|
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 #ifndef BASE_SINGLETON_H_ |
|
6 #define BASE_SINGLETON_H_ |
|
7 |
|
8 #include "base/at_exit.h" |
|
9 #include "base/atomicops.h" |
|
10 #include "base/platform_thread.h" |
|
11 |
|
12 // Default traits for Singleton<Type>. Calls operator new and operator delete on |
|
13 // the object. Registers automatic deletion at process exit. |
|
14 // Overload if you need arguments or another memory allocation function. |
|
15 template<typename Type> |
|
16 struct DefaultSingletonTraits { |
|
17 // Allocates the object. |
|
18 static Type* New() { |
|
19 // The parenthesis is very important here; it forces POD type |
|
20 // initialization. |
|
21 return new Type(); |
|
22 } |
|
23 |
|
24 // Destroys the object. |
|
25 static void Delete(Type* x) { |
|
26 delete x; |
|
27 } |
|
28 |
|
29 // Set to true to automatically register deletion of the object on process |
|
30 // exit. See below for the required call that makes this happen. |
|
31 static const bool kRegisterAtExit = true; |
|
32 }; |
|
33 |
|
34 |
|
35 // Alternate traits for use with the Singleton<Type>. Identical to |
|
36 // DefaultSingletonTraits except that the Singleton will not be cleaned up |
|
37 // at exit. |
|
38 template<typename Type> |
|
39 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { |
|
40 static const bool kRegisterAtExit = false; |
|
41 }; |
|
42 |
|
43 |
|
44 // The Singleton<Type, Traits, DifferentiatingType> class manages a single |
|
45 // instance of Type which will be created on first use and will be destroyed at |
|
46 // normal process exit). The Trait::Delete function will not be called on |
|
47 // abnormal process exit. |
|
48 // |
|
49 // DifferentiatingType is used as a key to differentiate two different |
|
50 // singletons having the same memory allocation functions but serving a |
|
51 // different purpose. This is mainly used for Locks serving different purposes. |
|
52 // |
|
53 // Example usages: (none are preferred, they all result in the same code) |
|
54 // 1. FooClass* ptr = Singleton<FooClass>::get(); |
|
55 // ptr->Bar(); |
|
56 // 2. Singleton<FooClass>()->Bar(); |
|
57 // 3. Singleton<FooClass>::get()->Bar(); |
|
58 // |
|
59 // Singleton<> has no non-static members and doesn't need to actually be |
|
60 // instantiated. It does no harm to instantiate it and use it as a class member |
|
61 // or at global level since it is acting as a POD type. |
|
62 // |
|
63 // This class is itself thread-safe. The underlying Type must of course be |
|
64 // thread-safe if you want to use it concurrently. Two parameters may be tuned |
|
65 // depending on the user's requirements. |
|
66 // |
|
67 // Glossary: |
|
68 // RAE = kRegisterAtExit |
|
69 // |
|
70 // On every platform, if Traits::RAE is true, the singleton will be destroyed at |
|
71 // process exit. More precisely it uses base::AtExitManager which requires an |
|
72 // object of this type to be instanciated. AtExitManager mimics the semantics |
|
73 // of atexit() such as LIFO order but under Windows is safer to call. For more |
|
74 // information see at_exit.h. |
|
75 // |
|
76 // If Traits::RAE is false, the singleton will not be freed at process exit, |
|
77 // thus the singleton will be leaked if it is ever accessed. Traits::RAE |
|
78 // shouldn't be false unless absolutely necessary. Remember that the heap where |
|
79 // the object is allocated may be destroyed by the CRT anyway. |
|
80 // |
|
81 // If you want to ensure that your class can only exist as a singleton, make |
|
82 // its constructors private, and make DefaultSingletonTraits<> a friend: |
|
83 // |
|
84 // #include "base/singleton.h" |
|
85 // class FooClass { |
|
86 // public: |
|
87 // void Bar() { ... } |
|
88 // private: |
|
89 // FooClass() { ... } |
|
90 // friend struct DefaultSingletonTraits<FooClass>; |
|
91 // |
|
92 // DISALLOW_EVIL_CONSTRUCTORS(FooClass); |
|
93 // }; |
|
94 // |
|
95 // Caveats: |
|
96 // (a) Every call to get(), operator->() and operator*() incurs some overhead |
|
97 // (16ns on my P4/2.8GHz) to check whether the object has already been |
|
98 // initialized. You may wish to cache the result of get(); it will not |
|
99 // change. |
|
100 // |
|
101 // (b) Your factory function must never throw an exception. This class is not |
|
102 // exception-safe. |
|
103 // |
|
104 template <typename Type, |
|
105 typename Traits = DefaultSingletonTraits<Type>, |
|
106 typename DifferentiatingType = Type> |
|
107 class Singleton { |
|
108 public: |
|
109 // This class is safe to be constructed and copy-constructed since it has no |
|
110 // member. |
|
111 |
|
112 // Return a pointer to the one true instance of the class. |
|
113 static Type* get() { |
|
114 // Our AtomicWord doubles as a spinlock, where a value of |
|
115 // kBeingCreatedMarker means the spinlock is being held for creation. |
|
116 static const base::subtle::AtomicWord kBeingCreatedMarker = 1; |
|
117 |
|
118 base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_); |
|
119 if (value != 0 && value != kBeingCreatedMarker) |
|
120 return reinterpret_cast<Type*>(value); |
|
121 |
|
122 // Object isn't created yet, maybe we will get to create it, let's try... |
|
123 if (base::subtle::Acquire_CompareAndSwap(&instance_, |
|
124 0, |
|
125 kBeingCreatedMarker) == 0) { |
|
126 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread |
|
127 // will ever get here. Threads might be spinning on us, and they will |
|
128 // stop right after we do this store. |
|
129 Type* newval = Traits::New(); |
|
130 base::subtle::Release_Store( |
|
131 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval)); |
|
132 |
|
133 if (Traits::kRegisterAtExit) |
|
134 base::AtExitManager::RegisterCallback(OnExit, NULL); |
|
135 |
|
136 return newval; |
|
137 } |
|
138 |
|
139 // We hit a race. Another thread beat us and either: |
|
140 // - Has the object in BeingCreated state |
|
141 // - Already has the object created... |
|
142 // We know value != NULL. It could be kBeingCreatedMarker, or a valid ptr. |
|
143 // Unless your constructor can be very time consuming, it is very unlikely |
|
144 // to hit this race. When it does, we just spin and yield the thread until |
|
145 // the object has been created. |
|
146 while (true) { |
|
147 value = base::subtle::NoBarrier_Load(&instance_); |
|
148 if (value != kBeingCreatedMarker) |
|
149 break; |
|
150 PlatformThread::YieldCurrentThread(); |
|
151 } |
|
152 |
|
153 return reinterpret_cast<Type*>(value); |
|
154 } |
|
155 |
|
156 // Shortcuts. |
|
157 Type& operator*() { |
|
158 return *get(); |
|
159 } |
|
160 |
|
161 Type* operator->() { |
|
162 return get(); |
|
163 } |
|
164 |
|
165 private: |
|
166 // Adapter function for use with AtExit(). This should be called single |
|
167 // threaded, but we might as well take the precautions anyway. |
|
168 static void OnExit(void* unused) { |
|
169 // AtExit should only ever be register after the singleton instance was |
|
170 // created. We should only ever get here with a valid instance_ pointer. |
|
171 Traits::Delete(reinterpret_cast<Type*>( |
|
172 base::subtle::NoBarrier_AtomicExchange(&instance_, 0))); |
|
173 } |
|
174 static base::subtle::AtomicWord instance_; |
|
175 }; |
|
176 |
|
177 template <typename Type, typename Traits, typename DifferentiatingType> |
|
178 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>:: |
|
179 instance_ = 0; |
|
180 |
|
181 #endif // BASE_SINGLETON_H_ |