansions->expansionCESize, t->maxExpansions->position*sizeof(uint8_t)); |
| |
314 } else { |
| |
315 r->maxExpansions->expansionCESize = NULL; |
| |
316 } |
| |
317 } |
| |
318 |
| |
319 if(t->maxJamoExpansions != NULL) { |
| |
320 r->maxJamoExpansions = (MaxJamoExpansionTable *)uprv_malloc(sizeof(MaxJamoExpansionTable)); |
| |
321 /* test for NULL */ |
| |
322 if (r->maxJamoExpansions == NULL) { |
| |
323 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
324 goto cleanup; |
| |
325 } |
| |
326 r->maxJamoExpansions->size = t->maxJamoExpansions->size; |
| |
327 r->maxJamoExpansions->position = t->maxJamoExpansions->position; |
| |
328 r->maxJamoExpansions->maxLSize = t->maxJamoExpansions->maxLSize; |
| |
329 r->maxJamoExpansions->maxVSize = t->maxJamoExpansions->maxVSize; |
| |
330 r->maxJamoExpansions->maxTSize = t->maxJamoExpansions->maxTSize; |
| |
331 if(t->maxJamoExpansions->size != 0) { |
| |
332 r->maxJamoExpansions->endExpansionCE = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->maxJamoExpansions->size); |
| |
333 /* test for NULL */ |
| |
334 if (r->maxJamoExpansions->endExpansionCE == NULL) { |
| |
335 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
336 goto cleanup; |
| |
337 } |
| |
338 uprv_memcpy(r->maxJamoExpansions->endExpansionCE, t->maxJamoExpansions->endExpansionCE, t->maxJamoExpansions->position*sizeof(uint32_t)); |
| |
339 r->maxJamoExpansions->isV = (UBool *)uprv_malloc(sizeof(UBool)*t->maxJamoExpansions->size); |
| |
340 /* test for NULL */ |
| |
341 if (r->maxJamoExpansions->isV == NULL) { |
| |
342 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
343 goto cleanup; |
| |
344 } |
| |
345 uprv_memcpy(r->maxJamoExpansions->isV, t->maxJamoExpansions->isV, t->maxJamoExpansions->position*sizeof(UBool)); |
| |
346 } else { |
| |
347 r->maxJamoExpansions->endExpansionCE = NULL; |
| |
348 r->maxJamoExpansions->isV = NULL; |
| |
349 } |
| |
350 } |
| |
351 |
| |
352 if(t->unsafeCP != NULL) { |
| |
353 r->unsafeCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE); |
| |
354 /* test for NULL */ |
| |
355 if (r->unsafeCP == NULL) { |
| |
356 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
357 goto cleanup; |
| |
358 } |
| |
359 uprv_memcpy(r->unsafeCP, t->unsafeCP, UCOL_UNSAFECP_TABLE_SIZE); |
| |
360 } |
| |
361 |
| |
362 if(t->contrEndCP != NULL) { |
| |
363 r->contrEndCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE); |
| |
364 /* test for NULL */ |
| |
365 if (r->contrEndCP == NULL) { |
| |
366 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
367 goto cleanup; |
| |
368 } |
| |
369 uprv_memcpy(r->contrEndCP, t->contrEndCP, UCOL_UNSAFECP_TABLE_SIZE); |
| |
370 } |
| |
371 |
| |
372 r->UCA = t->UCA; |
| |
373 r->image = t->image; |
| |
374 r->options = t->options; |
| |
375 |
| |
376 return r; |
| |
377 cleanup: |
| |
378 uprv_uca_closeTempTable(t); |
| |
379 return NULL; |
| |
380 } |
| |
381 |
| |
382 |
| |
383 U_CAPI void U_EXPORT2 |
| |
384 uprv_uca_closeTempTable(tempUCATable *t) { |
| |
385 if(t != NULL) { |
| |
386 if (t->expansions != NULL) { |
| |
387 uprv_free(t->expansions->CEs); |
| |
388 uprv_free(t->expansions); |
| |
389 } |
| |
390 if(t->contractions != NULL) { |
| |
391 uprv_cnttab_close(t->contractions); |
| |
392 } |
| |
393 if (t->mapping != NULL) { |
| |
394 utrie_close(t->mapping); |
| |
395 } |
| |
396 |
| |
397 if(t->prefixLookup != NULL) { |
| |
398 uhash_close(t->prefixLookup); |
| |
399 } |
| |
400 |
| |
401 if (t->maxExpansions != NULL) { |
| |
402 uprv_free(t->maxExpansions->endExpansionCE); |
| |
403 uprv_free(t->maxExpansions->expansionCESize); |
| |
404 uprv_free(t->maxExpansions); |
| |
405 } |
| |
406 |
| |
407 if (t->maxJamoExpansions->size > 0) { |
| |
408 uprv_free(t->maxJamoExpansions->endExpansionCE); |
| |
409 uprv_free(t->maxJamoExpansions->isV); |
| |
410 } |
| |
411 uprv_free(t->maxJamoExpansions); |
| |
412 |
| |
413 uprv_free(t->unsafeCP); |
| |
414 uprv_free(t->contrEndCP); |
| |
415 |
| |
416 if (t->cmLookup != NULL) { |
| |
417 uprv_free(t->cmLookup->cPoints); |
| |
418 uprv_free(t->cmLookup); |
| |
419 } |
| |
420 |
| |
421 uprv_free(t); |
| |
422 } |
| |
423 } |
| |
424 |
| |
425 /** |
| |
426 * Looks for the maximum length of all expansion sequences ending with the same |
| |
427 * collation element. The size required for maxexpansion and maxsize is |
| |
428 * returned if the arrays are too small. |
| |
429 * @param endexpansion the last expansion collation element to be added |
| |
430 * @param expansionsize size of the expansion |
| |
431 * @param maxexpansion data structure to store the maximum expansion data. |
| |
432 * @param status error status |
| |
433 * @returns size of the maxexpansion and maxsize used. |
| |
434 */ |
| |
435 static int uprv_uca_setMaxExpansion(uint32_t endexpansion, |
| |
436 uint8_t expansionsize, |
| |
437 MaxExpansionTable *maxexpansion, |
| |
438 UErrorCode *status) |
| |
439 { |
| |
440 if (maxexpansion->size == 0) { |
| |
441 /* we'll always make the first element 0, for easier manipulation */ |
| |
442 maxexpansion->endExpansionCE = |
| |
443 (uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(int32_t)); |
| |
444 /* test for NULL */ |
| |
445 if (maxexpansion->endExpansionCE == NULL) { |
| |
446 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
447 return 0; |
| |
448 } |
| |
449 *(maxexpansion->endExpansionCE) = 0; |
| |
450 maxexpansion->expansionCESize = |
| |
451 (uint8_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(uint8_t)); |
| |
452 /* test for NULL */; |
| |
453 if (maxexpansion->expansionCESize == NULL) { |
| |
454 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
455 return 0; |
| |
456 } |
| |
457 *(maxexpansion->expansionCESize) = 0; |
| |
458 maxexpansion->size = INIT_EXP_TABLE_SIZE; |
| |
459 maxexpansion->position = 0; |
| |
460 } |
| |
461 |
| |
462 if (maxexpansion->position + 1 == maxexpansion->size) { |
| |
463 uint32_t *neweece = (uint32_t *)uprv_realloc(maxexpansion->endExpansionCE, |
| |
464 2 * maxexpansion->size * sizeof(uint32_t)); |
| |
465 if (neweece == NULL) { |
| |
466 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
467 return 0; |
| |
468 } |
| |
469 maxexpansion->endExpansionCE = neweece; |
| |
470 |
| |
471 uint8_t *neweces = (uint8_t *)uprv_realloc(maxexpansion->expansionCESize, |
| |
472 2 * maxexpansion->size * sizeof(uint8_t)); |
| |
473 if (neweces == NULL) { |
| |
474 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
475 return 0; |
| |
476 } |
| |
477 maxexpansion->expansionCESize = neweces; |
| |
478 maxexpansion->size *= 2; |
| |
479 } |
| |
480 |
| |
481 uint32_t *pendexpansionce = maxexpansion->endExpansionCE; |
| |
482 uint8_t *pexpansionsize = maxexpansion->expansionCESize; |
| |
483 int pos = maxexpansion->position; |
| |
484 |
| |
485 uint32_t *start = pendexpansionce; |
| |
486 uint32_t *limit = pendexpansionce + pos; |
| |
487 |
| |
488 /* using binary search to determine if last expansion element is |
| |
489 already in the array */ |
| |
490 uint32_t *mid; |
| |
491 int result = -1; |
| |
492 while (start < limit - 1) { |
| |
493 mid = start + ((limit - start) >> 1); |
| |
494 if (endexpansion <= *mid) { |
| |
495 limit = mid; |
| |
496 } |
| |
497 else { |
| |
498 start = mid; |
| |
499 } |
| |
500 } |
| |
501 |
| |
502 if (*start == endexpansion) { |
| |
503 result = (int)(start - pendexpansionce); |
| |
504 } |
| |
505 else if (*limit == endexpansion) { |
| |
506 result = (int)(limit - pendexpansionce); |
| |
507 } |
| |
508 |
| |
509 if (result > -1) { |
| |
510 /* found the ce in expansion, we'll just modify the size if it is |
| |
511 smaller */ |
| |
512 uint8_t *currentsize = pexpansionsize + result; |
| |
513 if (*currentsize < expansionsize) { |
| |
514 *currentsize = expansionsize; |
| |
515 } |
| |
516 } |
| |
517 else { |
| |
518 /* we'll need to squeeze the value into the array. |
| |
519 initial implementation. */ |
| |
520 /* shifting the subarray down by 1 */ |
| |
521 int shiftsize = (int)((pendexpansionce + pos) - start); |
| |
522 uint32_t *shiftpos = start + 1; |
| |
523 uint8_t *sizeshiftpos = pexpansionsize + (shiftpos - pendexpansionce); |
| |
524 |
| |
525 /* okay need to rearrange the array into sorted order */ |
| |
526 if (shiftsize == 0 /*|| *(pendexpansionce + pos) < endexpansion*/) { /* the commented part is actually both redundant and dangerous */ |
| |
527 *(pendexpansionce + pos + 1) = endexpansion; |
| |
528 *(pexpansionsize + pos + 1) = expansionsize; |
| |
529 } |
| |
530 else { |
| |
531 uprv_memmove(shiftpos + 1, shiftpos, shiftsize * sizeof(int32_t)); |
| |
532 uprv_memmove(sizeshiftpos + 1, sizeshiftpos, |
| |
533 shiftsize * sizeof(uint8_t)); |
| |
534 *shiftpos = endexpansion; |
| |
535 *sizeshiftpos = expansionsize; |
| |
536 } |
| |
537 maxexpansion->position ++; |
| |
538 |
| |
539 #ifdef UCOL_DEBUG |
| |
540 int temp; |
| |
541 UBool found = FALSE; |
| |
542 for (temp = 0; temp < maxexpansion->position; temp ++) { |
| |
543 if (pendexpansionce[temp] >= pendexpansionce[temp + 1]) { |
| |
544 fprintf(stderr, "expansions %d\n", temp); |
| |
545 } |
| |
546 if (pendexpansionce[temp] == endexpansion) { |
| |
547 found =TRUE; |
| |
548 if (pexpansionsize[temp] < expansionsize) { |
| |
549 fprintf(stderr, "expansions size %d\n", temp); |
| |
550 } |
| |
551 } |
| |
552 } |
| |
553 if (pendexpansionce[temp] == endexpansion) { |
| |
554 found =TRUE; |
| |
555 if (pexpansionsize[temp] < expansionsize) { |
| |
556 fprintf(stderr, "expansions size %d\n", temp); |
| |
557 } |
| |
558 } |
| |
559 if (!found) |
| |
560 fprintf(stderr, "expansion not found %d\n", temp); |
| |
561 #endif |
| |
562 } |
| |
563 |
| |
564 return maxexpansion->position; |
| |
565 } |
| |
566 |
| |
567 /** |
| |
568 * Sets the maximum length of all jamo expansion sequences ending with the same |
| |
569 * collation element. The size required for maxexpansion and maxsize is |
| |
570 * returned if the arrays are too small. |
| |
571 * @param ch the jamo codepoint |
| |
572 * @param endexpansion the last expansion collation element to be added |
| |
573 * @param expansionsize size of the expansion |
| |
574 * @param maxexpansion data structure to store the maximum expansion data. |
| |
575 * @param status error status |
| |
576 * @returns size of the maxexpansion and maxsize used. |
| |
577 */ |
| |
578 static int uprv_uca_setMaxJamoExpansion(UChar ch, |
| |
579 uint32_t endexpansion, |
| |
580 uint8_t expansionsize, |
| |
581 MaxJamoExpansionTable *maxexpansion, |
| |
582 UErrorCode *status) |
| |
583 { |
| |
584 UBool isV = TRUE; |
| |
585 if (((uint32_t)ch - 0x1100) <= (0x1112 - 0x1100)) { |
| |
586 /* determines L for Jamo, doesn't need to store this since it is never |
| |
587 at the end of a expansion */ |
| |
588 if (maxexpansion->maxLSize < expansionsize) { |
| |
589 maxexpansion->maxLSize = expansionsize; |
| |
590 } |
| |
591 return maxexpansion->position; |
| |
592 } |
| |
593 |
| |
594 if (((uint32_t)ch - 0x1161) <= (0x1175 - 0x1161)) { |
| |
595 /* determines V for Jamo */ |
| |
596 if (maxexpansion->maxVSize < expansionsize) { |
| |
597 maxexpansion->maxVSize = expansionsize; |
| |
598 } |
| |
599 } |
| |
600 |
| |
601 if (((uint32_t)ch - 0x11A8) <= (0x11C2 - 0x11A8)) { |
| |
602 isV = FALSE; |
| |
603 /* determines T for Jamo */ |
| |
604 if (maxexpansion->maxTSize < expansionsize) { |
| |
605 maxexpansion->maxTSize = expansionsize; |
| |
606 } |
| |
607 } |
| |
608 |
| |
609 if (maxexpansion->size == 0) { |
| |
610 /* we'll always make the first element 0, for easier manipulation */ |
| |
611 maxexpansion->endExpansionCE = |
| |
612 (uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(uint32_t)); |
| |
613 /* test for NULL */; |
| |
614 if (maxexpansion->endExpansionCE == NULL) { |
| |
615 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
616 return 0; |
| |
617 } |
| |
618 *(maxexpansion->endExpansionCE) = 0; |
| |
619 maxexpansion->isV = |
| |
620 (UBool *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(UBool)); |
| |
621 /* test for NULL */; |
| |
622 if (maxexpansion->isV == NULL) { |
| |
623 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
624 uprv_free(maxexpansion->endExpansionCE); |
| |
625 maxexpansion->endExpansionCE = NULL; |
| |
626 return 0; |
| |
627 } |
| |
628 *(maxexpansion->isV) = 0; |
| |
629 maxexpansion->size = INIT_EXP_TABLE_SIZE; |
| |
630 maxexpansion->position = 0; |
| |
631 } |
| |
632 |
| |
633 if (maxexpansion->position + 1 == maxexpansion->size) { |
| |
634 maxexpansion->size *= 2; |
| |
635 maxexpansion->endExpansionCE = (uint32_t *)uprv_realloc(maxexpansion->endExpansionCE, |
| |
636 maxexpansion->size * sizeof(uint32_t)); |
| |
637 if (maxexpansion->endExpansionCE == NULL) { |
| |
638 #ifdef UCOL_DEBUG |
| |
639 fprintf(stderr, "out of memory for maxExpansions\n"); |
| |
640 #endif |
| |
641 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
642 return 0; |
| |
643 } |
| |
644 maxexpansion->isV = (UBool *)uprv_realloc(maxexpansion->isV, |
| |
645 maxexpansion->size * sizeof(UBool)); |
| |
646 if (maxexpansion->isV == NULL) { |
| |
647 #ifdef UCOL_DEBUG |
| |
648 fprintf(stderr, "out of memory for maxExpansions\n"); |
| |
649 #endif |
| |
650 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
651 uprv_free(maxexpansion->endExpansionCE); |
| |
652 maxexpansion->endExpansionCE = NULL; |
| |
653 return 0; |
| |
654 } |
| |
655 } |
| |
656 |
| |
657 uint32_t *pendexpansionce = maxexpansion->endExpansionCE; |
| |
658 int pos = maxexpansion->position; |
| |
659 |
| |
660 while (pos > 0) { |
| |
661 pos --; |
| |
662 if (*(pendexpansionce + pos) == endexpansion) { |
| |
663 return maxexpansion->position; |
| |
664 } |
| |
665 } |
| |
666 |
| |
667 *(pendexpansionce + maxexpansion->position) = endexpansion; |
| |
668 *(maxexpansion->isV + maxexpansion->position) = isV; |
| |
669 maxexpansion->position ++; |
| |
670 |
| |
671 return maxexpansion->position; |
| |
672 } |
| |
673 |
| |
674 |
| |
675 static void ContrEndCPSet(uint8_t *table, UChar c) { |
| |
676 uint32_t hash; |
| |
677 uint8_t *htByte; |
| |
678 |
| |
679 hash = c; |
| |
680 if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { |
| |
681 hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; |
| |
682 } |
| |
683 htByte = &table[hash>>3]; |
| |
684 *htByte |= (1 << (hash & 7)); |
| |
685 } |
| |
686 |
| |
687 |
| |
688 static void unsafeCPSet(uint8_t *table, UChar c) { |
| |
689 uint32_t hash; |
| |
690 uint8_t *htByte; |
| |
691 |
| |
692 hash = c; |
| |
693 if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { |
| |
694 if (hash >= 0xd800 && hash <= 0xf8ff) { |
| |
695 /* Part of a surrogate, or in private use area. */ |
| |
696 /* These don't go in the table */ |
| |
697 return; |
| |
698 } |
| |
699 hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; |
| |
700 } |
| |
701 htByte = &table[hash>>3]; |
| |
702 *htByte |= (1 << (hash & 7)); |
| |
703 } |
| |
704 |
| |
705 static void |
| |
706 uprv_uca_createCMTable(tempUCATable *t, int32_t noOfCM, UErrorCode *status) { |
| |
707 t->cmLookup = (CombinClassTable *)uprv_malloc(sizeof(CombinClassTable)); |
| |
708 if (t->cmLookup==NULL) { |
| |
709 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
710 return; |
| |
711 } |
| |
712 t->cmLookup->cPoints=(UChar *)uprv_malloc(noOfCM*sizeof(UChar)); |
| |
713 if (t->cmLookup->cPoints ==NULL) { |
| |
714 uprv_free(t->cmLookup); |
| |
715 t->cmLookup = NULL; |
| |
716 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
717 return; |
| |
718 } |
| |
719 |
| |
720 t->cmLookup->size=noOfCM; |
| |
721 uprv_memset(t->cmLookup->index, 0, sizeof(t->cmLookup->index)); |
| |
722 |
| |
723 return; |
| |
724 } |
| |
725 |
| |
726 static void |
| |
727 uprv_uca_copyCMTable(tempUCATable *t, UChar *cm, uint16_t *index) { |
| |
728 int32_t count=0; |
| |
729 |
| |
730 for (int32_t i=0; i<256; ++i) { |
| |
731 if (index[i]>0) { |
| |
732 // cPoints is ordered by combining class value. |
| |
733 uprv_memcpy(t->cmLookup->cPoints+count, cm+(i<<8), index[i]*sizeof(UChar)); |
| |
734 count += index[i]; |
| |
735 } |
| |
736 t->cmLookup->index[i]=count; |
| |
737 } |
| |
738 return; |
| |
739 } |
| |
740 |
| |
741 /* 1. to the UnsafeCP hash table, add all chars with combining class != 0 */ |
| |
742 /* 2. build combining marks table for all chars with combining class != 0 */ |
| |
743 static void uprv_uca_unsafeCPAddCCNZ(tempUCATable *t, UErrorCode *status) { |
| |
744 |
| |
745 UChar c; |
| |
746 uint16_t fcd; // Hi byte is lead combining class. lo byte is trailing combing class. |
| |
747 UBool buildCMTable = (t->cmLookup==NULL); // flag for building combining class table |
| |
748 UChar *cm=NULL; |
| |
749 uint16_t index[256]; |
| |
750 int32_t count=0; |
| |
751 const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
| |
752 if (U_FAILURE(*status)) { |
| |
753 return; |
| |
754 } |
| |
755 |
| |
756 if (buildCMTable) { |
| |
757 if (cm==NULL) { |
| |
758 cm = (UChar *)uprv_malloc(sizeof(UChar)*UCOL_MAX_CM_TAB); |
| |
759 if (cm==NULL) { |
| |
760 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
761 return; |
| |
762 } |
| |
763 } |
| |
764 uprv_memset(index, 0, sizeof(index)); |
| |
765 } |
| |
766 for (c=0; c<0xffff; c++) { |
| |
767 if (U16_IS_LEAD(c)) { |
| |
768 fcd = 0; |
| |
769 if (nfcImpl->singleLeadMightHaveNonZeroFCD16(c)) { |
| |
770 UChar32 supp = U16_GET_SUPPLEMENTARY(c, 0xdc00); |
| |
771 UChar32 suppLimit = supp + 0x400; |
| |
772 while (supp < suppLimit) { |
| |
773 fcd |= nfcImpl->getFCD16FromNormData(supp++); |
| |
774 } |
| |
775 } |
| |
776 } else { |
| |
777 fcd = nfcImpl->getFCD16(c); |
| |
778 } |
| |
779 if (fcd >= 0x100 || // if the leading combining class(c) > 0 || |
| |
780 (U16_IS_LEAD(c) && fcd != 0)) {// c is a leading surrogate with some FCD data |
| |
781 if (buildCMTable) { |
| |
782 uint32_t cClass = fcd & 0xff; |
| |
783 //uint32_t temp=(cClass<<8)+index[cClass]; |
| |
784 cm[(cClass<<8)+index[cClass]] = c; // |
| |
785 index[cClass]++; |
| |
786 count++; |
| |
787 } |
| |
788 unsafeCPSet(t->unsafeCP, c); |
| |
789 } |
| |
790 } |
| |
791 |
| |
792 // copy to cm table |
| |
793 if (buildCMTable) { |
| |
794 uprv_uca_createCMTable(t, count, status); |
| |
795 if(U_FAILURE(*status)) { |
| |
796 if (cm!=NULL) { |
| |
797 uprv_free(cm); |
| |
798 } |
| |
799 return; |
| |
800 } |
| |
801 uprv_uca_copyCMTable(t, cm, index); |
| |
802 } |
| |
803 |
| |
804 if(t->prefixLookup != NULL) { |
| |
805 int32_t i = -1; |
| |
806 const UHashElement *e = NULL; |
| |
807 UCAElements *element = NULL; |
| |
808 UChar NFCbuf[256]; |
| |
809 while((e = uhash_nextElement(t->prefixLookup, &i)) != NULL) { |
| |
810 element = (UCAElements *)e->value.pointer; |
| |
811 // codepoints here are in the NFD form. We need to add the |
| |
812 // first code point of the NFC form to unsafe, because |
| |
813 // strcoll needs to backup over them. |
| |
814 unorm_normalize(element->cPoints, element->cSize, UNORM_NFC, 0, |
| |
815 NFCbuf, 256, status); |
| |
816 unsafeCPSet(t->unsafeCP, NFCbuf[0]); |
| |
817 } |
| |
818 } |
| |
819 |
| |
820 if (cm!=NULL) { |
| |
821 uprv_free(cm); |
| |
822 } |
| |
823 } |
| |
824 |
| |
825 static uint32_t uprv_uca_addPrefix(tempUCATable *t, uint32_t CE, |
| |
826 UCAElements *element, UErrorCode *status) |
| |
827 { |
| |
828 // currently the longest prefix we're supporting in Japanese is two characters |
| |
829 // long. Although this table could quite easily mimic complete contraction stuff |
| |
830 // there is no good reason to make a general solution, as it would require some |
| |
831 // error prone messing. |
| |
832 CntTable *contractions = t->contractions; |
| |
833 UChar32 cp; |
| |
834 uint32_t cpsize = 0; |
| |
835 UChar *oldCP = element->cPoints; |
| |
836 uint32_t oldCPSize = element->cSize; |
| |
837 |
| |
838 |
| |
839 contractions->currentTag = SPEC_PROC_TAG; |
| |
840 |
| |
841 // here, we will normalize & add prefix to the table. |
| |
842 uint32_t j = 0; |
| |
843 #ifdef UCOL_DEBUG |
| |
844 for(j=0; j<element->cSize; j++) { |
| |
845 fprintf(stdout, "CP: %04X ", element->cPoints[j]); |
| |
846 } |
| |
847 fprintf(stdout, "El: %08X Pref: ", CE); |
| |
848 for(j=0; j<element->prefixSize; j++) { |
| |
849 fprintf(stdout, "%04X ", element->prefix[j]); |
| |
850 } |
| |
851 fprintf(stdout, "%08X ", element->mapCE); |
| |
852 #endif |
| |
853 |
| |
854 for (j = 1; j<element->prefixSize; j++) { /* First add NFD prefix chars to unsafe CP hash table */ |
| |
855 // Unless it is a trail surrogate, which is handled algoritmically and |
| |
856 // shouldn't take up space in the table. |
| |
857 if(!(U16_IS_TRAIL(element->prefix[j]))) { |
| |
858 unsafeCPSet(t->unsafeCP, element->prefix[j]); |
| |
859 } |
| |
860 } |
| |
861 |
| |
862 UChar tempPrefix = 0; |
| |
863 |
| |
864 for(j = 0; j < /*nfcSize*/element->prefixSize/2; j++) { // prefixes are going to be looked up backwards |
| |
865 // therefore, we will promptly reverse the prefix buffer... |
| |
866 tempPrefix = *(/*nfcBuffer*/element->prefix+element->prefixSize-j-1); |
| |
867 *(/*nfcBuffer*/element->prefix+element->prefixSize-j-1) = element->prefix[j]; |
| |
868 element->prefix[j] = tempPrefix; |
| |
869 } |
| |
870 |
| |
871 #ifdef UCOL_DEBUG |
| |
872 fprintf(stdout, "Reversed: "); |
| |
873 for(j=0; j<element->prefixSize; j++) { |
| |
874 fprintf(stdout, "%04X ", element->prefix[j]); |
| |
875 } |
| |
876 fprintf(stdout, "%08X\n", element->mapCE); |
| |
877 #endif |
| |
878 |
| |
879 // the first codepoint is also unsafe, as it forms a 'contraction' with the prefix |
| |
880 if(!(U16_IS_TRAIL(element->cPoints[0]))) { |
| |
881 unsafeCPSet(t->unsafeCP, element->cPoints[0]); |
| |
882 } |
| |
883 |
| |
884 // Maybe we need this... To handle prefixes completely in the forward direction... |
| |
885 //if(element->cSize == 1) { |
| |
886 // if(!(U16_IS_TRAIL(element->cPoints[0]))) { |
| |
887 // ContrEndCPSet(t->contrEndCP, element->cPoints[0]); |
| |
888 // } |
| |
889 //} |
| |
890 |
| |
891 element->cPoints = element->prefix; |
| |
892 element->cSize = element->prefixSize; |
| |
893 |
| |
894 // Add the last char of the contraction to the contraction-end hash table. |
| |
895 // unless it is a trail surrogate, which is handled algorithmically and |
| |
896 // shouldn't be in the table |
| |
897 if(!(U16_IS_TRAIL(element->cPoints[element->cSize -1]))) { |
| |
898 ContrEndCPSet(t->contrEndCP, element->cPoints[element->cSize -1]); |
| |
899 } |
| |
900 |
| |
901 // First we need to check if contractions starts with a surrogate |
| |
902 U16_NEXT(element->cPoints, cpsize, element->cSize, cp); |
| |
903 |
| |
904 // If there are any Jamos in the contraction, we should turn on special |
| |
905 // processing for Jamos |
| |
906 if(UCOL_ISJAMO(element->prefix[0])) { |
| |
907 t->image->jamoSpecial = TRUE; |
| |
908 } |
| |
909 /* then we need to deal with it */ |
| |
910 /* we could aready have something in table - or we might not */ |
| |
911 |
| |
912 if(!isPrefix(CE)) { |
| |
913 /* if it wasn't contraction, we wouldn't end up here*/ |
| |
914 int32_t firstContractionOffset = 0; |
| |
915 firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, CE, status); |
| |
916 uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status); |
| |
917 uprv_cnttab_addContraction(contractions, firstContractionOffset, *element->prefix, newCE, status); |
| |
918 uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, CE, status); |
| |
919 CE = constructContractCE(SPEC_PROC_TAG, firstContractionOffset); |
| |
920 } else { /* we are adding to existing contraction */ |
| |
921 /* there were already some elements in the table, so we need to add a new contraction */ |
| |
922 /* Two things can happen here: either the codepoint is already in the table, or it is not */ |
| |
923 int32_t position = uprv_cnttab_findCP(contractions, CE, *element->prefix, status); |
| |
924 if(position > 0) { /* if it is we just continue down the chain */ |
| |
925 uint32_t eCE = uprv_cnttab_getCE(contractions, CE, position, status); |
| |
926 uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status); |
| |
927 uprv_cnttab_setContraction(contractions, CE, position, *(element->prefix), newCE, status); |
| |
928 } else { /* if it isn't, we will have to create a new sequence */ |
| |
929 uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status); |
| |
930 uprv_cnttab_insertContraction(contractions, CE, *(element->prefix), element->mapCE, status); |
| |
931 } |
| |
932 } |
| |
933 |
| |
934 element->cPoints = oldCP; |
| |
935 element->cSize = oldCPSize; |
| |
936 |
| |
937 return CE; |
| |
938 } |
| |
939 |
| |
940 // Note regarding surrogate handling: We are interested only in the single |
| |
941 // or leading surrogates in a contraction. If a surrogate is somewhere else |
| |
942 // in the contraction, it is going to be handled as a pair of code units, |
| |
943 // as it doesn't affect the performance AND handling surrogates specially |
| |
944 // would complicate code way too much. |
| |
945 static uint32_t uprv_uca_addContraction(tempUCATable *t, uint32_t CE, |
| |
946 UCAElements *element, UErrorCode *status) |
| |
947 { |
| |
948 CntTable *contractions = t->contractions; |
| |
949 UChar32 cp; |
| |
950 uint32_t cpsize = 0; |
| |
951 |
| |
952 contractions->currentTag = CONTRACTION_TAG; |
| |
953 |
| |
954 // First we need to check if contractions starts with a surrogate |
| |
955 U16_NEXT(element->cPoints, cpsize, element->cSize, cp); |
| |
956 |
| |
957 if(cpsize<element->cSize) { // This is a real contraction, if there are other characters after the first |
| |
958 uint32_t j = 0; |
| |
959 for (j=1; j<element->cSize; j++) { /* First add contraction chars to unsafe CP hash table */ |
| |
960 // Unless it is a trail surrogate, which is handled algoritmically and |
| |
961 // shouldn't take up space in the table. |
| |
962 if(!(U16_IS_TRAIL(element->cPoints[j]))) { |
| |
963 unsafeCPSet(t->unsafeCP, element->cPoints[j]); |
| |
964 } |
| |
965 } |
| |
966 // Add the last char of the contraction to the contraction-end hash table. |
| |
967 // unless it is a trail surrogate, which is handled algorithmically and |
| |
968 // shouldn't be in the table |
| |
969 if(!(U16_IS_TRAIL(element->cPoints[element->cSize -1]))) { |
| |
970 ContrEndCPSet(t->contrEndCP, element->cPoints[element->cSize -1]); |
| |
971 } |
| |
972 |
| |
973 // If there are any Jamos in the contraction, we should turn on special |
| |
974 // processing for Jamos |
| |
975 if(UCOL_ISJAMO(element->cPoints[0])) { |
| |
976 t->image->jamoSpecial = TRUE; |
| |
977 } |
| |
978 /* then we need to deal with it */ |
| |
979 /* we could aready have something in table - or we might not */ |
| |
980 element->cPoints+=cpsize; |
| |
981 element->cSize-=cpsize; |
| |
982 if(!isContraction(CE)) { |
| |
983 /* if it wasn't contraction, we wouldn't end up here*/ |
| |
984 int32_t firstContractionOffset = 0; |
| |
985 firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, CE, status); |
| |
986 uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status); |
| |
987 uprv_cnttab_addContraction(contractions, firstContractionOffset, *element->cPoints, newCE, status); |
| |
988 uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, CE, status); |
| |
989 CE = constructContractCE(CONTRACTION_TAG, firstContractionOffset); |
| |
990 } else { /* we are adding to existing contraction */ |
| |
991 /* there were already some elements in the table, so we need to add a new contraction */ |
| |
992 /* Two things can happen here: either the codepoint is already in the table, or it is not */ |
| |
993 int32_t position = uprv_cnttab_findCP(contractions, CE, *element->cPoints, status); |
| |
994 if(position > 0) { /* if it is we just continue down the chain */ |
| |
995 uint32_t eCE = uprv_cnttab_getCE(contractions, CE, position, status); |
| |
996 uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status); |
| |
997 uprv_cnttab_setContraction(contractions, CE, position, *(element->cPoints), newCE, status); |
| |
998 } else { /* if it isn't, we will have to create a new sequence */ |
| |
999 uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status); |
| |
1000 uprv_cnttab_insertContraction(contractions, CE, *(element->cPoints), newCE, status); |
| |
1001 } |
| |
1002 } |
| |
1003 element->cPoints-=cpsize; |
| |
1004 element->cSize+=cpsize; |
| |
1005 /*ucmpe32_set(t->mapping, cp, CE);*/ |
| |
1006 utrie_set32(t->mapping, cp, CE); |
| |
1007 } else if(!isContraction(CE)) { /* this is just a surrogate, and there is no contraction */ |
| |
1008 /*ucmpe32_set(t->mapping, cp, element->mapCE);*/ |
| |
1009 utrie_set32(t->mapping, cp, element->mapCE); |
| |
1010 } else { /* fill out the first stage of the contraction with the surrogate CE */ |
| |
1011 uprv_cnttab_changeContraction(contractions, CE, 0, element->mapCE, status); |
| |
1012 uprv_cnttab_changeContraction(contractions, CE, 0xFFFF, element->mapCE, status); |
| |
1013 } |
| |
1014 return CE; |
| |
1015 } |
| |
1016 |
| |
1017 |
| |
1018 static uint32_t uprv_uca_processContraction(CntTable *contractions, UCAElements *element, uint32_t existingCE, UErrorCode *status) { |
| |
1019 int32_t firstContractionOffset = 0; |
| |
1020 // uint32_t contractionElement = UCOL_NOT_FOUND; |
| |
1021 |
| |
1022 if(U_FAILURE(*status)) { |
| |
1023 return UCOL_NOT_FOUND; |
| |
1024 } |
| |
1025 |
| |
1026 /* end of recursion */ |
| |
1027 if(element->cSize == 1) { |
| |
1028 if(isCntTableElement(existingCE) && ((UColCETags)getCETag(existingCE) == contractions->currentTag)) { |
| |
1029 uprv_cnttab_changeContraction(contractions, existingCE, 0, element->mapCE, status); |
| |
1030 uprv_cnttab_changeContraction(contractions, existingCE, 0xFFFF, element->mapCE, status); |
| |
1031 return existingCE; |
| |
1032 } else { |
| |
1033 return element->mapCE; /*can't do just that. existingCe might be a contraction, meaning that we need to do another step */ |
| |
1034 } |
| |
1035 } |
| |
1036 |
| |
1037 /* this recursion currently feeds on the only element we have... We will have to copy it in order to accomodate */ |
| |
1038 /* for both backward and forward cycles */ |
| |
1039 |
| |
1040 /* we encountered either an empty space or a non-contraction element */ |
| |
1041 /* this means we are constructing a new contraction sequence */ |
| |
1042 element->cPoints++; |
| |
1043 element->cSize--; |
| |
1044 if(!isCntTableElement(existingCE)) { |
| |
1045 /* if it wasn't contraction, we wouldn't end up here*/ |
| |
1046 firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, existingCE, status); |
| |
1047 uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status); |
| |
1048 uprv_cnttab_addContraction(contractions, firstContractionOffset, *element->cPoints, newCE, status); |
| |
1049 uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, existingCE, status); |
| |
1050 existingCE = constructContractCE(contractions->currentTag, firstContractionOffset); |
| |
1051 } else { /* we are adding to existing contraction */ |
| |
1052 /* there were already some elements in the table, so we need to add a new contraction */ |
| |
1053 /* Two things can happen here: either the codepoint is already in the table, or it is not */ |
| |
1054 int32_t position = uprv_cnttab_findCP(contractions, existingCE, *element->cPoints, status); |
| |
1055 if(position > 0) { /* if it is we just continue down the chain */ |
| |
1056 uint32_t eCE = uprv_cnttab_getCE(contractions, existingCE, position, status); |
| |
1057 uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status); |
| |
1058 uprv_cnttab_setContraction(contractions, existingCE, position, *(element->cPoints), newCE, status); |
| |
1059 } else { /* if it isn't, we will have to create a new sequence */ |
| |
1060 uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status); |
| |
1061 uprv_cnttab_insertContraction(contractions, existingCE, *(element->cPoints), newCE, status); |
| |
1062 } |
| |
1063 } |
| |
1064 element->cPoints--; |
| |
1065 element->cSize++; |
| |
1066 return existingCE; |
| |
1067 } |
| |
1068 |
| |
1069 static uint32_t uprv_uca_finalizeAddition(tempUCATable *t, UCAElements *element, UErrorCode *status) { |
| |
1070 uint32_t CE = UCOL_NOT_FOUND; |
| |
1071 // This should add a completely ignorable element to the |
| |
1072 // unsafe table, so that backward iteration will skip |
| |
1073 // over it when treating contractions. |
| |
1074 uint32_t i = 0; |
| |
1075 if(element->mapCE == 0) { |
| |
1076 for(i = 0; i < element->cSize; i++) { |
| |
1077 if(!U16_IS_TRAIL(element->cPoints[i])) { |
| |
1078 unsafeCPSet(t->unsafeCP, element->cPoints[i]); |
| |
1079 } |
| |
1080 } |
| |
1081 } |
| |
1082 if(element->cSize > 1) { /* we're adding a contraction */ |
| |
1083 uint32_t i = 0; |
| |
1084 UChar32 cp; |
| |
1085 |
| |
1086 U16_NEXT(element->cPoints, i, element->cSize, cp); |
| |
1087 /*CE = ucmpe32_get(t->mapping, cp);*/ |
| |
1088 CE = utrie_get32(t->mapping, cp, NULL); |
| |
1089 |
| |
1090 CE = uprv_uca_addContraction(t, CE, element, status); |
| |
1091 } else { /* easy case, */ |
| |
1092 /*CE = ucmpe32_get(t->mapping, element->cPoints[0]);*/ |
| |
1093 CE = utrie_get32(t->mapping, element->cPoints[0], NULL); |
| |
1094 |
| |
1095 if( CE != UCOL_NOT_FOUND) { |
| |
1096 if(isCntTableElement(CE) /*isContraction(CE)*/) { /* adding a non contraction element (thai, expansion, single) to already existing contraction */ |
| |
1097 if(!isPrefix(element->mapCE)) { // we cannot reenter prefix elements - as we are going to create a dead loop |
| |
1098 // Only expansions and regular CEs can go here... Contractions will never happen in this place |
| |
1099 uprv_cnttab_setContraction(t->contractions, CE, 0, 0, element->mapCE, status); |
| |
1100 /* This loop has to change the CE at the end of contraction REDO!*/ |
| |
1101 uprv_cnttab_changeLastCE(t->contractions, CE, element->mapCE, status); |
| |
1102 } |
| |
1103 } else { |
| |
1104 /*ucmpe32_set(t->mapping, element->cPoints[0], element->mapCE);*/ |
| |
1105 utrie_set32(t->mapping, element->cPoints[0], element->mapCE); |
| |
1106 if ((element->prefixSize!=0) && (!isSpecial(CE) || (getCETag(CE)!=IMPLICIT_TAG))) { |
| |
1107 UCAElements *origElem = (UCAElements *)uprv_malloc(sizeof(UCAElements)); |
| |
1108 /* test for NULL */ |
| |
1109 if (origElem== NULL) { |
| |
1110 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
1111 return 0; |
| |
1112 } |
| |
1113 /* copy the original UCA value */ |
| |
1114 origElem->prefixSize = 0; |
| |
1115 origElem->prefix = NULL; |
| |
1116 origElem->cPoints = origElem->uchars; |
| |
1117 origElem->cPoints[0] = element->cPoints[0]; |
| |
1118 origElem->cSize = 1; |
| |
1119 origElem->CEs[0]=CE; |
| |
1120 origElem->mapCE=CE; |
| |
1121 origElem->noOfCEs=1; |
| |
1122 uprv_uca_finalizeAddition(t, origElem, status); |
| |
1123 uprv_free(origElem); |
| |
1124 } |
| |
1125 #ifdef UCOL_DEBUG |
| |
1126 fprintf(stderr, "Warning - trying to overwrite existing data %08X for cp %04X with %08X\n", CE, element->cPoints[0], element->CEs[0]); |
| |
1127 //*status = U_ILLEGAL_ARGUMENT_ERROR; |
| |
1128 #endif |
| |
1129 } |
| |
1130 } else { |
| |
1131 /*ucmpe32_set(t->mapping, element->cPoints[0], element->mapCE);*/ |
| |
1132 utrie_set32(t->mapping, element->cPoints[0], element->mapCE); |
| |
1133 } |
| |
1134 } |
| |
1135 return CE; |
| |
1136 } |
| |
1137 |
| |
1138 /* This adds a read element, while testing for existence */ |
| |
1139 U_CAPI uint32_t U_EXPORT2 |
| |
1140 uprv_uca_addAnElement(tempUCATable *t, UCAElements *element, UErrorCode *status) { |
| |
1141 U_NAMESPACE_USE |
| |
1142 |
| |
1143 ExpansionTable *expansions = t->expansions; |
| |
1144 |
| |
1145 uint32_t i = 1; |
| |
1146 uint32_t expansion = 0; |
| |
1147 uint32_t CE; |
| |
1148 |
| |
1149 if(U_FAILURE(*status)) { |
| |
1150 return 0xFFFF; |
| |
1151 } |
| |
1152 |
| |
1153 element->mapCE = 0; // clear mapCE so that we can catch expansions |
| |
1154 |
| |
1155 if(element->noOfCEs == 1) { |
| |
1156 element->mapCE = element->CEs[0]; |
| |
1157 } else { |
| |
1158 /* ICU 2.1 long primaries */ |
| |
1159 /* unfortunately, it looks like we have to look for a long primary here */ |
| |
1160 /* since in canonical closure we are going to hit some long primaries from */ |
| |
1161 /* the first phase, and they will come back as continuations/expansions */ |
| |
1162 /* destroying the effect of the previous opitimization */ |
| |
1163 /* A long primary is a three byte primary with starting secondaries and tertiaries */ |
| |
1164 /* It can appear in long runs of only primary differences (like east Asian tailorings) */ |
| |
1165 /* also, it should not be an expansion, as expansions would break with this */ |
| |
1166 // This part came in from ucol_bld.cpp |
| |
1167 //if(tok->expansion == 0 |
| |
1168 //&& noOfBytes[0] == 3 && noOfBytes[1] == 1 && noOfBytes[2] == 1 |
| |
1169 //&& CEparts[1] == (UCOL_BYTE_COMMON << 24) && CEparts[2] == (UCOL_BYTE_COMMON << 24)) { |
| |
1170 /* we will construct a special CE that will go unchanged to the table */ |
| |
1171 if(element->noOfCEs == 2 // a two CE expansion |
| |
1172 && isContinuation(element->CEs[1]) // which is a continuation |
| |
1173 && (element->CEs[1] & (~(0xFF << 24 | UCOL_CONTINUATION_MARKER))) == 0 // that has only primaries in continuation, |
| |
1174 && (((element->CEs[0]>>8) & 0xFF) == UCOL_BYTE_COMMON) // a common secondary |
| |
1175 && ((element->CEs[0] & 0xFF) == UCOL_BYTE_COMMON) // and a common tertiary |
| |
1176 ) |
| |
1177 { |
| |
1178 #ifdef UCOL_DEBUG |
| |
1179 fprintf(stdout, "Long primary %04X\n", element->cPoints[0]); |
| |
1180 #endif |
| |
1181 element->mapCE = UCOL_SPECIAL_FLAG | (LONG_PRIMARY_TAG<<24) // a long primary special |
| |
1182 | ((element->CEs[0]>>8) & 0xFFFF00) // first and second byte of primary |
| |
1183 | ((element->CEs[1]>>24) & 0xFF); // third byte of primary |
| |
1184 } |
| |
1185 else { |
| |
1186 expansion = (uint32_t)(UCOL_SPECIAL_FLAG | (EXPANSION_TAG<<UCOL_TAG_SHIFT) |
| |
1187 | (((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4) |
| |
1188 & 0xFFFFF0)); |
| |
1189 |
| |
1190 for(i = 1; i<element->noOfCEs; i++) { |
| |
1191 uprv_uca_addExpansion(expansions, element->CEs[i], status); |
| |
1192 } |
| |
1193 if(element->noOfCEs <= 0xF) { |
| |
1194 expansion |= element->noOfCEs; |
| |
1195 } else { |
| |
1196 uprv_uca_addExpansion(expansions, 0, status); |
| |
1197 } |
| |
1198 element->mapCE = expansion; |
| |
1199 uprv_uca_setMaxExpansion(element->CEs[element->noOfCEs - 1], |
| |
1200 (uint8_t)element->noOfCEs, |
| |
1201 t->maxExpansions, |
| |
1202 status); |
| |
1203 if(UCOL_ISJAMO(element->cPoints[0])) { |
| |
1204 t->image->jamoSpecial = TRUE; |
| |
1205 uprv_uca_setMaxJamoExpansion(element->cPoints[0], |
| |
1206 element->CEs[element->noOfCEs - 1], |
| |
1207 (uint8_t)element->noOfCEs, |
| |
1208 t->maxJamoExpansions, |
| |
1209 status); |
| |
1210 } |
| |
1211 if (U_FAILURE(*status)) { |
| |
1212 return 0; |
| |
1213 } |
| |
1214 } |
| |
1215 } |
| |
1216 |
| |
1217 // We treat digits differently - they are "uber special" and should be |
| |
1218 // processed differently if numeric collation is on. |
| |
1219 UChar32 uniChar = 0; |
| |
1220 //printElement(element); |
| |
1221 if ((element->cSize == 2) && U16_IS_LEAD(element->cPoints[0])){ |
| |
1222 uniChar = U16_GET_SUPPLEMENTARY(element->cPoints[0], element->cPoints[1]); |
| |
1223 } else if (element->cSize == 1){ |
| |
1224 uniChar = element->cPoints[0]; |
| |
1225 } |
| |
1226 |
| |
1227 // Here, we either have one normal CE OR mapCE is set. Therefore, we stuff only |
| |
1228 // one element to the expansion buffer. When we encounter a digit and we don't |
| |
1229 // do numeric collation, we will just pick the CE we have and break out of case |
| |
1230 // (see ucol.cpp ucol_prv_getSpecialCE && ucol_prv_getSpecialPrevCE). If we picked |
| |
1231 // a special, further processing will occur. If it's a simple CE, we'll return due |
| |
1232 // to how the loop is constructed. |
| |
1233 if (uniChar != 0 && u_isdigit(uniChar)){ |
| |
1234 expansion = (uint32_t)(UCOL_SPECIAL_FLAG | (DIGIT_TAG<<UCOL_TAG_SHIFT) | 1); // prepare the element |
| |
1235 if(element->mapCE) { // if there is an expansion, we'll pick it here |
| |
1236 expansion |= ((uprv_uca_addExpansion(expansions, element->mapCE, status)+(headersize>>2))<<4); |
| |
1237 } else { |
| |
1238 expansion |= ((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4); |
| |
1239 } |
| |
1240 element->mapCE = expansion; |
| |
1241 |
| |
1242 // Need to go back to the beginning of the digit string if in the middle! |
| |
1243 if(uniChar <= 0xFFFF) { // supplementaries are always unsafe. API takes UChars |
| |
1244 unsafeCPSet(t->unsafeCP, (UChar)uniChar); |
| |
1245 } |
| |
1246 } |
| |
1247 |
| |
1248 // here we want to add the prefix structure. |
| |
1249 // I will try to process it as a reverse contraction, if possible. |
| |
1250 // prefix buffer is already reversed. |
| |
1251 |
| |
1252 if(element->prefixSize!=0) { |
| |
1253 // We keep the seen prefix starter elements in a hashtable |
| |
1254 // we need it to be able to distinguish between the simple |
| |
1255 // codepoints and prefix starters. Also, we need to use it |
| |
1256 // for canonical closure. |
| |
1257 |
| |
1258 UCAElements *composed = (UCAElements *)uprv_malloc(sizeof(UCAElements)); |
| |
1259 /* test for NULL */ |
| |
1260 if (composed == NULL) { |
| |
1261 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
1262 return 0; |
| |
1263 } |
| |
1264 uprv_memcpy(composed, element, sizeof(UCAElements)); |
| |
1265 composed->cPoints = composed->uchars; |
| |
1266 composed->prefix = composed->prefixChars; |
| |
1267 |
| |
1268 composed->prefixSize = unorm_normalize(element->prefix, element->prefixSize, UNORM_NFC, 0, composed->prefix, 128, status); |
| |
1269 |
| |
1270 |
| |
1271 if(t->prefixLookup != NULL) { |
| |
1272 UCAElements *uCE = (UCAElements *)uhash_get(t->prefixLookup, element); |
| |
1273 if(uCE != NULL) { // there is already a set of code points here |
| |
1274 element->mapCE = uprv_uca_addPrefix(t, uCE->mapCE, element, status); |
| |
1275 } else { // no code points, so this spot is clean |
| |
1276 element->mapCE = uprv_uca_addPrefix(t, UCOL_NOT_FOUND, element, status); |
| |
1277 uCE = (UCAElements *)uprv_malloc(sizeof(UCAElements)); |
| |
1278 /* test for NULL */ |
| |
1279 if (uCE == NULL) { |
| |
1280 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
1281 return 0; |
| |
1282 } |
| |
1283 uprv_memcpy(uCE, element, sizeof(UCAElements)); |
| |
1284 uCE->cPoints = uCE->uchars; |
| |
1285 uhash_put(t->prefixLookup, uCE, uCE, status); |
| |
1286 } |
| |
1287 if(composed->prefixSize != element->prefixSize || uprv_memcmp(composed->prefix, element->prefix, element->prefixSize)) { |
| |
1288 // do it! |
| |
1289 composed->mapCE = uprv_uca_addPrefix(t, element->mapCE, composed, status); |
| |
1290 } |
| |
1291 } |
| |
1292 uprv_free(composed); |
| |
1293 } |
| |
1294 |
| |
1295 // We need to use the canonical iterator here |
| |
1296 // the way we do it is to generate the canonically equivalent strings |
| |
1297 // for the contraction and then add the sequences that pass FCD check |
| |
1298 if(element->cSize > 1 && !(element->cSize==2 && U16_IS_LEAD(element->cPoints[0]) && U16_IS_TRAIL(element->cPoints[1]))) { // this is a contraction, we should check whether a composed form should also be included |
| |
1299 UnicodeString source(element->cPoints, element->cSize); |
| |
1300 CanonicalIterator it(source, *status); |
| |
1301 source = it.next(); |
| |
1302 while(!source.isBogus()) { |
| |
1303 if(Normalizer::quickCheck(source, UNORM_FCD, *status) != UNORM_NO) { |
| |
1304 element->cSize = source.extract(element->cPoints, 128, *status); |
| |
1305 uprv_uca_finalizeAddition(t, element, status); |
| |
1306 } |
| |
1307 source = it.next(); |
| |
1308 } |
| |
1309 CE = element->mapCE; |
| |
1310 } else { |
| |
1311 CE = uprv_uca_finalizeAddition(t, element, status); |
| |
1312 } |
| |
1313 |
| |
1314 return CE; |
| |
1315 } |
| |
1316 |
| |
1317 |
| |
1318 /*void uprv_uca_getMaxExpansionJamo(CompactEIntArray *mapping, */ |
| |
1319 static void uprv_uca_getMaxExpansionJamo(UNewTrie *mapping, |
| |
1320 MaxExpansionTable *maxexpansion, |
| |
1321 MaxJamoExpansionTable *maxjamoexpansion, |
| |
1322 UBool jamospecial, |
| |
1323 UErrorCode *status) |
| |
1324 { |
| |
1325 const uint32_t VBASE = 0x1161; |
| |
1326 const uint32_t TBASE = 0x11A8; |
| |
1327 const uint32_t VCOUNT = 21; |
| |
1328 const uint32_t TCOUNT = 28; |
| |
1329 |
| |
1330 uint32_t v = VBASE + VCOUNT - 1; |
| |
1331 uint32_t t = TBASE + TCOUNT - 1; |
| |
1332 uint32_t ce; |
| |
1333 |
| |
1334 while (v >= VBASE) { |
| |
1335 /*ce = ucmpe32_get(mapping, v);*/ |
| |
1336 ce = utrie_get32(mapping, v, NULL); |
| |
1337 if (ce < UCOL_SPECIAL_FLAG) { |
| |
1338 uprv_uca_setMaxExpansion(ce, 2, maxexpansion, status); |
| |
1339 } |
| |
1340 v --; |
| |
1341 } |
| |
1342 |
| |
1343 while (t >= TBASE) |
| |
1344 { |
| |
1345 /*ce = ucmpe32_get(mapping, t);*/ |
| |
1346 ce = utrie_get32(mapping, t, NULL); |
| |
1347 if (ce < UCOL_SPECIAL_FLAG) { |
| |
1348 uprv_uca_setMaxExpansion(ce, 3, maxexpansion, status); |
| |
1349 } |
| |
1350 t --; |
| |
1351 } |
| |
1352 /* According to the docs, 99% of the time, the Jamo will not be special */ |
| |
1353 if (jamospecial) { |
| |
1354 /* gets the max expansion in all unicode characters */ |
| |
1355 int count = maxjamoexpansion->position; |
| |
1356 uint8_t maxTSize = (uint8_t)(maxjamoexpansion->maxLSize + |
| |
1357 maxjamoexpansion->maxVSize + |
| |
1358 maxjamoexpansion->maxTSize); |
| |
1359 uint8_t maxVSize = (uint8_t)(maxjamoexpansion->maxLSize + |
| |
1360 maxjamoexpansion->maxVSize); |
| |
1361 |
| |
1362 while (count > 0) { |
| |
1363 count --; |
| |
1364 if (*(maxjamoexpansion->isV + count) == TRUE) { |
| |
1365 uprv_uca_setMaxExpansion( |
| |
1366 *(maxjamoexpansion->endExpansionCE + count), |
| |
1367 maxVSize, maxexpansion, status); |
| |
1368 } |
| |
1369 else { |
| |
1370 uprv_uca_setMaxExpansion( |
| |
1371 *(maxjamoexpansion->endExpansionCE + count), |
| |
1372 maxTSize, maxexpansion, status); |
| |
1373 } |
| |
1374 } |
| |
1375 } |
| |
1376 } |
| |
1377 |
| |
1378 U_CDECL_BEGIN |
| |
1379 static inline uint32_t U_CALLCONV |
| |
1380 getFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) |
| |
1381 { |
| |
1382 uint32_t value; |
| |
1383 uint32_t tag; |
| |
1384 UChar32 limit; |
| |
1385 UBool inBlockZero; |
| |
1386 |
| |
1387 limit=start+0x400; |
| |
1388 while(start<limit) { |
| |
1389 value=utrie_get32(trie, start, &inBlockZero); |
| |
1390 tag = getCETag(value); |
| |
1391 if(inBlockZero == TRUE) { |
| |
1392 start+=UTRIE_DATA_BLOCK_LENGTH; |
| |
1393 } else if(!(isSpecial(value) && (tag == IMPLICIT_TAG || tag == NOT_FOUND_TAG))) { |
| |
1394 /* These are values that are starting in either UCA (IMPLICIT_TAG) or in the |
| |
1395 * tailorings (NOT_FOUND_TAG). Presence of these tags means that there is |
| |
1396 * nothing in this position and that it should be skipped. |
| |
1397 */ |
| |
1398 #ifdef UCOL_DEBUG |
| |
1399 static int32_t count = 1; |
| |
1400 fprintf(stdout, "%i, Folded %08X, value %08X\n", count++, start, value); |
| |
1401 #endif |
| |
1402 return (uint32_t)(UCOL_SPECIAL_FLAG | (SURROGATE_TAG<<24) | offset); |
| |
1403 } else { |
| |
1404 ++start; |
| |
1405 } |
| |
1406 } |
| |
1407 return 0; |
| |
1408 } |
| |
1409 U_CDECL_END |
| |
1410 |
| |
1411 #ifdef UCOL_DEBUG |
| |
1412 // This is a debug function to print the contents of a trie. |
| |
1413 // It is used in conjuction with the code around utrie_unserialize call |
| |
1414 UBool enumRange(const void *context, UChar32 start, UChar32 limit, uint32_t value) { |
| |
1415 if(start<0x10000) { |
| |
1416 fprintf(stdout, "%08X, %08X, %08X\n", start, limit, value); |
| |
1417 } else { |
| |
1418 fprintf(stdout, "%08X=%04X %04X, %08X=%04X %04X, %08X\n", start, U16_LEAD(start), U16_TRAIL(start), limit, U16_LEAD(limit), U16_TRAIL(limit), value); |
| |
1419 } |
| |
1420 return TRUE; |
| |
1421 } |
| |
1422 |
| |
1423 int32_t |
| |
1424 myGetFoldingOffset(uint32_t data) { |
| |
1425 if(data > UCOL_NOT_FOUND && getCETag(data) == SURROGATE_TAG) { |
| |
1426 return (data&0xFFFFFF); |
| |
1427 } else { |
| |
1428 return 0; |
| |
1429 } |
| |
1430 } |
| |
1431 #endif |
| |
1432 |
| |
1433 U_CAPI UCATableHeader* U_EXPORT2 |
| |
1434 uprv_uca_assembleTable(tempUCATable *t, UErrorCode *status) { |
| |
1435 /*CompactEIntArray *mapping = t->mapping;*/ |
| |
1436 UNewTrie *mapping = t->mapping; |
| |
1437 ExpansionTable *expansions = t->expansions; |
| |
1438 CntTable *contractions = t->contractions; |
| |
1439 MaxExpansionTable *maxexpansion = t->maxExpansions; |
| |
1440 |
| |
1441 if(U_FAILURE(*status)) { |
| |
1442 return NULL; |
| |
1443 } |
| |
1444 |
| |
1445 uint32_t beforeContractions = (uint32_t)((headersize+paddedsize(expansions->position*sizeof(uint32_t)))/sizeof(UChar)); |
| |
1446 |
| |
1447 int32_t contractionsSize = 0; |
| |
1448 contractionsSize = uprv_cnttab_constructTable(contractions, beforeContractions, status); |
| |
1449 |
| |
1450 /* the following operation depends on the trie data. Therefore, we have to do it before */ |
| |
1451 /* the trie is compacted */ |
| |
1452 /* sets jamo expansions */ |
| |
1453 uprv_uca_getMaxExpansionJamo(mapping, maxexpansion, t->maxJamoExpansions, |
| |
1454 t->image->jamoSpecial, status); |
| |
1455 |
| |
1456 /*ucmpe32_compact(mapping);*/ |
| |
1457 /*UMemoryStream *ms = uprv_mstrm_openNew(8192);*/ |
| |
1458 /*int32_t mappingSize = ucmpe32_flattenMem(mapping, ms);*/ |
| |
1459 /*const uint8_t *flattened = uprv_mstrm_getBuffer(ms, &mappingSize);*/ |
| |
1460 |
| |
1461 // After setting the jamo expansions, compact the trie and get the needed size |
| |
1462 int32_t mappingSize = utrie_serialize(mapping, NULL, 0, getFoldedValue /*getFoldedValue*/, FALSE, status); |
| |
1463 |
| |
1464 uint32_t tableOffset = 0; |
| |
1465 uint8_t *dataStart; |
| |
1466 |
| |
1467 /* TODO: LATIN1 array is now in the utrie - it should be removed from the calculation */ |
| |
1468 |
| |
1469 uint32_t toAllocate =(uint32_t)(headersize+ |
| |
1470 paddedsize(expansions->position*sizeof(uint32_t))+ |
| |
1471 paddedsize(mappingSize)+ |
| |
1472 paddedsize(contractionsSize*(sizeof(UChar)+sizeof(uint32_t)))+ |
| |
1473 //paddedsize(0x100*sizeof(uint32_t)) /* Latin1 is now included in the trie */ |
| |
1474 /* maxexpansion array */ |
| |
1475 + paddedsize(maxexpansion->position * sizeof(uint32_t)) + |
| |
1476 /* maxexpansion size array */ |
| |
1477 paddedsize(maxexpansion->position * sizeof(uint8_t)) + |
| |
1478 paddedsize(UCOL_UNSAFECP_TABLE_SIZE) + /* Unsafe chars */ |
| |
1479 paddedsize(UCOL_UNSAFECP_TABLE_SIZE)); /* Contraction Ending chars */ |
| |
1480 |
| |
1481 |
| |
1482 dataStart = (uint8_t *)uprv_malloc(toAllocate); |
| |
1483 /* test for NULL */ |
| |
1484 if (dataStart == NULL) { |
| |
1485 *status = U_MEMORY_ALLOCATION_ERROR; |
| |
1486 return NULL; |
| |
1487 } |
| |
1488 |
| |
1489 UCATableHeader *myData = (UCATableHeader *)dataStart; |
| |
1490 // Please, do reset all the fields! |
| |
1491 uprv_memset(dataStart, 0, toAllocate); |
| |
1492 // Make sure we know this is reset |
| |
1493 myData->magic = UCOL_HEADER_MAGIC; |
| |
1494 myData->isBigEndian = U_IS_BIG_ENDIAN; |
| |
1495 myData->charSetFamily = U_CHARSET_FAMILY; |
| |
1496 myData->formatVersion[0] = UCA_FORMAT_VERSION_0; |
| |
1497 myData->formatVersion[1] = UCA_FORMAT_VERSION_1; |
| |
1498 myData->formatVersion[2] = UCA_FORMAT_VERSION_2; |
| |
1499 myData->formatVersion[3] = UCA_FORMAT_VERSION_3; |
| |
1500 myData->jamoSpecial = t->image->jamoSpecial; |
| |
1501 |
| |
1502 // Don't copy stuff from UCA header! |
| |
1503 //uprv_memcpy(myData, t->image, sizeof(UCATableHeader)); |
| |
1504 |
| |
1505 myData->contractionSize = contractionsSize; |
| |
1506 |
| |
1507 tableOffset += (uint32_t)(paddedsize(sizeof(UCATableHeader))); |
| |
1508 |
| |
1509 myData->options = tableOffset; |
| |
1510 uprv_memcpy(dataStart+tableOffset, t->options, sizeof(UColOptionSet)); |
| |
1511 tableOffset += (uint32_t)(paddedsize(sizeof(UColOptionSet))); |
| |
1512 |
| |
1513 /* copy expansions */ |
| |
1514 /*myData->expansion = (uint32_t *)dataStart+tableOffset;*/ |
| |
1515 myData->expansion = tableOffset; |
| |
1516 uprv_memcpy(dataStart+tableOffset, expansions->CEs, expansions->position*sizeof(uint32_t)); |
| |
1517 tableOffset += (uint32_t)(paddedsize(expansions->position*sizeof(uint32_t))); |
| |
1518 |
| |
1519 /* contractions block */ |
| |
1520 if(contractionsSize != 0) { |
| |
1521 /* copy contraction index */ |
| |
1522 /*myData->contractionIndex = (UChar *)(dataStart+tableOffset);*/ |
| |
1523 myData->contractionIndex = tableOffset; |
| |
1524 uprv_memcpy(dataStart+tableOffset, contractions->codePoints, contractionsSize*sizeof(UChar)); |
| |
1525 tableOffset += (uint32_t)(paddedsize(contractionsSize*sizeof(UChar))); |
| |
1526 |
| |
1527 /* copy contraction collation elements */ |
| |
1528 /*myData->contractionCEs = (uint32_t *)(dataStart+tableOffset);*/ |
| |
1529 myData->contractionCEs = tableOffset; |
| |
1530 uprv_memcpy(dataStart+tableOffset, contractions->CEs, contractionsSize*sizeof(uint32_t)); |
| |
1531 tableOffset += (uint32_t)(paddedsize(contractionsSize*sizeof(uint32_t))); |
| |
1532 } else { |
| |
1533 myData->contractionIndex = 0; |
| |
1534 myData->contractionCEs = 0; |
| |
1535 } |
| |
1536 |
| |
1537 /* copy mapping table */ |
| |
1538 /*myData->mappingPosition = dataStart+tableOffset;*/ |
| |
1539 /*myData->mappingPosition = tableOffset;*/ |
| |
1540 /*uprv_memcpy(dataStart+tableOffset, flattened, mappingSize);*/ |
| |
1541 |
| |
1542 myData->mappingPosition = tableOffset; |
| |
1543 utrie_serialize(mapping, dataStart+tableOffset, toAllocate-tableOffset, getFoldedValue, FALSE, status); |
| |
1544 #ifdef UCOL_DEBUG |
| |
1545 // This is debug code to dump the contents of the trie. It needs two functions defined above |
| |
1546 { |
| |
1547 UTrie UCAt = { 0 }; |
| |
1548 uint32_t trieWord; |
| |
1549 utrie_unserialize(&UCAt, dataStart+tableOffset, 9999999, status); |
| |
1550 UCAt.getFoldingOffset = myGetFoldingOffset; |
| |
1551 if(U_SUCCESS(*status)) { |
| |
1552 utrie_enum(&UCAt, NULL, enumRange, NULL); |
| |
1553 } |
| |
1554 trieWord = UTRIE_GET32_FROM_LEAD(&UCAt, 0xDC01); |
| |
1555 } |
| |
1556 #endif |
| |
1557 tableOffset += paddedsize(mappingSize); |
| |
1558 |
| |
1559 |
| |
1560 int32_t i = 0; |
| |
1561 |
| |
1562 /* copy max expansion table */ |
| |
1563 myData->endExpansionCE = tableOffset; |
| |
1564 myData->endExpansionCECount = maxexpansion->position - 1; |
| |
1565 /* not copying the first element which is a dummy */ |
| |
1566 uprv_memcpy(dataStart + tableOffset, maxexpansion->endExpansionCE + 1, |
| |
1567 (maxexpansion->position - 1) * sizeof(uint32_t)); |
| |
1568 tableOffset += (uint32_t)(paddedsize((maxexpansion->position)* sizeof(uint32_t))); |
| |
1569 myData->expansionCESize = tableOffset; |
| |
1570 uprv_memcpy(dataStart + tableOffset, maxexpansion->expansionCESize + 1, |
| |
1571 (maxexpansion->position - 1) * sizeof(uint8_t)); |
| |
1572 tableOffset += (uint32_t)(paddedsize((maxexpansion->position)* sizeof(uint8_t))); |
| |
1573 |
| |
1574 /* Unsafe chars table. Finish it off, then copy it. */ |
| |
1575 uprv_uca_unsafeCPAddCCNZ(t, status); |
| |
1576 if (t->UCA != 0) { /* Or in unsafebits from UCA, making a combined table. */ |
| |
1577 for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) { |
| |
1578 t->unsafeCP[i] |= t->UCA->unsafeCP[i]; |
| |
1579 } |
| |
1580 } |
| |
1581 myData->unsafeCP = tableOffset; |
| |
1582 uprv_memcpy(dataStart + tableOffset, t->unsafeCP, UCOL_UNSAFECP_TABLE_SIZE); |
| |
1583 tableOffset += paddedsize(UCOL_UNSAFECP_TABLE_SIZE); |
| |
1584 |
| |
1585 |
| |
1586 /* Finish building Contraction Ending chars hash table and then copy it out. */ |
| |
1587 if (t->UCA != 0) { /* Or in unsafebits from UCA, making a combined table. */ |
| |
1588 for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) { |
| |
1589 t->contrEndCP[i] |= t->UCA->contrEndCP[i]; |
| |
1590 } |
| |
1591 } |
| |
1592 myData->contrEndCP = tableOffset; |
| |
1593 uprv_memcpy(dataStart + tableOffset, t->contrEndCP, UCOL_UNSAFECP_TABLE_SIZE); |
| |
1594 tableOffset += paddedsize(UCOL_UNSAFECP_TABLE_SIZE); |
| |
1595 |
| |
1596 if(tableOffset != toAllocate) { |
| |
1597 #ifdef UCOL_DEBUG |
| |
1598 fprintf(stderr, "calculation screwup!!! Expected to write %i but wrote %i instead!!!\n", toAllocate, tableOffset); |
| |
1599 #endif |
| |
1600 *status = U_INTERNAL_PROGRAM_ERROR; |
| |
1601 uprv_free(dataStart); |
| |
1602 return 0; |
| |
1603 } |
| |
1604 |
| |
1605 myData->size = tableOffset; |
| |
1606 /* This should happen upon ressurection */ |
| |
1607 /*const uint8_t *mapPosition = (uint8_t*)myData+myData->mappingPosition;*/ |
| |
1608 /*uprv_mstrm_close(ms);*/ |
| |
1609 return myData; |
| |
1610 } |
| |
1611 |
| |
1612 |
| |
1613 struct enumStruct { |
| |
1614 tempUCATable *t; |
| |
1615 UCollator *tempColl; |
| |
1616 UCollationElements* colEl; |
| |
1617 const Normalizer2Impl *nfcImpl; |
| |
1618 UnicodeSet *closed; |
| |
1619 int32_t noOfClosures; |
| |
1620 UErrorCode *status; |
| |
1621 }; |
| |
1622 U_CDECL_BEGIN |
| |
1623 static UBool U_CALLCONV |
| |
1624 _enumCategoryRangeClosureCategory(const void *context, UChar32 start, UChar32 limit, UCharCategory type) { |
| |
1625 |
| |
1626 if (type != U_UNASSIGNED && type != U_PRIVATE_USE_CHAR) { // if the range is assigned - we might ommit more categories later |
| |
1627 UErrorCode *status = ((enumStruct *)context)->status; |
| |
1628 tempUCATable *t = ((enumStruct *)context)->t; |
| |
1629 UCollator *tempColl = ((enumStruct *)context)->tempColl; |
| |
1630 UCollationElements* colEl = ((enumStruct *)context)->colEl; |
| |
1631 UCAElements el; |
| |
1632 UChar decompBuffer[4]; |
| |
1633 const UChar *decomp; |
| |
1634 int32_t noOfDec = 0; |
| |
1635 |
| |
1636 UChar32 u32 = 0; |
| |
1637 UChar comp[2]; |
| |
1638 uint32_t len = 0; |
| |
1639 |
| |
1640 for(u32 = start; u32 < limit; u32++) { |
| |
1641 decomp = ((enumStruct *)context)->nfcImpl-> |
| |
1642 getDecomposition(u32, decompBuffer, noOfDec); |
| |
1643 //if((noOfDec = unorm_normalize(comp, len, UNORM_NFD, 0, decomp, 256, status)) > 1 |
| |
1644 //|| (noOfDec == 1 && *decomp != (UChar)u32)) |
| |
1645 if(decomp != NULL) |
| |
1646 { |
| |
1647 len = 0; |
| |
1648 U16_APPEND_UNSAFE(comp, len, u32); |
| |
1649 if(ucol_strcoll(tempColl, comp, len, decomp, noOfDec) != UCOL_EQUAL) { |
| |
1650 #ifdef UCOL_DEBUG |
| |
1651 fprintf(stderr, "Closure: U+%04X -> ", u32); |
| |
1652 UChar32 c; |
| |
1653 int32_t i = 0; |
| |
1654 while(i < noOfDec) { |
| |
1655 U16_NEXT(decomp, i, noOfDec, c); |
| |
1656 fprintf(stderr, "%04X ", c); |
| |
1657 } |
| |
1658 fprintf(stderr, "\n"); |
| |
1659 // print CEs for code point vs. decomposition |
| |
1660 fprintf(stderr, "U+%04X CEs: ", u32); |
| |
1661 UCollationElements *iter = ucol_openElements(tempColl, comp, len, status); |
| |
1662 int32_t ce; |
| |
1663 while((ce = ucol_next(iter, status)) != UCOL_NULLORDER) { |
| |
1664 fprintf(stderr, "%08X ", ce); |
| |
1665 } |
| |
1666 fprintf(stderr, "\nDecomp CEs: "); |
| |
1667 ucol_setText(iter, decomp, noOfDec, status); |
| |
1668 while((ce = ucol_next(iter, status)) != UCOL_NULLORDER) { |
| |
1669 fprintf(stderr, "%08X ", ce); |
| |
1670 } |
| |
1671 fprintf(stderr, "\n"); |
| |
1672 ucol_closeElements(iter); |
| |
1673 #endif |
| |
1674 if(((enumStruct *)context)->closed != NULL) { |
| |
1675 ((enumStruct *)context)->closed->add(u32); |
| |
1676 } |
| |
1677 ((enumStruct *)context)->noOfClosures++; |
| |
1678 el.cPoints = (UChar *)decomp; |
| |
1679 el.cSize = noOfDec; |
| |
1680 el.noOfCEs = 0; |
| |
1681 el.prefix = el.prefixChars; |
| |
1682 el.prefixSize = 0; |
| |
1683 |
| |
1684 UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, &el); |
| |
1685 el.cPoints = comp; |
| |
1686 el.cSize = len; |
| |
1687 el.prefix = el.prefixChars; |
| |
1688 el.prefixSize = 0; |
| |
1689 if(prefix == NULL) { |
| |
1690 el.noOfCEs = 0; |
| |
1691 ucol_setText(colEl, decomp, noOfDec, status); |
| |
1692 while((el.CEs[el.noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) { |
| |
1693 el.noOfCEs++; |
| |
1694 } |
| |
1695 } else { |
| |
1696 el.noOfCEs = 1; |
| |
1697 el.CEs[0] = prefix->mapCE; |
| |
1698 // This character uses a prefix. We have to add it |
| |
1699 // to the unsafe table, as it decomposed form is already |
| |
1700 // in. In Japanese, this happens for \u309e & \u30fe |
| |
1701 // Since unsafeCPSet is static in ucol_elm, we are going |
| |
1702 // to wrap it up in the uprv_uca_unsafeCPAddCCNZ function |
| |
1703 } |
| |
1704 uprv_uca_addAnElement(t, &el, status); |
| |
1705 } |
| |
1706 } |
| |
1707 } |
| |
1708 } |
| |
1709 return TRUE; |
| |
1710 } |
| |
1711 U_CDECL_END |
| |
1712 |
| |
1713 static void |
| |
1714 uprv_uca_setMapCE(tempUCATable *t, UCAElements *element, UErrorCode *status) { |
| |
1715 uint32_t expansion = 0; |
| |
1716 int32_t j; |
| |
1717 |
| |
1718 ExpansionTable *expansions = t->expansions; |
| |
1719 if(element->noOfCEs == 2 // a two CE expansion |
| |
1720 && isContinuation(element->CEs[1]) // which is a continuation |
| |
1721 && (element->CEs[1] & (~(0xFF << 24 | UCOL_CONTINUATION_MARKER))) == 0 // that has only primaries in continuation, |
| |
1722 && (((element->CEs[0]>>8) & 0xFF) == UCOL_BYTE_COMMON) // a common secondary |
| |
1723 && ((element->CEs[0] & 0xFF) == UCOL_BYTE_COMMON) // and a common tertiary |
| |
1724 ) { |
| |
1725 element->mapCE = UCOL_SPECIAL_FLAG | (LONG_PRIMARY_TAG<<24) // a long primary special |
| |
1726 | ((element->CEs[0]>>8) & 0xFFFF00) // first and second byte of primary |
| |
1727 | ((element->CEs[1]>>24) & 0xFF); // third byte of primary |
| |
1728 } else { |
| |
1729 expansion = (uint32_t)(UCOL_SPECIAL_FLAG | (EXPANSION_TAG<<UCOL_TAG_SHIFT) |
| |
1730 | (((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4) |
| |
1731 & 0xFFFFF0)); |
| |
1732 |
| |
1733 for(j = 1; j<(int32_t)element->noOfCEs; j++) { |
| |
1734 uprv_uca_addExpansion(expansions, element->CEs[j], status); |
| |
1735 } |
| |
1736 if(element->noOfCEs <= 0xF) { |
| |
1737 expansion |= element->noOfCEs; |
| |
1738 } else { |
| |
1739 uprv_uca_addExpansion(expansions, 0, status); |
| |
1740 } |
| |
1741 element->mapCE = expansion; |
| |
1742 uprv_uca_setMaxExpansion(element->CEs[element->noOfCEs - 1], |
| |
1743 (uint8_t)element->noOfCEs, |
| |
1744 t->maxExpansions, |
| |
1745 status); |
| |
1746 } |
| |
1747 } |
| |
1748 |
| |
1749 static void |
| |
1750 uprv_uca_addFCD4AccentedContractions(tempUCATable *t, |
| |
1751 UCollationElements* colEl, |
| |
1752 UChar *data, |
| |
1753 int32_t len, |
| |
1754 UCAElements *el, |
| |
1755 UErrorCode *status) { |
| |
1756 UChar decomp[256], comp[256]; |
| |
1757 int32_t decLen, compLen; |
| |
1758 |
| |
1759 decLen = unorm_normalize(data, len, UNORM_NFD, 0, decomp, 256, status); |
| |
1760 compLen = unorm_normalize(data, len, UNORM_NFC, 0, comp, 256, status); |
| |
1761 decomp[decLen] = comp[compLen] = 0; |
| |
1762 |
| |
1763 el->cPoints = decomp; |
| |
1764 el->cSize = decLen; |
| |
1765 el->noOfCEs = 0; |
| |
1766 el->prefixSize = 0; |
| |
1767 el->prefix = el->prefixChars; |
| |
1768 |
| |
1769 UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, el); |
| |
1770 el->cPoints = comp; |
| |
1771 el->cSize = compLen; |
| |
1772 el->prefix = el->prefixChars; |
| |
1773 el->prefixSize = 0; |
| |
1774 if(prefix == NULL) { |
| |
1775 el->noOfCEs = 0; |
| |
1776 ucol_setText(colEl, decomp, decLen, status); |
| |
1777 while((el->CEs[el->noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) { |
| |
1778 el->noOfCEs++; |
| |
1779 } |
| |
1780 uprv_uca_setMapCE(t, el, status); |
| |
1781 uprv_uca_addAnElement(t, el, status); |
| |
1782 } |
| |
1783 el->cPoints=NULL; /* don't leak reference to stack */ |
| |
1784 } |
| |
1785 |
| |
1786 static void |
| |
1787 uprv_uca_addMultiCMContractions(tempUCATable *t, |
| |
1788 UCollationElements* colEl, |
| |
1789 tempTailorContext *c, |
| |
1790 UCAElements *el, |
| |
1791 UErrorCode *status) { |
| |
1792 CombinClassTable *cmLookup = t->cmLookup; |
| |
1793 UChar newDecomp[256]; |
| |
1794 int32_t maxComp, newDecLen; |
| |
1795 const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
| |
1796 if (U_FAILURE(*status)) { |
| |
1797 return; |
| |
1798 } |
| |
1799 int16_t curClass = nfcImpl->getFCD16(c->tailoringCM) & 0xff; |
| |
1800 CompData *precomp = c->precomp; |
| |
1801 int32_t compLen = c->compLen; |
| |
1802 UChar *comp = c->comp; |
| |
1803 maxComp = c->precompLen; |
| |
1804 |
| |
1805 for (int32_t j=0; j < maxComp; j++) { |
| |
1806 int32_t count=0; |
| |
1807 do { |
| |
1808 if ( count == 0 ) { // Decompose the saved precomposed char. |
| |
1809 UChar temp[2]; |
| |
1810 temp[0]=precomp[j].cp; |
| |
1811 temp[1]=0; |
| |
1812 newDecLen = unorm_normalize(temp, 1, UNORM_NFD, 0, |
| |
1813 newDecomp, sizeof(newDecomp)/sizeof(UChar), status); |
| |
1814 newDecomp[newDecLen++] = cmLookup->cPoints[c->cmPos]; |
| |
1815 } |
| |
1816 else { // swap 2 combining marks when they are equal. |
| |
1817 uprv_memcpy(newDecomp, c->decomp, sizeof(UChar)*(c->decompLen)); |
| |
1818 newDecLen = c->decompLen; |
| |
1819 newDecomp[newDecLen++] = precomp[j].cClass; |
| |
1820 } |
| |
1821 newDecomp[newDecLen] = 0; |
| |
1822 compLen = unorm_normalize(newDecomp, newDecLen, UNORM_NFC, 0, |
| |
1823 comp, 256, status); |
| |
1824 if (compLen==1) { |
| |
1825 comp[compLen++] = newDecomp[newDecLen++] = c->tailoringCM; |
| |
1826 comp[compLen] = newDecomp[newDecLen] = 0; |
| |
1827 el->cPoints = newDecomp; |
| |
1828 el->cSize = newDecLen; |
| |
1829 |
| |
1830 UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, el); |
| |
1831 el->cPoints = c->comp; |
| |
1832 el->cSize = compLen; |
| |
1833 el->prefix = el->prefixChars; |
| |
1834 el->prefixSize = 0; |
| |
1835 if(prefix == NULL) { |
| |
1836 el->noOfCEs = 0; |
| |
1837 ucol_setText(colEl, newDecomp, newDecLen, status); |
| |
1838 while((el->CEs[el->noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) { |
| |
1839 el->noOfCEs++; |
| |
1840 } |
| |
1841 uprv_uca_setMapCE(t, el, status); |
| |
1842 uprv_uca_finalizeAddition(t, el, status); |
| |
1843 |
| |
1844 // Save the current precomposed char and its class to find any |
| |
1845 // other combining mark combinations. |
| |
1846 precomp[c->precompLen].cp=comp[0]; |
| |
1847 precomp[c->precompLen].cClass = curClass; |
| |
1848 c->precompLen++; |
| |
1849 } |
| |
1850 } |
| |
1851 } while (++count<2 && (precomp[j].cClass == curClass)); |
| |
1852 } |
| |
1853 |
| |
1854 } |
| |
1855 |
| |
1856 static void |
| |
1857 uprv_uca_addTailCanonicalClosures(tempUCATable *t, |
| |
1858 UCollationElements* colEl, |
| |
1859 UChar baseCh, |
| |
1860 UChar cMark, |
| |
1861 UCAElements *el, |
| |
1862 UErrorCode *status) { |
| |
1863 CombinClassTable *cmLookup = t->cmLookup; |
| |
1864 const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
| |
1865 if (U_FAILURE(*status)) { |
| |
1866 return; |
| |
1867 } |
| |
1868 int16_t maxIndex = nfcImpl->getFCD16(cMark) & 0xff; |
| |
1869 UCAElements element; |
| |
1870 uint16_t *index; |
| |
1871 UChar decomp[256]; |
| |
1872 UChar comp[256]; |
| |
1873 CompData precomp[256]; // precomposed array |
| |
1874 int32_t precompLen = 0; // count for precomp |
| |
1875 int32_t i, len, decompLen, replacedPos; |
| |
1876 tempTailorContext c; |
| |
1877 |
| |
1878 if ( cmLookup == NULL ) { |
| |
1879 return; |
| |
1880 } |
| |
1881 index = cmLookup->index; |
| |
1882 int32_t cClass=nfcImpl->getFCD16(cMark) & 0xff; |
| |
1883 maxIndex = (int32_t)index[(nfcImpl->getFCD16(cMark) & 0xff)-1]; |
| |
1884 c.comp = comp; |
| |
1885 c.decomp = decomp; |
| |
1886 c.precomp = precomp; |
| |
1887 c.tailoringCM = cMark; |
| |
1888 |
| |
1889 if (cClass>0) { |
| |
1890 maxIndex = (int32_t)index[cClass-1]; |
| |
1891 } |
| |
1892 else { |
| |
1893 maxIndex=0; |
| |
1894 } |
| |
1895 decomp[0]=baseCh; |
| |
1896 for ( i=0; i<maxIndex ; i++ ) { |
| |
1897 decomp[1] = cmLookup->cPoints[i]; |
| |
1898 decomp[2]=0; |
| |
1899 decompLen=2; |
| |
1900 len = unorm_normalize(decomp, decompLen, UNORM_NFC, 0, comp, 256, status); |
| |
1901 if (len==1) { |
| |
1902 // Save the current precomposed char and its class to find any |
| |
1903 // other combining mark combinations. |
| |
1904 precomp[precompLen].cp=comp[0]; |
| |
1905 precomp[precompLen].cClass = |
| |
1906 index[nfcImpl->getFCD16(decomp[1]) & 0xff]; |
| |
1907 precompLen++; |
| |
1908 replacedPos=0; |
| |
1909 for (decompLen=0; decompLen< (int32_t)el->cSize; decompLen++) { |
| |
1910 decomp[decompLen] = el->cPoints[decompLen]; |
| |
1911 if (decomp[decompLen]==cMark) { |
| |
1912 replacedPos = decompLen; // record the position for later use |
| |
1913 } |
| |
1914 } |
| |
1915 if ( replacedPos != 0 ) { |
| |
1916 decomp[replacedPos]=cmLookup->cPoints[i]; |
| |
1917 } |
| |
1918 decomp[decompLen] = 0; |
| |
1919 len = unorm_normalize(decomp, decompLen, UNORM_NFC, 0, comp, 256, status); |
| |
1920 comp[len++] = decomp[decompLen++] = cMark; |
| |
1921 comp[len] = decomp[decompLen] = 0; |
| |
1922 element.cPoints = decomp; |
| |
1923 element.cSize = decompLen; |
| |
1924 element.noOfCEs = 0; |
| |
1925 element.prefix = el->prefixChars; |
| |
1926 element.prefixSize = 0; |
| |
1927 |
| |
1928 UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, &element); |
| |
1929 element.cPoints = comp; |
| |
1930 element.cSize = len; |
| |
1931 element.prefix = el->prefixChars; |
| |
1932 element.prefixSize = 0; |
| |
1933 if(prefix == NULL) { |
| |
1934 element.noOfCEs = 0; |
| |
1935 ucol_setText(colEl, decomp, decompLen, status); |
| |
1936 while((element.CEs[element.noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) { |
| |
1937 element.noOfCEs++; |
| |
1938 } |
| |
1939 uprv_uca_setMapCE(t, &element, status); |
| |
1940 uprv_uca_finalizeAddition(t, &element, status); |
| |
1941 } |
| |
1942 |
| |
1943 // This is a fix for tailoring contractions with accented |
| |
1944 // character at the end of contraction string. |
| |
1945 if ((len>2) && |
| |
1946 (nfcImpl->getFCD16(comp[len-2]) & 0xff00)==0) { |
| |
1947 uprv_uca_addFCD4AccentedContractions(t, colEl, comp, len, &element, status); |
| |
1948 } |
| |
1949 |
| |
1950 if (precompLen >1) { |
| |
1951 c.compLen = len; |
| |
1952 c.decompLen = decompLen; |
| |
1953 c.precompLen = precompLen; |
| |
1954 c.cmPos = i; |
| |
1955 uprv_uca_addMultiCMContractions(t, colEl, &c, &element, status); |
| |
1956 precompLen = c.precompLen; |
| |
1957 } |
| |
1958 } |
| |
1959 } |
| |
1960 } |
| |
1961 |
| |
1962 U_CFUNC int32_t U_EXPORT2 |
| |
1963 uprv_uca_canonicalClosure(tempUCATable *t, |
| |
1964 UColTokenParser *src, |
| |
1965 UnicodeSet *closed, |
| |
1966 UErrorCode *status) |
| |
1967 { |
| |
1968 enumStruct context; |
| |
1969 context.closed = closed; |
| |
1970 context.noOfClosures = 0; |
| |
1971 UCAElements el; |
| |
1972 UColToken *tok; |
| |
1973 uint32_t i = 0, j = 0; |
| |
1974 UChar baseChar, firstCM; |
| |
1975 context.nfcImpl=Normalizer2Factory::getNFCImpl(*status); |
| |
1976 if(U_FAILURE(*status)) { |
| |
1977 return 0; |
| |
1978 } |
| |
1979 |
| |
1980 UCollator *tempColl = NULL; |
| |
1981 tempUCATable *tempTable = uprv_uca_cloneTempTable(t, status); |
| |
1982 // Check for null pointer |
| |
1983 if (U_FAILURE(*status)) { |
| |
1984 return 0; |
| |
1985 } |
| |
1986 |
| |
1987 UCATableHeader *tempData = uprv_uca_assembleTable(tempTable, status); |
| |
1988 tempColl = ucol_initCollator(tempData, 0, t->UCA, status); |
| |
1989 if ( tempTable->cmLookup != NULL ) { |
| |
1990 t->cmLookup = tempTable->cmLookup; // copy over to t |
| |
1991 tempTable->cmLookup = NULL; |
| |
1992 } |
| |
1993 uprv_uca_closeTempTable(tempTable); |
| |
1994 |
| |
1995 if(U_SUCCESS(*status)) { |
| |
1996 tempColl->ucaRules = NULL; |
| |
1997 tempColl->actualLocale = NULL; |
| |
1998 tempColl->validLocale = NULL; |
| |
1999 tempColl->requestedLocale = NULL; |
| |
2000 tempColl->hasRealData = TRUE; |
| |
2001 tempColl->freeImageOnClose = TRUE; |
| |
2002 } else if(tempData != 0) { |
| |
2003 uprv_free(tempData); |
| |
2004 } |
| |
2005 |
| |
2006 /* produce canonical closure */ |
| |
2007 UCollationElements* colEl = ucol_openElements(tempColl, NULL, 0, status); |
| |
2008 // Check for null pointer |
| |
2009 if (U_FAILURE(*status)) { |
| |
2010 return 0; |
| |
2011 } |
| |
2012 context.t = t; |
| |
2013 context.tempColl = tempColl; |
| |
2014 context.colEl = colEl; |
| |
2015 context.status = status; |
| |
2016 u_enumCharTypes(_enumCategoryRangeClosureCategory, &context); |
| |
2017 |
| |
2018 if ( (src==NULL) || !src->buildCCTabFlag ) { |
| |
2019 ucol_closeElements(colEl); |
| |
2020 ucol_close(tempColl); |
| |
2021 return context.noOfClosures; // no extra contraction needed to add |
| |
2022 } |
| |
2023 |
| |
2024 for (i=0; i < src->resultLen; i++) { |
| |
2025 baseChar = firstCM= (UChar)0; |
| |
2026 tok = src->lh[i].first; |
| |
2027 while (tok != NULL && U_SUCCESS(*status)) { |
| |
2028 el.prefix = el.prefixChars; |
| |
2029 el.cPoints = el.uchars; |
| |
2030 if(tok->prefix != 0) { |
| |
2031 el.prefixSize = tok->prefix>>24; |
| |
2032 uprv_memcpy(el.prefix, src->source + (tok->prefix & 0x00FFFFFF), el.prefixSize*sizeof(UChar)); |
| |
2033 |
| |
2034 el.cSize = (tok->source >> 24)-(tok->prefix>>24); |
| |
2035 uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF)+(tok->prefix>>24) + src->source, el.cSize*sizeof(UChar)); |
| |
2036 } else { |
| |
2037 el.prefixSize = 0; |
| |
2038 *el.prefix = 0; |
| |
2039 |
| |
2040 el.cSize = (tok->source >> 24); |
| |
2041 uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, el.cSize*sizeof(UChar)); |
| |
2042 } |
| |
2043 if(src->UCA != NULL) { |
| |
2044 for(j = 0; j<el.cSize; j++) { |
| |
2045 int16_t fcd = context.nfcImpl->getFCD16(el.cPoints[j]); |
| |
2046 if ( (fcd & 0xff) == 0 ) { |
| |
2047 baseChar = el.cPoints[j]; // last base character |
| |
2048 firstCM=0; // reset combining mark value |
| |
2049 } |
| |
2050 else { |
| |
2051 if ( (baseChar!=0) && (firstCM==0) ) { |
| |
2052 firstCM = el.cPoints[j]; // first combining mark |
| |
2053 } |
| |
2054 } |
| |
2055 } |
| |
2056 } |
| |
2057 if ( (baseChar!= (UChar)0) && (firstCM != (UChar)0) ) { |
| |
2058 // find all the canonical rules |
| |
2059 uprv_uca_addTailCanonicalClosures(t, colEl, baseChar, firstCM, &el, status); |
| |
2060 } |
| |
2061 tok = tok->next; |
| |
2062 } |
| |
2063 } |
| |
2064 ucol_closeElements(colEl); |
| |
2065 ucol_close(tempColl); |
| |
2066 |
| |
2067 return context.noOfClosures; |
| |
2068 } |
| |
2069 |
| |
2070 #endif /* #if !UCONFIG_NO_COLLATION */ |