|
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
|
2 * vim: set ts=8 sts=4 et sw=4 tw=99: |
|
3 * This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #ifndef gc_Heap_h |
|
8 #define gc_Heap_h |
|
9 |
|
10 #include "mozilla/Attributes.h" |
|
11 #include "mozilla/PodOperations.h" |
|
12 |
|
13 #include <stddef.h> |
|
14 #include <stdint.h> |
|
15 |
|
16 #include "jspubtd.h" |
|
17 #include "jstypes.h" |
|
18 #include "jsutil.h" |
|
19 |
|
20 #include "ds/BitArray.h" |
|
21 #include "gc/Memory.h" |
|
22 #include "js/HeapAPI.h" |
|
23 |
|
24 struct JSCompartment; |
|
25 |
|
26 struct JSRuntime; |
|
27 |
|
28 namespace JS { |
|
29 namespace shadow { |
|
30 class Runtime; |
|
31 } |
|
32 } |
|
33 |
|
34 namespace js { |
|
35 |
|
36 class FreeOp; |
|
37 |
|
38 namespace gc { |
|
39 |
|
40 struct Arena; |
|
41 struct ArenaList; |
|
42 struct ArenaHeader; |
|
43 struct Chunk; |
|
44 |
|
45 /* |
|
46 * This flag allows an allocation site to request a specific heap based upon the |
|
47 * estimated lifetime or lifetime requirements of objects allocated from that |
|
48 * site. |
|
49 */ |
|
50 enum InitialHeap { |
|
51 DefaultHeap, |
|
52 TenuredHeap |
|
53 }; |
|
54 |
|
55 /* The GC allocation kinds. */ |
|
56 enum AllocKind { |
|
57 FINALIZE_OBJECT0, |
|
58 FINALIZE_OBJECT0_BACKGROUND, |
|
59 FINALIZE_OBJECT2, |
|
60 FINALIZE_OBJECT2_BACKGROUND, |
|
61 FINALIZE_OBJECT4, |
|
62 FINALIZE_OBJECT4_BACKGROUND, |
|
63 FINALIZE_OBJECT8, |
|
64 FINALIZE_OBJECT8_BACKGROUND, |
|
65 FINALIZE_OBJECT12, |
|
66 FINALIZE_OBJECT12_BACKGROUND, |
|
67 FINALIZE_OBJECT16, |
|
68 FINALIZE_OBJECT16_BACKGROUND, |
|
69 FINALIZE_OBJECT_LAST = FINALIZE_OBJECT16_BACKGROUND, |
|
70 FINALIZE_SCRIPT, |
|
71 FINALIZE_LAZY_SCRIPT, |
|
72 FINALIZE_SHAPE, |
|
73 FINALIZE_BASE_SHAPE, |
|
74 FINALIZE_TYPE_OBJECT, |
|
75 FINALIZE_FAT_INLINE_STRING, |
|
76 FINALIZE_STRING, |
|
77 FINALIZE_EXTERNAL_STRING, |
|
78 FINALIZE_JITCODE, |
|
79 FINALIZE_LAST = FINALIZE_JITCODE |
|
80 }; |
|
81 |
|
82 static const unsigned FINALIZE_LIMIT = FINALIZE_LAST + 1; |
|
83 static const unsigned FINALIZE_OBJECT_LIMIT = FINALIZE_OBJECT_LAST + 1; |
|
84 |
|
85 /* |
|
86 * This must be an upper bound, but we do not need the least upper bound, so |
|
87 * we just exclude non-background objects. |
|
88 */ |
|
89 static const size_t MAX_BACKGROUND_FINALIZE_KINDS = FINALIZE_LIMIT - FINALIZE_OBJECT_LIMIT / 2; |
|
90 |
|
91 /* |
|
92 * A GC cell is the base class for all GC things. |
|
93 */ |
|
94 struct Cell |
|
95 { |
|
96 public: |
|
97 inline ArenaHeader *arenaHeader() const; |
|
98 inline AllocKind tenuredGetAllocKind() const; |
|
99 MOZ_ALWAYS_INLINE bool isMarked(uint32_t color = BLACK) const; |
|
100 MOZ_ALWAYS_INLINE bool markIfUnmarked(uint32_t color = BLACK) const; |
|
101 MOZ_ALWAYS_INLINE void unmark(uint32_t color) const; |
|
102 |
|
103 inline JSRuntime *runtimeFromMainThread() const; |
|
104 inline JS::shadow::Runtime *shadowRuntimeFromMainThread() const; |
|
105 inline JS::Zone *tenuredZone() const; |
|
106 inline JS::Zone *tenuredZoneFromAnyThread() const; |
|
107 inline bool tenuredIsInsideZone(JS::Zone *zone) const; |
|
108 |
|
109 // Note: Unrestricted access to the runtime of a GC thing from an arbitrary |
|
110 // thread can easily lead to races. Use this method very carefully. |
|
111 inline JSRuntime *runtimeFromAnyThread() const; |
|
112 inline JS::shadow::Runtime *shadowRuntimeFromAnyThread() const; |
|
113 |
|
114 #ifdef DEBUG |
|
115 inline bool isAligned() const; |
|
116 inline bool isTenured() const; |
|
117 #endif |
|
118 |
|
119 protected: |
|
120 inline uintptr_t address() const; |
|
121 inline Chunk *chunk() const; |
|
122 }; |
|
123 |
|
124 /* |
|
125 * The mark bitmap has one bit per each GC cell. For multi-cell GC things this |
|
126 * wastes space but allows to avoid expensive devisions by thing's size when |
|
127 * accessing the bitmap. In addition this allows to use some bits for colored |
|
128 * marking during the cycle GC. |
|
129 */ |
|
130 const size_t ArenaCellCount = size_t(1) << (ArenaShift - CellShift); |
|
131 const size_t ArenaBitmapBits = ArenaCellCount; |
|
132 const size_t ArenaBitmapBytes = ArenaBitmapBits / 8; |
|
133 const size_t ArenaBitmapWords = ArenaBitmapBits / JS_BITS_PER_WORD; |
|
134 |
|
135 /* |
|
136 * A FreeSpan represents a contiguous sequence of free cells in an Arena. |
|
137 * |first| is the address of the first free cell in the span. |last| is the |
|
138 * address of the last free cell in the span. This last cell holds a FreeSpan |
|
139 * data structure for the next span unless this is the last span on the list |
|
140 * of spans in the arena. For this last span |last| points to the last byte of |
|
141 * the last thing in the arena and no linkage is stored there, so |
|
142 * |last| == arenaStart + ArenaSize - 1. If the space at the arena end is |
|
143 * fully used this last span is empty and |first| == |last + 1|. |
|
144 * |
|
145 * Thus |first| < |last| implies that we have either the last span with at least |
|
146 * one element or that the span is not the last and contains at least 2 |
|
147 * elements. In both cases to allocate a thing from this span we need simply |
|
148 * to increment |first| by the allocation size. |
|
149 * |
|
150 * |first| == |last| implies that we have a one element span that records the |
|
151 * next span. So to allocate from it we need to update the span list head |
|
152 * with a copy of the span stored at |last| address so the following |
|
153 * allocations will use that span. |
|
154 * |
|
155 * |first| > |last| implies that we have an empty last span and the arena is |
|
156 * fully used. |
|
157 * |
|
158 * Also only for the last span (|last| & 1)! = 0 as all allocation sizes are |
|
159 * multiples of CellSize. |
|
160 */ |
|
161 struct FreeSpan |
|
162 { |
|
163 uintptr_t first; |
|
164 uintptr_t last; |
|
165 |
|
166 public: |
|
167 FreeSpan() {} |
|
168 |
|
169 FreeSpan(uintptr_t first, uintptr_t last) |
|
170 : first(first), last(last) { |
|
171 checkSpan(); |
|
172 } |
|
173 |
|
174 /* |
|
175 * To minimize the size of the arena header the first span is encoded |
|
176 * there as offsets from the arena start. |
|
177 */ |
|
178 static size_t encodeOffsets(size_t firstOffset, size_t lastOffset) { |
|
179 static_assert(ArenaShift < 16, "Check that we can pack offsets into uint16_t."); |
|
180 JS_ASSERT(firstOffset <= ArenaSize); |
|
181 JS_ASSERT(lastOffset < ArenaSize); |
|
182 JS_ASSERT(firstOffset <= ((lastOffset + 1) & ~size_t(1))); |
|
183 return firstOffset | (lastOffset << 16); |
|
184 } |
|
185 |
|
186 /* |
|
187 * Encoded offsets for a full arena when its first span is the last one |
|
188 * and empty. |
|
189 */ |
|
190 static const size_t FullArenaOffsets = ArenaSize | ((ArenaSize - 1) << 16); |
|
191 |
|
192 static FreeSpan decodeOffsets(uintptr_t arenaAddr, size_t offsets) { |
|
193 JS_ASSERT(!(arenaAddr & ArenaMask)); |
|
194 |
|
195 size_t firstOffset = offsets & 0xFFFF; |
|
196 size_t lastOffset = offsets >> 16; |
|
197 JS_ASSERT(firstOffset <= ArenaSize); |
|
198 JS_ASSERT(lastOffset < ArenaSize); |
|
199 |
|
200 /* |
|
201 * We must not use | when calculating first as firstOffset is |
|
202 * ArenaMask + 1 for the empty span. |
|
203 */ |
|
204 return FreeSpan(arenaAddr + firstOffset, arenaAddr | lastOffset); |
|
205 } |
|
206 |
|
207 void initAsEmpty(uintptr_t arenaAddr = 0) { |
|
208 JS_ASSERT(!(arenaAddr & ArenaMask)); |
|
209 first = arenaAddr + ArenaSize; |
|
210 last = arenaAddr | (ArenaSize - 1); |
|
211 JS_ASSERT(isEmpty()); |
|
212 } |
|
213 |
|
214 bool isEmpty() const { |
|
215 checkSpan(); |
|
216 return first > last; |
|
217 } |
|
218 |
|
219 bool hasNext() const { |
|
220 checkSpan(); |
|
221 return !(last & uintptr_t(1)); |
|
222 } |
|
223 |
|
224 const FreeSpan *nextSpan() const { |
|
225 JS_ASSERT(hasNext()); |
|
226 return reinterpret_cast<FreeSpan *>(last); |
|
227 } |
|
228 |
|
229 FreeSpan *nextSpanUnchecked(size_t thingSize) const { |
|
230 #ifdef DEBUG |
|
231 uintptr_t lastOffset = last & ArenaMask; |
|
232 JS_ASSERT(!(lastOffset & 1)); |
|
233 JS_ASSERT((ArenaSize - lastOffset) % thingSize == 0); |
|
234 #endif |
|
235 return reinterpret_cast<FreeSpan *>(last); |
|
236 } |
|
237 |
|
238 uintptr_t arenaAddressUnchecked() const { |
|
239 return last & ~ArenaMask; |
|
240 } |
|
241 |
|
242 uintptr_t arenaAddress() const { |
|
243 checkSpan(); |
|
244 return arenaAddressUnchecked(); |
|
245 } |
|
246 |
|
247 ArenaHeader *arenaHeader() const { |
|
248 return reinterpret_cast<ArenaHeader *>(arenaAddress()); |
|
249 } |
|
250 |
|
251 bool isSameNonEmptySpan(const FreeSpan *another) const { |
|
252 JS_ASSERT(!isEmpty()); |
|
253 JS_ASSERT(!another->isEmpty()); |
|
254 return first == another->first && last == another->last; |
|
255 } |
|
256 |
|
257 bool isWithinArena(uintptr_t arenaAddr) const { |
|
258 JS_ASSERT(!(arenaAddr & ArenaMask)); |
|
259 |
|
260 /* Return true for the last empty span as well. */ |
|
261 return arenaAddress() == arenaAddr; |
|
262 } |
|
263 |
|
264 size_t encodeAsOffsets() const { |
|
265 /* |
|
266 * We must use first - arenaAddress(), not first & ArenaMask as |
|
267 * first == ArenaMask + 1 for an empty span. |
|
268 */ |
|
269 uintptr_t arenaAddr = arenaAddress(); |
|
270 return encodeOffsets(first - arenaAddr, last & ArenaMask); |
|
271 } |
|
272 |
|
273 /* See comments before FreeSpan for details. */ |
|
274 MOZ_ALWAYS_INLINE void *allocate(size_t thingSize) { |
|
275 JS_ASSERT(thingSize % CellSize == 0); |
|
276 checkSpan(); |
|
277 uintptr_t thing = first; |
|
278 if (thing < last) { |
|
279 /* Bump-allocate from the current span. */ |
|
280 first = thing + thingSize; |
|
281 } else if (MOZ_LIKELY(thing == last)) { |
|
282 /* |
|
283 * Move to the next span. We use MOZ_LIKELY as without PGO |
|
284 * compilers mis-predict == here as unlikely to succeed. |
|
285 */ |
|
286 *this = *reinterpret_cast<FreeSpan *>(thing); |
|
287 } else { |
|
288 return nullptr; |
|
289 } |
|
290 checkSpan(); |
|
291 JS_EXTRA_POISON(reinterpret_cast<void *>(thing), JS_ALLOCATED_TENURED_PATTERN, thingSize); |
|
292 return reinterpret_cast<void *>(thing); |
|
293 } |
|
294 |
|
295 /* A version of allocate when we know that the span is not empty. */ |
|
296 MOZ_ALWAYS_INLINE void *infallibleAllocate(size_t thingSize) { |
|
297 JS_ASSERT(thingSize % CellSize == 0); |
|
298 checkSpan(); |
|
299 uintptr_t thing = first; |
|
300 if (thing < last) { |
|
301 first = thing + thingSize; |
|
302 } else { |
|
303 JS_ASSERT(thing == last); |
|
304 *this = *reinterpret_cast<FreeSpan *>(thing); |
|
305 } |
|
306 checkSpan(); |
|
307 JS_EXTRA_POISON(reinterpret_cast<void *>(thing), JS_ALLOCATED_TENURED_PATTERN, thingSize); |
|
308 return reinterpret_cast<void *>(thing); |
|
309 } |
|
310 |
|
311 /* |
|
312 * Allocate from a newly allocated arena. We do not move the free list |
|
313 * from the arena. Rather we set the arena up as fully used during the |
|
314 * initialization so to allocate we simply return the first thing in the |
|
315 * arena and set the free list to point to the second. |
|
316 */ |
|
317 MOZ_ALWAYS_INLINE void *allocateFromNewArena(uintptr_t arenaAddr, size_t firstThingOffset, |
|
318 size_t thingSize) { |
|
319 JS_ASSERT(!(arenaAddr & ArenaMask)); |
|
320 uintptr_t thing = arenaAddr | firstThingOffset; |
|
321 first = thing + thingSize; |
|
322 last = arenaAddr | ArenaMask; |
|
323 checkSpan(); |
|
324 JS_EXTRA_POISON(reinterpret_cast<void *>(thing), JS_ALLOCATED_TENURED_PATTERN, thingSize); |
|
325 return reinterpret_cast<void *>(thing); |
|
326 } |
|
327 |
|
328 void checkSpan() const { |
|
329 #ifdef DEBUG |
|
330 /* We do not allow spans at the end of the address space. */ |
|
331 JS_ASSERT(last != uintptr_t(-1)); |
|
332 JS_ASSERT(first); |
|
333 JS_ASSERT(last); |
|
334 JS_ASSERT(first - 1 <= last); |
|
335 uintptr_t arenaAddr = arenaAddressUnchecked(); |
|
336 if (last & 1) { |
|
337 /* The span is the last. */ |
|
338 JS_ASSERT((last & ArenaMask) == ArenaMask); |
|
339 |
|
340 if (first - 1 == last) { |
|
341 /* The span is last and empty. The above start != 0 check |
|
342 * implies that we are not at the end of the address space. |
|
343 */ |
|
344 return; |
|
345 } |
|
346 size_t spanLength = last - first + 1; |
|
347 JS_ASSERT(spanLength % CellSize == 0); |
|
348 |
|
349 /* Start and end must belong to the same arena. */ |
|
350 JS_ASSERT((first & ~ArenaMask) == arenaAddr); |
|
351 return; |
|
352 } |
|
353 |
|
354 /* The span is not the last and we have more spans to follow. */ |
|
355 JS_ASSERT(first <= last); |
|
356 size_t spanLengthWithoutOneThing = last - first; |
|
357 JS_ASSERT(spanLengthWithoutOneThing % CellSize == 0); |
|
358 |
|
359 JS_ASSERT((first & ~ArenaMask) == arenaAddr); |
|
360 |
|
361 /* |
|
362 * If there is not enough space before the arena end to allocate one |
|
363 * more thing, then the span must be marked as the last one to avoid |
|
364 * storing useless empty span reference. |
|
365 */ |
|
366 size_t beforeTail = ArenaSize - (last & ArenaMask); |
|
367 JS_ASSERT(beforeTail >= sizeof(FreeSpan) + CellSize); |
|
368 |
|
369 FreeSpan *next = reinterpret_cast<FreeSpan *>(last); |
|
370 |
|
371 /* |
|
372 * The GC things on the list of free spans come from one arena |
|
373 * and the spans are linked in ascending address order with |
|
374 * at least one non-free thing between spans. |
|
375 */ |
|
376 JS_ASSERT(last < next->first); |
|
377 JS_ASSERT(arenaAddr == next->arenaAddressUnchecked()); |
|
378 |
|
379 if (next->first > next->last) { |
|
380 /* |
|
381 * The next span is the empty span that terminates the list for |
|
382 * arenas that do not have any free things at the end. |
|
383 */ |
|
384 JS_ASSERT(next->first - 1 == next->last); |
|
385 JS_ASSERT(arenaAddr + ArenaSize == next->first); |
|
386 } |
|
387 #endif |
|
388 } |
|
389 |
|
390 }; |
|
391 |
|
392 /* Every arena has a header. */ |
|
393 struct ArenaHeader : public JS::shadow::ArenaHeader |
|
394 { |
|
395 friend struct FreeLists; |
|
396 |
|
397 /* |
|
398 * ArenaHeader::next has two purposes: when unallocated, it points to the |
|
399 * next available Arena's header. When allocated, it points to the next |
|
400 * arena of the same size class and compartment. |
|
401 */ |
|
402 ArenaHeader *next; |
|
403 |
|
404 private: |
|
405 /* |
|
406 * The first span of free things in the arena. We encode it as the start |
|
407 * and end offsets within the arena, not as FreeSpan structure, to |
|
408 * minimize the header size. |
|
409 */ |
|
410 size_t firstFreeSpanOffsets; |
|
411 |
|
412 /* |
|
413 * One of AllocKind constants or FINALIZE_LIMIT when the arena does not |
|
414 * contain any GC things and is on the list of empty arenas in the GC |
|
415 * chunk. The latter allows to quickly check if the arena is allocated |
|
416 * during the conservative GC scanning without searching the arena in the |
|
417 * list. |
|
418 * |
|
419 * We use 8 bits for the allocKind so the compiler can use byte-level memory |
|
420 * instructions to access it. |
|
421 */ |
|
422 size_t allocKind : 8; |
|
423 |
|
424 /* |
|
425 * When collecting we sometimes need to keep an auxillary list of arenas, |
|
426 * for which we use the following fields. This happens for several reasons: |
|
427 * |
|
428 * When recursive marking uses too much stack the marking is delayed and the |
|
429 * corresponding arenas are put into a stack. To distinguish the bottom of |
|
430 * the stack from the arenas not present in the stack we use the |
|
431 * markOverflow flag to tag arenas on the stack. |
|
432 * |
|
433 * Delayed marking is also used for arenas that we allocate into during an |
|
434 * incremental GC. In this case, we intend to mark all the objects in the |
|
435 * arena, and it's faster to do this marking in bulk. |
|
436 * |
|
437 * When sweeping we keep track of which arenas have been allocated since the |
|
438 * end of the mark phase. This allows us to tell whether a pointer to an |
|
439 * unmarked object is yet to be finalized or has already been reallocated. |
|
440 * We set the allocatedDuringIncremental flag for this and clear it at the |
|
441 * end of the sweep phase. |
|
442 * |
|
443 * To minimize the ArenaHeader size we record the next linkage as |
|
444 * arenaAddress() >> ArenaShift and pack it with the allocKind field and the |
|
445 * flags. |
|
446 */ |
|
447 public: |
|
448 size_t hasDelayedMarking : 1; |
|
449 size_t allocatedDuringIncremental : 1; |
|
450 size_t markOverflow : 1; |
|
451 size_t auxNextLink : JS_BITS_PER_WORD - 8 - 1 - 1 - 1; |
|
452 static_assert(ArenaShift >= 8 + 1 + 1 + 1, |
|
453 "ArenaHeader::auxNextLink packing assumes that ArenaShift has enough bits to " |
|
454 "cover allocKind and hasDelayedMarking."); |
|
455 |
|
456 inline uintptr_t address() const; |
|
457 inline Chunk *chunk() const; |
|
458 |
|
459 bool allocated() const { |
|
460 JS_ASSERT(allocKind <= size_t(FINALIZE_LIMIT)); |
|
461 return allocKind < size_t(FINALIZE_LIMIT); |
|
462 } |
|
463 |
|
464 void init(JS::Zone *zoneArg, AllocKind kind) { |
|
465 JS_ASSERT(!allocated()); |
|
466 JS_ASSERT(!markOverflow); |
|
467 JS_ASSERT(!allocatedDuringIncremental); |
|
468 JS_ASSERT(!hasDelayedMarking); |
|
469 zone = zoneArg; |
|
470 |
|
471 static_assert(FINALIZE_LIMIT <= 255, "We must be able to fit the allockind into uint8_t."); |
|
472 allocKind = size_t(kind); |
|
473 |
|
474 /* See comments in FreeSpan::allocateFromNewArena. */ |
|
475 firstFreeSpanOffsets = FreeSpan::FullArenaOffsets; |
|
476 } |
|
477 |
|
478 void setAsNotAllocated() { |
|
479 allocKind = size_t(FINALIZE_LIMIT); |
|
480 markOverflow = 0; |
|
481 allocatedDuringIncremental = 0; |
|
482 hasDelayedMarking = 0; |
|
483 auxNextLink = 0; |
|
484 } |
|
485 |
|
486 inline uintptr_t arenaAddress() const; |
|
487 inline Arena *getArena(); |
|
488 |
|
489 AllocKind getAllocKind() const { |
|
490 JS_ASSERT(allocated()); |
|
491 return AllocKind(allocKind); |
|
492 } |
|
493 |
|
494 inline size_t getThingSize() const; |
|
495 |
|
496 bool hasFreeThings() const { |
|
497 return firstFreeSpanOffsets != FreeSpan::FullArenaOffsets; |
|
498 } |
|
499 |
|
500 inline bool isEmpty() const; |
|
501 |
|
502 void setAsFullyUsed() { |
|
503 firstFreeSpanOffsets = FreeSpan::FullArenaOffsets; |
|
504 } |
|
505 |
|
506 inline FreeSpan getFirstFreeSpan() const; |
|
507 inline void setFirstFreeSpan(const FreeSpan *span); |
|
508 |
|
509 #ifdef DEBUG |
|
510 void checkSynchronizedWithFreeList() const; |
|
511 #endif |
|
512 |
|
513 inline ArenaHeader *getNextDelayedMarking() const; |
|
514 inline void setNextDelayedMarking(ArenaHeader *aheader); |
|
515 inline void unsetDelayedMarking(); |
|
516 |
|
517 inline ArenaHeader *getNextAllocDuringSweep() const; |
|
518 inline void setNextAllocDuringSweep(ArenaHeader *aheader); |
|
519 inline void unsetAllocDuringSweep(); |
|
520 }; |
|
521 |
|
522 struct Arena |
|
523 { |
|
524 /* |
|
525 * Layout of an arena: |
|
526 * An arena is 4K in size and 4K-aligned. It starts with the ArenaHeader |
|
527 * descriptor followed by some pad bytes. The remainder of the arena is |
|
528 * filled with the array of T things. The pad bytes ensure that the thing |
|
529 * array ends exactly at the end of the arena. |
|
530 * |
|
531 * +-------------+-----+----+----+-----+----+ |
|
532 * | ArenaHeader | pad | T0 | T1 | ... | Tn | |
|
533 * +-------------+-----+----+----+-----+----+ |
|
534 * |
|
535 * <----------------------------------------> = ArenaSize bytes |
|
536 * <-------------------> = first thing offset |
|
537 */ |
|
538 ArenaHeader aheader; |
|
539 uint8_t data[ArenaSize - sizeof(ArenaHeader)]; |
|
540 |
|
541 private: |
|
542 static JS_FRIEND_DATA(const uint32_t) ThingSizes[]; |
|
543 static JS_FRIEND_DATA(const uint32_t) FirstThingOffsets[]; |
|
544 |
|
545 public: |
|
546 static void staticAsserts(); |
|
547 |
|
548 static size_t thingSize(AllocKind kind) { |
|
549 return ThingSizes[kind]; |
|
550 } |
|
551 |
|
552 static size_t firstThingOffset(AllocKind kind) { |
|
553 return FirstThingOffsets[kind]; |
|
554 } |
|
555 |
|
556 static size_t thingsPerArena(size_t thingSize) { |
|
557 JS_ASSERT(thingSize % CellSize == 0); |
|
558 |
|
559 /* We should be able to fit FreeSpan in any GC thing. */ |
|
560 JS_ASSERT(thingSize >= sizeof(FreeSpan)); |
|
561 |
|
562 return (ArenaSize - sizeof(ArenaHeader)) / thingSize; |
|
563 } |
|
564 |
|
565 static size_t thingsSpan(size_t thingSize) { |
|
566 return thingsPerArena(thingSize) * thingSize; |
|
567 } |
|
568 |
|
569 static bool isAligned(uintptr_t thing, size_t thingSize) { |
|
570 /* Things ends at the arena end. */ |
|
571 uintptr_t tailOffset = (ArenaSize - thing) & ArenaMask; |
|
572 return tailOffset % thingSize == 0; |
|
573 } |
|
574 |
|
575 uintptr_t address() const { |
|
576 return aheader.address(); |
|
577 } |
|
578 |
|
579 uintptr_t thingsStart(AllocKind thingKind) { |
|
580 return address() | firstThingOffset(thingKind); |
|
581 } |
|
582 |
|
583 uintptr_t thingsEnd() { |
|
584 return address() + ArenaSize; |
|
585 } |
|
586 |
|
587 void setAsFullyUnused(AllocKind thingKind); |
|
588 |
|
589 template <typename T> |
|
590 bool finalize(FreeOp *fop, AllocKind thingKind, size_t thingSize); |
|
591 }; |
|
592 |
|
593 static_assert(sizeof(Arena) == ArenaSize, "The hardcoded arena size must match the struct size."); |
|
594 |
|
595 inline size_t |
|
596 ArenaHeader::getThingSize() const |
|
597 { |
|
598 JS_ASSERT(allocated()); |
|
599 return Arena::thingSize(getAllocKind()); |
|
600 } |
|
601 |
|
602 /* |
|
603 * The tail of the chunk info is shared between all chunks in the system, both |
|
604 * nursery and tenured. This structure is locatable from any GC pointer by |
|
605 * aligning to 1MiB. |
|
606 */ |
|
607 struct ChunkTrailer |
|
608 { |
|
609 /* The index the chunk in the nursery, or LocationTenuredHeap. */ |
|
610 uint32_t location; |
|
611 |
|
612 #if JS_BITS_PER_WORD == 64 |
|
613 uint32_t padding; |
|
614 #endif |
|
615 |
|
616 JSRuntime *runtime; |
|
617 }; |
|
618 |
|
619 static_assert(sizeof(ChunkTrailer) == 2 * sizeof(uintptr_t), "ChunkTrailer size is incorrect."); |
|
620 |
|
621 /* The chunk header (located at the end of the chunk to preserve arena alignment). */ |
|
622 struct ChunkInfo |
|
623 { |
|
624 Chunk *next; |
|
625 Chunk **prevp; |
|
626 |
|
627 /* Free arenas are linked together with aheader.next. */ |
|
628 ArenaHeader *freeArenasHead; |
|
629 |
|
630 #if JS_BITS_PER_WORD == 32 |
|
631 /* |
|
632 * Calculating sizes and offsets is simpler if sizeof(ChunkInfo) is |
|
633 * architecture-independent. |
|
634 */ |
|
635 char padding[20]; |
|
636 #endif |
|
637 |
|
638 /* |
|
639 * Decommitted arenas are tracked by a bitmap in the chunk header. We use |
|
640 * this offset to start our search iteration close to a decommitted arena |
|
641 * that we can allocate. |
|
642 */ |
|
643 uint32_t lastDecommittedArenaOffset; |
|
644 |
|
645 /* Number of free arenas, either committed or decommitted. */ |
|
646 uint32_t numArenasFree; |
|
647 |
|
648 /* Number of free, committed arenas. */ |
|
649 uint32_t numArenasFreeCommitted; |
|
650 |
|
651 /* Number of GC cycles this chunk has survived. */ |
|
652 uint32_t age; |
|
653 |
|
654 /* Information shared by all Chunk types. */ |
|
655 ChunkTrailer trailer; |
|
656 }; |
|
657 |
|
658 /* |
|
659 * Calculating ArenasPerChunk: |
|
660 * |
|
661 * In order to figure out how many Arenas will fit in a chunk, we need to know |
|
662 * how much extra space is available after we allocate the header data. This |
|
663 * is a problem because the header size depends on the number of arenas in the |
|
664 * chunk. The two dependent fields are bitmap and decommittedArenas. |
|
665 * |
|
666 * For the mark bitmap, we know that each arena will use a fixed number of full |
|
667 * bytes: ArenaBitmapBytes. The full size of the header data is this number |
|
668 * multiplied by the eventual number of arenas we have in the header. We, |
|
669 * conceptually, distribute this header data among the individual arenas and do |
|
670 * not include it in the header. This way we do not have to worry about its |
|
671 * variable size: it gets attached to the variable number we are computing. |
|
672 * |
|
673 * For the decommitted arena bitmap, we only have 1 bit per arena, so this |
|
674 * technique will not work. Instead, we observe that we do not have enough |
|
675 * header info to fill 8 full arenas: it is currently 4 on 64bit, less on |
|
676 * 32bit. Thus, with current numbers, we need 64 bytes for decommittedArenas. |
|
677 * This will not become 63 bytes unless we double the data required in the |
|
678 * header. Therefore, we just compute the number of bytes required to track |
|
679 * every possible arena and do not worry about slop bits, since there are too |
|
680 * few to usefully allocate. |
|
681 * |
|
682 * To actually compute the number of arenas we can allocate in a chunk, we |
|
683 * divide the amount of available space less the header info (not including |
|
684 * the mark bitmap which is distributed into the arena size) by the size of |
|
685 * the arena (with the mark bitmap bytes it uses). |
|
686 */ |
|
687 const size_t BytesPerArenaWithHeader = ArenaSize + ArenaBitmapBytes; |
|
688 const size_t ChunkDecommitBitmapBytes = ChunkSize / ArenaSize / JS_BITS_PER_BYTE; |
|
689 const size_t ChunkBytesAvailable = ChunkSize - sizeof(ChunkInfo) - ChunkDecommitBitmapBytes; |
|
690 const size_t ArenasPerChunk = ChunkBytesAvailable / BytesPerArenaWithHeader; |
|
691 static_assert(ArenasPerChunk == 252, "Do not accidentally change our heap's density."); |
|
692 |
|
693 /* A chunk bitmap contains enough mark bits for all the cells in a chunk. */ |
|
694 struct ChunkBitmap |
|
695 { |
|
696 volatile uintptr_t bitmap[ArenaBitmapWords * ArenasPerChunk]; |
|
697 |
|
698 public: |
|
699 ChunkBitmap() { } |
|
700 |
|
701 MOZ_ALWAYS_INLINE void getMarkWordAndMask(const Cell *cell, uint32_t color, |
|
702 uintptr_t **wordp, uintptr_t *maskp) |
|
703 { |
|
704 GetGCThingMarkWordAndMask(cell, color, wordp, maskp); |
|
705 } |
|
706 |
|
707 MOZ_ALWAYS_INLINE MOZ_TSAN_BLACKLIST bool isMarked(const Cell *cell, uint32_t color) { |
|
708 uintptr_t *word, mask; |
|
709 getMarkWordAndMask(cell, color, &word, &mask); |
|
710 return *word & mask; |
|
711 } |
|
712 |
|
713 MOZ_ALWAYS_INLINE bool markIfUnmarked(const Cell *cell, uint32_t color) { |
|
714 uintptr_t *word, mask; |
|
715 getMarkWordAndMask(cell, BLACK, &word, &mask); |
|
716 if (*word & mask) |
|
717 return false; |
|
718 *word |= mask; |
|
719 if (color != BLACK) { |
|
720 /* |
|
721 * We use getMarkWordAndMask to recalculate both mask and word as |
|
722 * doing just mask << color may overflow the mask. |
|
723 */ |
|
724 getMarkWordAndMask(cell, color, &word, &mask); |
|
725 if (*word & mask) |
|
726 return false; |
|
727 *word |= mask; |
|
728 } |
|
729 return true; |
|
730 } |
|
731 |
|
732 MOZ_ALWAYS_INLINE void unmark(const Cell *cell, uint32_t color) { |
|
733 uintptr_t *word, mask; |
|
734 getMarkWordAndMask(cell, color, &word, &mask); |
|
735 *word &= ~mask; |
|
736 } |
|
737 |
|
738 void clear() { |
|
739 memset((void *)bitmap, 0, sizeof(bitmap)); |
|
740 } |
|
741 |
|
742 uintptr_t *arenaBits(ArenaHeader *aheader) { |
|
743 static_assert(ArenaBitmapBits == ArenaBitmapWords * JS_BITS_PER_WORD, |
|
744 "We assume that the part of the bitmap corresponding to the arena " |
|
745 "has the exact number of words so we do not need to deal with a word " |
|
746 "that covers bits from two arenas."); |
|
747 |
|
748 uintptr_t *word, unused; |
|
749 getMarkWordAndMask(reinterpret_cast<Cell *>(aheader->address()), BLACK, &word, &unused); |
|
750 return word; |
|
751 } |
|
752 }; |
|
753 |
|
754 static_assert(ArenaBitmapBytes * ArenasPerChunk == sizeof(ChunkBitmap), |
|
755 "Ensure our ChunkBitmap actually covers all arenas."); |
|
756 static_assert(js::gc::ChunkMarkBitmapBits == ArenaBitmapBits * ArenasPerChunk, |
|
757 "Ensure that the mark bitmap has the right number of bits."); |
|
758 |
|
759 typedef BitArray<ArenasPerChunk> PerArenaBitmap; |
|
760 |
|
761 const size_t ChunkPadSize = ChunkSize |
|
762 - (sizeof(Arena) * ArenasPerChunk) |
|
763 - sizeof(ChunkBitmap) |
|
764 - sizeof(PerArenaBitmap) |
|
765 - sizeof(ChunkInfo); |
|
766 static_assert(ChunkPadSize < BytesPerArenaWithHeader, |
|
767 "If the chunk padding is larger than an arena, we should have one more arena."); |
|
768 |
|
769 /* |
|
770 * Chunks contain arenas and associated data structures (mark bitmap, delayed |
|
771 * marking state). |
|
772 */ |
|
773 struct Chunk |
|
774 { |
|
775 Arena arenas[ArenasPerChunk]; |
|
776 |
|
777 /* Pad to full size to ensure cache alignment of ChunkInfo. */ |
|
778 uint8_t padding[ChunkPadSize]; |
|
779 |
|
780 ChunkBitmap bitmap; |
|
781 PerArenaBitmap decommittedArenas; |
|
782 ChunkInfo info; |
|
783 |
|
784 static Chunk *fromAddress(uintptr_t addr) { |
|
785 addr &= ~ChunkMask; |
|
786 return reinterpret_cast<Chunk *>(addr); |
|
787 } |
|
788 |
|
789 static bool withinArenasRange(uintptr_t addr) { |
|
790 uintptr_t offset = addr & ChunkMask; |
|
791 return offset < ArenasPerChunk * ArenaSize; |
|
792 } |
|
793 |
|
794 static size_t arenaIndex(uintptr_t addr) { |
|
795 JS_ASSERT(withinArenasRange(addr)); |
|
796 return (addr & ChunkMask) >> ArenaShift; |
|
797 } |
|
798 |
|
799 uintptr_t address() const { |
|
800 uintptr_t addr = reinterpret_cast<uintptr_t>(this); |
|
801 JS_ASSERT(!(addr & ChunkMask)); |
|
802 return addr; |
|
803 } |
|
804 |
|
805 bool unused() const { |
|
806 return info.numArenasFree == ArenasPerChunk; |
|
807 } |
|
808 |
|
809 bool hasAvailableArenas() const { |
|
810 return info.numArenasFree != 0; |
|
811 } |
|
812 |
|
813 inline void addToAvailableList(JS::Zone *zone); |
|
814 inline void insertToAvailableList(Chunk **insertPoint); |
|
815 inline void removeFromAvailableList(); |
|
816 |
|
817 ArenaHeader *allocateArena(JS::Zone *zone, AllocKind kind); |
|
818 |
|
819 void releaseArena(ArenaHeader *aheader); |
|
820 void recycleArena(ArenaHeader *aheader, ArenaList &dest, AllocKind thingKind); |
|
821 |
|
822 static Chunk *allocate(JSRuntime *rt); |
|
823 |
|
824 void decommitAllArenas(JSRuntime *rt) { |
|
825 decommittedArenas.clear(true); |
|
826 MarkPagesUnused(rt, &arenas[0], ArenasPerChunk * ArenaSize); |
|
827 |
|
828 info.freeArenasHead = nullptr; |
|
829 info.lastDecommittedArenaOffset = 0; |
|
830 info.numArenasFree = ArenasPerChunk; |
|
831 info.numArenasFreeCommitted = 0; |
|
832 } |
|
833 |
|
834 /* Must be called with the GC lock taken. */ |
|
835 static inline void release(JSRuntime *rt, Chunk *chunk); |
|
836 static inline void releaseList(JSRuntime *rt, Chunk *chunkListHead); |
|
837 |
|
838 /* Must be called with the GC lock taken. */ |
|
839 inline void prepareToBeFreed(JSRuntime *rt); |
|
840 |
|
841 /* |
|
842 * Assuming that the info.prevp points to the next field of the previous |
|
843 * chunk in a doubly-linked list, get that chunk. |
|
844 */ |
|
845 Chunk *getPrevious() { |
|
846 JS_ASSERT(info.prevp); |
|
847 return fromPointerToNext(info.prevp); |
|
848 } |
|
849 |
|
850 /* Get the chunk from a pointer to its info.next field. */ |
|
851 static Chunk *fromPointerToNext(Chunk **nextFieldPtr) { |
|
852 uintptr_t addr = reinterpret_cast<uintptr_t>(nextFieldPtr); |
|
853 JS_ASSERT((addr & ChunkMask) == offsetof(Chunk, info.next)); |
|
854 return reinterpret_cast<Chunk *>(addr - offsetof(Chunk, info.next)); |
|
855 } |
|
856 |
|
857 private: |
|
858 inline void init(JSRuntime *rt); |
|
859 |
|
860 /* Search for a decommitted arena to allocate. */ |
|
861 unsigned findDecommittedArenaOffset(); |
|
862 ArenaHeader* fetchNextDecommittedArena(); |
|
863 |
|
864 public: |
|
865 /* Unlink and return the freeArenasHead. */ |
|
866 inline ArenaHeader* fetchNextFreeArena(JSRuntime *rt); |
|
867 |
|
868 inline void addArenaToFreeList(JSRuntime *rt, ArenaHeader *aheader); |
|
869 }; |
|
870 |
|
871 static_assert(sizeof(Chunk) == ChunkSize, |
|
872 "Ensure the hardcoded chunk size definition actually matches the struct."); |
|
873 static_assert(js::gc::ChunkMarkBitmapOffset == offsetof(Chunk, bitmap), |
|
874 "The hardcoded API bitmap offset must match the actual offset."); |
|
875 static_assert(js::gc::ChunkRuntimeOffset == offsetof(Chunk, info) + |
|
876 offsetof(ChunkInfo, trailer) + |
|
877 offsetof(ChunkTrailer, runtime), |
|
878 "The hardcoded API runtime offset must match the actual offset."); |
|
879 |
|
880 inline uintptr_t |
|
881 ArenaHeader::address() const |
|
882 { |
|
883 uintptr_t addr = reinterpret_cast<uintptr_t>(this); |
|
884 JS_ASSERT(!(addr & ArenaMask)); |
|
885 JS_ASSERT(Chunk::withinArenasRange(addr)); |
|
886 return addr; |
|
887 } |
|
888 |
|
889 inline Chunk * |
|
890 ArenaHeader::chunk() const |
|
891 { |
|
892 return Chunk::fromAddress(address()); |
|
893 } |
|
894 |
|
895 inline uintptr_t |
|
896 ArenaHeader::arenaAddress() const |
|
897 { |
|
898 return address(); |
|
899 } |
|
900 |
|
901 inline Arena * |
|
902 ArenaHeader::getArena() |
|
903 { |
|
904 return reinterpret_cast<Arena *>(arenaAddress()); |
|
905 } |
|
906 |
|
907 inline bool |
|
908 ArenaHeader::isEmpty() const |
|
909 { |
|
910 /* Arena is empty if its first span covers the whole arena. */ |
|
911 JS_ASSERT(allocated()); |
|
912 size_t firstThingOffset = Arena::firstThingOffset(getAllocKind()); |
|
913 return firstFreeSpanOffsets == FreeSpan::encodeOffsets(firstThingOffset, ArenaMask); |
|
914 } |
|
915 |
|
916 FreeSpan |
|
917 ArenaHeader::getFirstFreeSpan() const |
|
918 { |
|
919 #ifdef DEBUG |
|
920 checkSynchronizedWithFreeList(); |
|
921 #endif |
|
922 return FreeSpan::decodeOffsets(arenaAddress(), firstFreeSpanOffsets); |
|
923 } |
|
924 |
|
925 void |
|
926 ArenaHeader::setFirstFreeSpan(const FreeSpan *span) |
|
927 { |
|
928 JS_ASSERT(span->isWithinArena(arenaAddress())); |
|
929 firstFreeSpanOffsets = span->encodeAsOffsets(); |
|
930 } |
|
931 |
|
932 inline ArenaHeader * |
|
933 ArenaHeader::getNextDelayedMarking() const |
|
934 { |
|
935 JS_ASSERT(hasDelayedMarking); |
|
936 return &reinterpret_cast<Arena *>(auxNextLink << ArenaShift)->aheader; |
|
937 } |
|
938 |
|
939 inline void |
|
940 ArenaHeader::setNextDelayedMarking(ArenaHeader *aheader) |
|
941 { |
|
942 JS_ASSERT(!(uintptr_t(aheader) & ArenaMask)); |
|
943 JS_ASSERT(!auxNextLink && !hasDelayedMarking); |
|
944 hasDelayedMarking = 1; |
|
945 auxNextLink = aheader->arenaAddress() >> ArenaShift; |
|
946 } |
|
947 |
|
948 inline void |
|
949 ArenaHeader::unsetDelayedMarking() |
|
950 { |
|
951 JS_ASSERT(hasDelayedMarking); |
|
952 hasDelayedMarking = 0; |
|
953 auxNextLink = 0; |
|
954 } |
|
955 |
|
956 inline ArenaHeader * |
|
957 ArenaHeader::getNextAllocDuringSweep() const |
|
958 { |
|
959 JS_ASSERT(allocatedDuringIncremental); |
|
960 return &reinterpret_cast<Arena *>(auxNextLink << ArenaShift)->aheader; |
|
961 } |
|
962 |
|
963 inline void |
|
964 ArenaHeader::setNextAllocDuringSweep(ArenaHeader *aheader) |
|
965 { |
|
966 JS_ASSERT(!auxNextLink && !allocatedDuringIncremental); |
|
967 allocatedDuringIncremental = 1; |
|
968 auxNextLink = aheader->arenaAddress() >> ArenaShift; |
|
969 } |
|
970 |
|
971 inline void |
|
972 ArenaHeader::unsetAllocDuringSweep() |
|
973 { |
|
974 JS_ASSERT(allocatedDuringIncremental); |
|
975 allocatedDuringIncremental = 0; |
|
976 auxNextLink = 0; |
|
977 } |
|
978 |
|
979 static void |
|
980 AssertValidColor(const void *thing, uint32_t color) |
|
981 { |
|
982 #ifdef DEBUG |
|
983 ArenaHeader *aheader = reinterpret_cast<const Cell *>(thing)->arenaHeader(); |
|
984 JS_ASSERT(color < aheader->getThingSize() / CellSize); |
|
985 #endif |
|
986 } |
|
987 |
|
988 inline ArenaHeader * |
|
989 Cell::arenaHeader() const |
|
990 { |
|
991 JS_ASSERT(isTenured()); |
|
992 uintptr_t addr = address(); |
|
993 addr &= ~ArenaMask; |
|
994 return reinterpret_cast<ArenaHeader *>(addr); |
|
995 } |
|
996 |
|
997 inline JSRuntime * |
|
998 Cell::runtimeFromMainThread() const |
|
999 { |
|
1000 JSRuntime *rt = chunk()->info.trailer.runtime; |
|
1001 JS_ASSERT(CurrentThreadCanAccessRuntime(rt)); |
|
1002 return rt; |
|
1003 } |
|
1004 |
|
1005 inline JS::shadow::Runtime * |
|
1006 Cell::shadowRuntimeFromMainThread() const |
|
1007 { |
|
1008 return reinterpret_cast<JS::shadow::Runtime*>(runtimeFromMainThread()); |
|
1009 } |
|
1010 |
|
1011 inline JSRuntime * |
|
1012 Cell::runtimeFromAnyThread() const |
|
1013 { |
|
1014 return chunk()->info.trailer.runtime; |
|
1015 } |
|
1016 |
|
1017 inline JS::shadow::Runtime * |
|
1018 Cell::shadowRuntimeFromAnyThread() const |
|
1019 { |
|
1020 return reinterpret_cast<JS::shadow::Runtime*>(runtimeFromAnyThread()); |
|
1021 } |
|
1022 |
|
1023 bool |
|
1024 Cell::isMarked(uint32_t color /* = BLACK */) const |
|
1025 { |
|
1026 JS_ASSERT(isTenured()); |
|
1027 JS_ASSERT(arenaHeader()->allocated()); |
|
1028 AssertValidColor(this, color); |
|
1029 return chunk()->bitmap.isMarked(this, color); |
|
1030 } |
|
1031 |
|
1032 bool |
|
1033 Cell::markIfUnmarked(uint32_t color /* = BLACK */) const |
|
1034 { |
|
1035 JS_ASSERT(isTenured()); |
|
1036 AssertValidColor(this, color); |
|
1037 return chunk()->bitmap.markIfUnmarked(this, color); |
|
1038 } |
|
1039 |
|
1040 void |
|
1041 Cell::unmark(uint32_t color) const |
|
1042 { |
|
1043 JS_ASSERT(isTenured()); |
|
1044 JS_ASSERT(color != BLACK); |
|
1045 AssertValidColor(this, color); |
|
1046 chunk()->bitmap.unmark(this, color); |
|
1047 } |
|
1048 |
|
1049 JS::Zone * |
|
1050 Cell::tenuredZone() const |
|
1051 { |
|
1052 JS::Zone *zone = arenaHeader()->zone; |
|
1053 JS_ASSERT(CurrentThreadCanAccessZone(zone)); |
|
1054 JS_ASSERT(isTenured()); |
|
1055 return zone; |
|
1056 } |
|
1057 |
|
1058 JS::Zone * |
|
1059 Cell::tenuredZoneFromAnyThread() const |
|
1060 { |
|
1061 JS_ASSERT(isTenured()); |
|
1062 return arenaHeader()->zone; |
|
1063 } |
|
1064 |
|
1065 bool |
|
1066 Cell::tenuredIsInsideZone(JS::Zone *zone) const |
|
1067 { |
|
1068 JS_ASSERT(isTenured()); |
|
1069 return zone == arenaHeader()->zone; |
|
1070 } |
|
1071 |
|
1072 #ifdef DEBUG |
|
1073 bool |
|
1074 Cell::isAligned() const |
|
1075 { |
|
1076 return Arena::isAligned(address(), arenaHeader()->getThingSize()); |
|
1077 } |
|
1078 |
|
1079 bool |
|
1080 Cell::isTenured() const |
|
1081 { |
|
1082 #ifdef JSGC_GENERATIONAL |
|
1083 JS::shadow::Runtime *rt = js::gc::GetGCThingRuntime(this); |
|
1084 return !IsInsideNursery(rt, this); |
|
1085 #endif |
|
1086 return true; |
|
1087 } |
|
1088 #endif |
|
1089 |
|
1090 inline uintptr_t |
|
1091 Cell::address() const |
|
1092 { |
|
1093 uintptr_t addr = uintptr_t(this); |
|
1094 JS_ASSERT(addr % CellSize == 0); |
|
1095 JS_ASSERT(Chunk::withinArenasRange(addr)); |
|
1096 return addr; |
|
1097 } |
|
1098 |
|
1099 Chunk * |
|
1100 Cell::chunk() const |
|
1101 { |
|
1102 uintptr_t addr = uintptr_t(this); |
|
1103 JS_ASSERT(addr % CellSize == 0); |
|
1104 addr &= ~(ChunkSize - 1); |
|
1105 return reinterpret_cast<Chunk *>(addr); |
|
1106 } |
|
1107 |
|
1108 inline bool |
|
1109 InFreeList(ArenaHeader *aheader, void *thing) |
|
1110 { |
|
1111 if (!aheader->hasFreeThings()) |
|
1112 return false; |
|
1113 |
|
1114 FreeSpan firstSpan(aheader->getFirstFreeSpan()); |
|
1115 uintptr_t addr = reinterpret_cast<uintptr_t>(thing); |
|
1116 |
|
1117 for (const FreeSpan *span = &firstSpan;;) { |
|
1118 /* If the thing comes before the current span, it's not free. */ |
|
1119 if (addr < span->first) |
|
1120 return false; |
|
1121 |
|
1122 /* |
|
1123 * If we find it inside the span, it's dead. We use here "<=" and not |
|
1124 * "<" even for the last span as we know that thing is inside the |
|
1125 * arena. Thus, for the last span thing < span->end. |
|
1126 */ |
|
1127 if (addr <= span->last) |
|
1128 return true; |
|
1129 |
|
1130 /* |
|
1131 * The last possible empty span is an the end of the arena. Here |
|
1132 * span->end < thing < thingsEnd and so we must have more spans. |
|
1133 */ |
|
1134 span = span->nextSpan(); |
|
1135 } |
|
1136 } |
|
1137 |
|
1138 } /* namespace gc */ |
|
1139 |
|
1140 gc::AllocKind |
|
1141 gc::Cell::tenuredGetAllocKind() const |
|
1142 { |
|
1143 return arenaHeader()->getAllocKind(); |
|
1144 } |
|
1145 |
|
1146 } /* namespace js */ |
|
1147 |
|
1148 #endif /* gc_Heap_h */ |