|
1 /* Based on work Copyright 2002 Christopher Clark */ |
|
2 /* Copyright 2005-2012 Nick Mathewson */ |
|
3 /* Copyright 2009-2012 Niels Provos and Nick Mathewson */ |
|
4 /* See license at end. */ |
|
5 |
|
6 /* Based on ideas by Christopher Clark and interfaces from Niels Provos. */ |
|
7 |
|
8 #ifndef _EVENT_HT_H |
|
9 #define _EVENT_HT_H |
|
10 |
|
11 #define HT_HEAD(name, type) \ |
|
12 struct name { \ |
|
13 /* The hash table itself. */ \ |
|
14 struct type **hth_table; \ |
|
15 /* How long is the hash table? */ \ |
|
16 unsigned hth_table_length; \ |
|
17 /* How many elements does the table contain? */ \ |
|
18 unsigned hth_n_entries; \ |
|
19 /* How many elements will we allow in the table before resizing it? */ \ |
|
20 unsigned hth_load_limit; \ |
|
21 /* Position of hth_table_length in the primes table. */ \ |
|
22 int hth_prime_idx; \ |
|
23 } |
|
24 |
|
25 #define HT_INITIALIZER() \ |
|
26 { NULL, 0, 0, 0, -1 } |
|
27 |
|
28 #ifdef HT_CACHE_HASH_VALUES |
|
29 #define HT_ENTRY(type) \ |
|
30 struct { \ |
|
31 struct type *hte_next; \ |
|
32 unsigned hte_hash; \ |
|
33 } |
|
34 #else |
|
35 #define HT_ENTRY(type) \ |
|
36 struct { \ |
|
37 struct type *hte_next; \ |
|
38 } |
|
39 #endif |
|
40 |
|
41 #define HT_EMPTY(head) \ |
|
42 ((head)->hth_n_entries == 0) |
|
43 |
|
44 /* How many elements in 'head'? */ |
|
45 #define HT_SIZE(head) \ |
|
46 ((head)->hth_n_entries) |
|
47 |
|
48 #define HT_FIND(name, head, elm) name##_HT_FIND((head), (elm)) |
|
49 #define HT_INSERT(name, head, elm) name##_HT_INSERT((head), (elm)) |
|
50 #define HT_REPLACE(name, head, elm) name##_HT_REPLACE((head), (elm)) |
|
51 #define HT_REMOVE(name, head, elm) name##_HT_REMOVE((head), (elm)) |
|
52 #define HT_START(name, head) name##_HT_START(head) |
|
53 #define HT_NEXT(name, head, elm) name##_HT_NEXT((head), (elm)) |
|
54 #define HT_NEXT_RMV(name, head, elm) name##_HT_NEXT_RMV((head), (elm)) |
|
55 #define HT_CLEAR(name, head) name##_HT_CLEAR(head) |
|
56 #define HT_INIT(name, head) name##_HT_INIT(head) |
|
57 /* Helper: */ |
|
58 static inline unsigned |
|
59 ht_improve_hash(unsigned h) |
|
60 { |
|
61 /* Aim to protect against poor hash functions by adding logic here |
|
62 * - logic taken from java 1.4 hashtable source */ |
|
63 h += ~(h << 9); |
|
64 h ^= ((h >> 14) | (h << 18)); /* >>> */ |
|
65 h += (h << 4); |
|
66 h ^= ((h >> 10) | (h << 22)); /* >>> */ |
|
67 return h; |
|
68 } |
|
69 |
|
70 #if 0 |
|
71 /** Basic string hash function, from Java standard String.hashCode(). */ |
|
72 static inline unsigned |
|
73 ht_string_hash(const char *s) |
|
74 { |
|
75 unsigned h = 0; |
|
76 int m = 1; |
|
77 while (*s) { |
|
78 h += ((signed char)*s++)*m; |
|
79 m = (m<<5)-1; /* m *= 31 */ |
|
80 } |
|
81 return h; |
|
82 } |
|
83 #endif |
|
84 |
|
85 /** Basic string hash function, from Python's str.__hash__() */ |
|
86 static inline unsigned |
|
87 ht_string_hash(const char *s) |
|
88 { |
|
89 unsigned h; |
|
90 const unsigned char *cp = (const unsigned char *)s; |
|
91 h = *cp << 7; |
|
92 while (*cp) { |
|
93 h = (1000003*h) ^ *cp++; |
|
94 } |
|
95 /* This conversion truncates the length of the string, but that's ok. */ |
|
96 h ^= (unsigned)(cp-(const unsigned char*)s); |
|
97 return h; |
|
98 } |
|
99 |
|
100 #ifdef HT_CACHE_HASH_VALUES |
|
101 #define _HT_SET_HASH(elm, field, hashfn) \ |
|
102 do { (elm)->field.hte_hash = hashfn(elm); } while (0) |
|
103 #define _HT_SET_HASHVAL(elm, field, val) \ |
|
104 do { (elm)->field.hte_hash = (val); } while (0) |
|
105 #define _HT_ELT_HASH(elm, field, hashfn) \ |
|
106 ((elm)->field.hte_hash) |
|
107 #else |
|
108 #define _HT_SET_HASH(elm, field, hashfn) \ |
|
109 ((void)0) |
|
110 #define _HT_ELT_HASH(elm, field, hashfn) \ |
|
111 (hashfn(elm)) |
|
112 #define _HT_SET_HASHVAL(elm, field, val) \ |
|
113 ((void)0) |
|
114 #endif |
|
115 |
|
116 /* Helper: alias for the bucket containing 'elm'. */ |
|
117 #define _HT_BUCKET(head, field, elm, hashfn) \ |
|
118 ((head)->hth_table[_HT_ELT_HASH(elm,field,hashfn) % head->hth_table_length]) |
|
119 |
|
120 #define HT_FOREACH(x, name, head) \ |
|
121 for ((x) = HT_START(name, head); \ |
|
122 (x) != NULL; \ |
|
123 (x) = HT_NEXT(name, head, x)) |
|
124 |
|
125 #define HT_PROTOTYPE(name, type, field, hashfn, eqfn) \ |
|
126 int name##_HT_GROW(struct name *ht, unsigned min_capacity); \ |
|
127 void name##_HT_CLEAR(struct name *ht); \ |
|
128 int _##name##_HT_REP_IS_BAD(const struct name *ht); \ |
|
129 static inline void \ |
|
130 name##_HT_INIT(struct name *head) { \ |
|
131 head->hth_table_length = 0; \ |
|
132 head->hth_table = NULL; \ |
|
133 head->hth_n_entries = 0; \ |
|
134 head->hth_load_limit = 0; \ |
|
135 head->hth_prime_idx = -1; \ |
|
136 } \ |
|
137 /* Helper: returns a pointer to the right location in the table \ |
|
138 * 'head' to find or insert the element 'elm'. */ \ |
|
139 static inline struct type ** \ |
|
140 _##name##_HT_FIND_P(struct name *head, struct type *elm) \ |
|
141 { \ |
|
142 struct type **p; \ |
|
143 if (!head->hth_table) \ |
|
144 return NULL; \ |
|
145 p = &_HT_BUCKET(head, field, elm, hashfn); \ |
|
146 while (*p) { \ |
|
147 if (eqfn(*p, elm)) \ |
|
148 return p; \ |
|
149 p = &(*p)->field.hte_next; \ |
|
150 } \ |
|
151 return p; \ |
|
152 } \ |
|
153 /* Return a pointer to the element in the table 'head' matching 'elm', \ |
|
154 * or NULL if no such element exists */ \ |
|
155 static inline struct type * \ |
|
156 name##_HT_FIND(const struct name *head, struct type *elm) \ |
|
157 { \ |
|
158 struct type **p; \ |
|
159 struct name *h = (struct name *) head; \ |
|
160 _HT_SET_HASH(elm, field, hashfn); \ |
|
161 p = _##name##_HT_FIND_P(h, elm); \ |
|
162 return p ? *p : NULL; \ |
|
163 } \ |
|
164 /* Insert the element 'elm' into the table 'head'. Do not call this \ |
|
165 * function if the table might already contain a matching element. */ \ |
|
166 static inline void \ |
|
167 name##_HT_INSERT(struct name *head, struct type *elm) \ |
|
168 { \ |
|
169 struct type **p; \ |
|
170 if (!head->hth_table || head->hth_n_entries >= head->hth_load_limit) \ |
|
171 name##_HT_GROW(head, head->hth_n_entries+1); \ |
|
172 ++head->hth_n_entries; \ |
|
173 _HT_SET_HASH(elm, field, hashfn); \ |
|
174 p = &_HT_BUCKET(head, field, elm, hashfn); \ |
|
175 elm->field.hte_next = *p; \ |
|
176 *p = elm; \ |
|
177 } \ |
|
178 /* Insert the element 'elm' into the table 'head'. If there already \ |
|
179 * a matching element in the table, replace that element and return \ |
|
180 * it. */ \ |
|
181 static inline struct type * \ |
|
182 name##_HT_REPLACE(struct name *head, struct type *elm) \ |
|
183 { \ |
|
184 struct type **p, *r; \ |
|
185 if (!head->hth_table || head->hth_n_entries >= head->hth_load_limit) \ |
|
186 name##_HT_GROW(head, head->hth_n_entries+1); \ |
|
187 _HT_SET_HASH(elm, field, hashfn); \ |
|
188 p = _##name##_HT_FIND_P(head, elm); \ |
|
189 r = *p; \ |
|
190 *p = elm; \ |
|
191 if (r && (r!=elm)) { \ |
|
192 elm->field.hte_next = r->field.hte_next; \ |
|
193 r->field.hte_next = NULL; \ |
|
194 return r; \ |
|
195 } else { \ |
|
196 ++head->hth_n_entries; \ |
|
197 return NULL; \ |
|
198 } \ |
|
199 } \ |
|
200 /* Remove any element matching 'elm' from the table 'head'. If such \ |
|
201 * an element is found, return it; otherwise return NULL. */ \ |
|
202 static inline struct type * \ |
|
203 name##_HT_REMOVE(struct name *head, struct type *elm) \ |
|
204 { \ |
|
205 struct type **p, *r; \ |
|
206 _HT_SET_HASH(elm, field, hashfn); \ |
|
207 p = _##name##_HT_FIND_P(head,elm); \ |
|
208 if (!p || !*p) \ |
|
209 return NULL; \ |
|
210 r = *p; \ |
|
211 *p = r->field.hte_next; \ |
|
212 r->field.hte_next = NULL; \ |
|
213 --head->hth_n_entries; \ |
|
214 return r; \ |
|
215 } \ |
|
216 /* Invoke the function 'fn' on every element of the table 'head', \ |
|
217 * using 'data' as its second argument. If the function returns \ |
|
218 * nonzero, remove the most recently examined element before invoking \ |
|
219 * the function again. */ \ |
|
220 static inline void \ |
|
221 name##_HT_FOREACH_FN(struct name *head, \ |
|
222 int (*fn)(struct type *, void *), \ |
|
223 void *data) \ |
|
224 { \ |
|
225 unsigned idx; \ |
|
226 struct type **p, **nextp, *next; \ |
|
227 if (!head->hth_table) \ |
|
228 return; \ |
|
229 for (idx=0; idx < head->hth_table_length; ++idx) { \ |
|
230 p = &head->hth_table[idx]; \ |
|
231 while (*p) { \ |
|
232 nextp = &(*p)->field.hte_next; \ |
|
233 next = *nextp; \ |
|
234 if (fn(*p, data)) { \ |
|
235 --head->hth_n_entries; \ |
|
236 *p = next; \ |
|
237 } else { \ |
|
238 p = nextp; \ |
|
239 } \ |
|
240 } \ |
|
241 } \ |
|
242 } \ |
|
243 /* Return a pointer to the first element in the table 'head', under \ |
|
244 * an arbitrary order. This order is stable under remove operations, \ |
|
245 * but not under others. If the table is empty, return NULL. */ \ |
|
246 static inline struct type ** \ |
|
247 name##_HT_START(struct name *head) \ |
|
248 { \ |
|
249 unsigned b = 0; \ |
|
250 while (b < head->hth_table_length) { \ |
|
251 if (head->hth_table[b]) \ |
|
252 return &head->hth_table[b]; \ |
|
253 ++b; \ |
|
254 } \ |
|
255 return NULL; \ |
|
256 } \ |
|
257 /* Return the next element in 'head' after 'elm', under the arbitrary \ |
|
258 * order used by HT_START. If there are no more elements, return \ |
|
259 * NULL. If 'elm' is to be removed from the table, you must call \ |
|
260 * this function for the next value before you remove it. \ |
|
261 */ \ |
|
262 static inline struct type ** \ |
|
263 name##_HT_NEXT(struct name *head, struct type **elm) \ |
|
264 { \ |
|
265 if ((*elm)->field.hte_next) { \ |
|
266 return &(*elm)->field.hte_next; \ |
|
267 } else { \ |
|
268 unsigned b = (_HT_ELT_HASH(*elm, field, hashfn) % head->hth_table_length)+1; \ |
|
269 while (b < head->hth_table_length) { \ |
|
270 if (head->hth_table[b]) \ |
|
271 return &head->hth_table[b]; \ |
|
272 ++b; \ |
|
273 } \ |
|
274 return NULL; \ |
|
275 } \ |
|
276 } \ |
|
277 static inline struct type ** \ |
|
278 name##_HT_NEXT_RMV(struct name *head, struct type **elm) \ |
|
279 { \ |
|
280 unsigned h = _HT_ELT_HASH(*elm, field, hashfn); \ |
|
281 *elm = (*elm)->field.hte_next; \ |
|
282 --head->hth_n_entries; \ |
|
283 if (*elm) { \ |
|
284 return elm; \ |
|
285 } else { \ |
|
286 unsigned b = (h % head->hth_table_length)+1; \ |
|
287 while (b < head->hth_table_length) { \ |
|
288 if (head->hth_table[b]) \ |
|
289 return &head->hth_table[b]; \ |
|
290 ++b; \ |
|
291 } \ |
|
292 return NULL; \ |
|
293 } \ |
|
294 } |
|
295 |
|
296 #define HT_GENERATE(name, type, field, hashfn, eqfn, load, mallocfn, \ |
|
297 reallocfn, freefn) \ |
|
298 static unsigned name##_PRIMES[] = { \ |
|
299 53, 97, 193, 389, \ |
|
300 769, 1543, 3079, 6151, \ |
|
301 12289, 24593, 49157, 98317, \ |
|
302 196613, 393241, 786433, 1572869, \ |
|
303 3145739, 6291469, 12582917, 25165843, \ |
|
304 50331653, 100663319, 201326611, 402653189, \ |
|
305 805306457, 1610612741 \ |
|
306 }; \ |
|
307 static unsigned name##_N_PRIMES = \ |
|
308 (unsigned)(sizeof(name##_PRIMES)/sizeof(name##_PRIMES[0])); \ |
|
309 /* Expand the internal table of 'head' until it is large enough to \ |
|
310 * hold 'size' elements. Return 0 on success, -1 on allocation \ |
|
311 * failure. */ \ |
|
312 int \ |
|
313 name##_HT_GROW(struct name *head, unsigned size) \ |
|
314 { \ |
|
315 unsigned new_len, new_load_limit; \ |
|
316 int prime_idx; \ |
|
317 struct type **new_table; \ |
|
318 if (head->hth_prime_idx == (int)name##_N_PRIMES - 1) \ |
|
319 return 0; \ |
|
320 if (head->hth_load_limit > size) \ |
|
321 return 0; \ |
|
322 prime_idx = head->hth_prime_idx; \ |
|
323 do { \ |
|
324 new_len = name##_PRIMES[++prime_idx]; \ |
|
325 new_load_limit = (unsigned)(load*new_len); \ |
|
326 } while (new_load_limit <= size && \ |
|
327 prime_idx < (int)name##_N_PRIMES); \ |
|
328 if ((new_table = mallocfn(new_len*sizeof(struct type*)))) { \ |
|
329 unsigned b; \ |
|
330 memset(new_table, 0, new_len*sizeof(struct type*)); \ |
|
331 for (b = 0; b < head->hth_table_length; ++b) { \ |
|
332 struct type *elm, *next; \ |
|
333 unsigned b2; \ |
|
334 elm = head->hth_table[b]; \ |
|
335 while (elm) { \ |
|
336 next = elm->field.hte_next; \ |
|
337 b2 = _HT_ELT_HASH(elm, field, hashfn) % new_len; \ |
|
338 elm->field.hte_next = new_table[b2]; \ |
|
339 new_table[b2] = elm; \ |
|
340 elm = next; \ |
|
341 } \ |
|
342 } \ |
|
343 if (head->hth_table) \ |
|
344 freefn(head->hth_table); \ |
|
345 head->hth_table = new_table; \ |
|
346 } else { \ |
|
347 unsigned b, b2; \ |
|
348 new_table = reallocfn(head->hth_table, new_len*sizeof(struct type*)); \ |
|
349 if (!new_table) return -1; \ |
|
350 memset(new_table + head->hth_table_length, 0, \ |
|
351 (new_len - head->hth_table_length)*sizeof(struct type*)); \ |
|
352 for (b=0; b < head->hth_table_length; ++b) { \ |
|
353 struct type *e, **pE; \ |
|
354 for (pE = &new_table[b], e = *pE; e != NULL; e = *pE) { \ |
|
355 b2 = _HT_ELT_HASH(e, field, hashfn) % new_len; \ |
|
356 if (b2 == b) { \ |
|
357 pE = &e->field.hte_next; \ |
|
358 } else { \ |
|
359 *pE = e->field.hte_next; \ |
|
360 e->field.hte_next = new_table[b2]; \ |
|
361 new_table[b2] = e; \ |
|
362 } \ |
|
363 } \ |
|
364 } \ |
|
365 head->hth_table = new_table; \ |
|
366 } \ |
|
367 head->hth_table_length = new_len; \ |
|
368 head->hth_prime_idx = prime_idx; \ |
|
369 head->hth_load_limit = new_load_limit; \ |
|
370 return 0; \ |
|
371 } \ |
|
372 /* Free all storage held by 'head'. Does not free 'head' itself, or \ |
|
373 * individual elements. */ \ |
|
374 void \ |
|
375 name##_HT_CLEAR(struct name *head) \ |
|
376 { \ |
|
377 if (head->hth_table) \ |
|
378 freefn(head->hth_table); \ |
|
379 head->hth_table_length = 0; \ |
|
380 name##_HT_INIT(head); \ |
|
381 } \ |
|
382 /* Debugging helper: return false iff the representation of 'head' is \ |
|
383 * internally consistent. */ \ |
|
384 int \ |
|
385 _##name##_HT_REP_IS_BAD(const struct name *head) \ |
|
386 { \ |
|
387 unsigned n, i; \ |
|
388 struct type *elm; \ |
|
389 if (!head->hth_table_length) { \ |
|
390 if (!head->hth_table && !head->hth_n_entries && \ |
|
391 !head->hth_load_limit && head->hth_prime_idx == -1) \ |
|
392 return 0; \ |
|
393 else \ |
|
394 return 1; \ |
|
395 } \ |
|
396 if (!head->hth_table || head->hth_prime_idx < 0 || \ |
|
397 !head->hth_load_limit) \ |
|
398 return 2; \ |
|
399 if (head->hth_n_entries > head->hth_load_limit) \ |
|
400 return 3; \ |
|
401 if (head->hth_table_length != name##_PRIMES[head->hth_prime_idx]) \ |
|
402 return 4; \ |
|
403 if (head->hth_load_limit != (unsigned)(load*head->hth_table_length)) \ |
|
404 return 5; \ |
|
405 for (n = i = 0; i < head->hth_table_length; ++i) { \ |
|
406 for (elm = head->hth_table[i]; elm; elm = elm->field.hte_next) { \ |
|
407 if (_HT_ELT_HASH(elm, field, hashfn) != hashfn(elm)) \ |
|
408 return 1000 + i; \ |
|
409 if ((_HT_ELT_HASH(elm, field, hashfn) % head->hth_table_length) != i) \ |
|
410 return 10000 + i; \ |
|
411 ++n; \ |
|
412 } \ |
|
413 } \ |
|
414 if (n != head->hth_n_entries) \ |
|
415 return 6; \ |
|
416 return 0; \ |
|
417 } |
|
418 |
|
419 /** Implements an over-optimized "find and insert if absent" block; |
|
420 * not meant for direct usage by typical code, or usage outside the critical |
|
421 * path.*/ |
|
422 #define _HT_FIND_OR_INSERT(name, field, hashfn, head, eltype, elm, var, y, n) \ |
|
423 { \ |
|
424 struct name *_##var##_head = head; \ |
|
425 struct eltype **var; \ |
|
426 if (!_##var##_head->hth_table || \ |
|
427 _##var##_head->hth_n_entries >= _##var##_head->hth_load_limit) \ |
|
428 name##_HT_GROW(_##var##_head, _##var##_head->hth_n_entries+1); \ |
|
429 _HT_SET_HASH((elm), field, hashfn); \ |
|
430 var = _##name##_HT_FIND_P(_##var##_head, (elm)); \ |
|
431 if (*var) { \ |
|
432 y; \ |
|
433 } else { \ |
|
434 n; \ |
|
435 } \ |
|
436 } |
|
437 #define _HT_FOI_INSERT(field, head, elm, newent, var) \ |
|
438 { \ |
|
439 _HT_SET_HASHVAL(newent, field, (elm)->field.hte_hash); \ |
|
440 newent->field.hte_next = NULL; \ |
|
441 *var = newent; \ |
|
442 ++((head)->hth_n_entries); \ |
|
443 } |
|
444 |
|
445 /* |
|
446 * Copyright 2005, Nick Mathewson. Implementation logic is adapted from code |
|
447 * by Cristopher Clark, retrofit to allow drop-in memory management, and to |
|
448 * use the same interface as Niels Provos's tree.h. This is probably still |
|
449 * a derived work, so the original license below still applies. |
|
450 * |
|
451 * Copyright (c) 2002, Christopher Clark |
|
452 * All rights reserved. |
|
453 * |
|
454 * Redistribution and use in source and binary forms, with or without |
|
455 * modification, are permitted provided that the following conditions |
|
456 * are met: |
|
457 * |
|
458 * * Redistributions of source code must retain the above copyright |
|
459 * notice, this list of conditions and the following disclaimer. |
|
460 * |
|
461 * * Redistributions in binary form must reproduce the above copyright |
|
462 * notice, this list of conditions and the following disclaimer in the |
|
463 * documentation and/or other materials provided with the distribution. |
|
464 * |
|
465 * * Neither the name of the original author; nor the names of any contributors |
|
466 * may be used to endorse or promote products derived from this software |
|
467 * without specific prior written permission. |
|
468 * |
|
469 * |
|
470 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
471 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
472 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
473 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
|
474 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
475 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
476 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
477 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
478 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
479 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
480 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
481 */ |
|
482 |
|
483 #endif |
|
484 |