|
1 // Copyright 2008 the V8 project authors. All rights reserved. |
|
2 // Copyright 1996 John Maloney and Mario Wolczko. |
|
3 |
|
4 // This program is free software; you can redistribute it and/or modify |
|
5 // it under the terms of the GNU General Public License as published by |
|
6 // the Free Software Foundation; either version 2 of the License, or |
|
7 // (at your option) any later version. |
|
8 // |
|
9 // This program is distributed in the hope that it will be useful, |
|
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12 // GNU General Public License for more details. |
|
13 // |
|
14 // You should have received a copy of the GNU General Public License |
|
15 // along with this program; if not, write to the Free Software |
|
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
17 |
|
18 |
|
19 // This implementation of the DeltaBlue benchmark is derived |
|
20 // from the Smalltalk implementation by John Maloney and Mario |
|
21 // Wolczko. Some parts have been translated directly, whereas |
|
22 // others have been modified more aggresively to make it feel |
|
23 // more like a JavaScript program. |
|
24 |
|
25 |
|
26 //var DeltaBlue = new BenchmarkSuite('DeltaBlue', 71104, [ |
|
27 // new Benchmark('DeltaBlue', deltaBlue) |
|
28 //]); |
|
29 |
|
30 |
|
31 /** |
|
32 * A JavaScript implementation of the DeltaBlue constrain-solving |
|
33 * algorithm, as described in: |
|
34 * |
|
35 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" |
|
36 * Bjorn N. Freeman-Benson and John Maloney |
|
37 * January 1990 Communications of the ACM, |
|
38 * also available as University of Washington TR 89-08-06. |
|
39 * |
|
40 * Beware: this benchmark is written in a grotesque style where |
|
41 * the constraint model is built by side-effects from constructors. |
|
42 * I've kept it this way to avoid deviating too much from the original |
|
43 * implementation. |
|
44 */ |
|
45 |
|
46 function alert(msg) { |
|
47 print(msg); |
|
48 assertEq(false, true); |
|
49 } |
|
50 |
|
51 /* --- O b j e c t M o d e l --- */ |
|
52 |
|
53 Object.prototype.inheritsFrom = function (shuper) { |
|
54 function Inheriter() { } |
|
55 Inheriter.prototype = shuper.prototype; |
|
56 this.prototype = new Inheriter(); |
|
57 this.superConstructor = shuper; |
|
58 } |
|
59 |
|
60 function OrderedCollection() { |
|
61 this.elms = new Array(); |
|
62 } |
|
63 |
|
64 OrderedCollection.prototype.add = function (elm) { |
|
65 this.elms.push(elm); |
|
66 } |
|
67 |
|
68 OrderedCollection.prototype.at = function (index) { |
|
69 return this.elms[index]; |
|
70 } |
|
71 |
|
72 OrderedCollection.prototype.size = function () { |
|
73 return this.elms.length; |
|
74 } |
|
75 |
|
76 OrderedCollection.prototype.removeFirst = function () { |
|
77 return this.elms.pop(); |
|
78 } |
|
79 |
|
80 OrderedCollection.prototype.remove = function (elm) { |
|
81 var index = 0, skipped = 0; |
|
82 for (var i = 0; i < this.elms.length; i++) { |
|
83 var value = this.elms[i]; |
|
84 if (value != elm) { |
|
85 this.elms[index] = value; |
|
86 index++; |
|
87 } else { |
|
88 skipped++; |
|
89 } |
|
90 } |
|
91 for (var i = 0; i < skipped; i++) |
|
92 this.elms.pop(); |
|
93 } |
|
94 |
|
95 /* --- * |
|
96 * S t r e n g t h |
|
97 * --- */ |
|
98 |
|
99 /** |
|
100 * Strengths are used to measure the relative importance of constraints. |
|
101 * New strengths may be inserted in the strength hierarchy without |
|
102 * disrupting current constraints. Strengths cannot be created outside |
|
103 * this class, so pointer comparison can be used for value comparison. |
|
104 */ |
|
105 function Strength(strengthValue, name) { |
|
106 this.strengthValue = strengthValue; |
|
107 this.name = name; |
|
108 } |
|
109 |
|
110 Strength.stronger = function (s1, s2) { |
|
111 return s1.strengthValue < s2.strengthValue; |
|
112 } |
|
113 |
|
114 Strength.weaker = function (s1, s2) { |
|
115 return s1.strengthValue > s2.strengthValue; |
|
116 } |
|
117 |
|
118 Strength.weakestOf = function (s1, s2) { |
|
119 return this.weaker(s1, s2) ? s1 : s2; |
|
120 } |
|
121 |
|
122 Strength.strongest = function (s1, s2) { |
|
123 return this.stronger(s1, s2) ? s1 : s2; |
|
124 } |
|
125 |
|
126 Strength.prototype.nextWeaker = function () { |
|
127 switch (this.strengthValue) { |
|
128 case 0: return Strength.WEAKEST; |
|
129 case 1: return Strength.WEAK_DEFAULT; |
|
130 case 2: return Strength.NORMAL; |
|
131 case 3: return Strength.STRONG_DEFAULT; |
|
132 case 4: return Strength.PREFERRED; |
|
133 case 5: return Strength.REQUIRED; |
|
134 } |
|
135 } |
|
136 |
|
137 // Strength constants. |
|
138 Strength.REQUIRED = new Strength(0, "required"); |
|
139 Strength.STONG_PREFERRED = new Strength(1, "strongPreferred"); |
|
140 Strength.PREFERRED = new Strength(2, "preferred"); |
|
141 Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); |
|
142 Strength.NORMAL = new Strength(4, "normal"); |
|
143 Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); |
|
144 Strength.WEAKEST = new Strength(6, "weakest"); |
|
145 |
|
146 /* --- * |
|
147 * C o n s t r a i n t |
|
148 * --- */ |
|
149 |
|
150 /** |
|
151 * An abstract class representing a system-maintainable relationship |
|
152 * (or "constraint") between a set of variables. A constraint supplies |
|
153 * a strength instance variable; concrete subclasses provide a means |
|
154 * of storing the constrained variables and other information required |
|
155 * to represent a constraint. |
|
156 */ |
|
157 function Constraint(strength) { |
|
158 this.strength = strength; |
|
159 } |
|
160 |
|
161 /** |
|
162 * Activate this constraint and attempt to satisfy it. |
|
163 */ |
|
164 Constraint.prototype.addConstraint = function () { |
|
165 this.addToGraph(); |
|
166 planner.incrementalAdd(this); |
|
167 } |
|
168 |
|
169 /** |
|
170 * Attempt to find a way to enforce this constraint. If successful, |
|
171 * record the solution, perhaps modifying the current dataflow |
|
172 * graph. Answer the constraint that this constraint overrides, if |
|
173 * there is one, or nil, if there isn't. |
|
174 * Assume: I am not already satisfied. |
|
175 */ |
|
176 Constraint.prototype.satisfy = function (mark) { |
|
177 this.chooseMethod(mark); |
|
178 if (!this.isSatisfied()) { |
|
179 if (this.strength == Strength.REQUIRED) |
|
180 alert("Could not satisfy a required constraint!"); |
|
181 return null; |
|
182 } |
|
183 this.markInputs(mark); |
|
184 var out = this.output(); |
|
185 var overridden = out.determinedBy; |
|
186 if (overridden != null) overridden.markUnsatisfied(); |
|
187 out.determinedBy = this; |
|
188 if (!planner.addPropagate(this, mark)) |
|
189 alert("Cycle encountered"); |
|
190 out.mark = mark; |
|
191 return overridden; |
|
192 } |
|
193 |
|
194 Constraint.prototype.destroyConstraint = function () { |
|
195 if (this.isSatisfied()) planner.incrementalRemove(this); |
|
196 else this.removeFromGraph(); |
|
197 } |
|
198 |
|
199 /** |
|
200 * Normal constraints are not input constraints. An input constraint |
|
201 * is one that depends on external state, such as the mouse, the |
|
202 * keybord, a clock, or some arbitraty piece of imperative code. |
|
203 */ |
|
204 Constraint.prototype.isInput = function () { |
|
205 return false; |
|
206 } |
|
207 |
|
208 /* --- * |
|
209 * U n a r y C o n s t r a i n t |
|
210 * --- */ |
|
211 |
|
212 /** |
|
213 * Abstract superclass for constraints having a single possible output |
|
214 * variable. |
|
215 */ |
|
216 function UnaryConstraint(v, strength) { |
|
217 UnaryConstraint.superConstructor.call(this, strength); |
|
218 this.myOutput = v; |
|
219 this.satisfied = false; |
|
220 this.addConstraint(); |
|
221 } |
|
222 |
|
223 UnaryConstraint.inheritsFrom(Constraint); |
|
224 |
|
225 /** |
|
226 * Adds this constraint to the constraint graph |
|
227 */ |
|
228 UnaryConstraint.prototype.addToGraph = function () { |
|
229 this.myOutput.addConstraint(this); |
|
230 this.satisfied = false; |
|
231 } |
|
232 |
|
233 /** |
|
234 * Decides if this constraint can be satisfied and records that |
|
235 * decision. |
|
236 */ |
|
237 UnaryConstraint.prototype.chooseMethod = function (mark) { |
|
238 this.satisfied = (this.myOutput.mark != mark) |
|
239 && Strength.stronger(this.strength, this.myOutput.walkStrength); |
|
240 } |
|
241 |
|
242 /** |
|
243 * Returns true if this constraint is satisfied in the current solution. |
|
244 */ |
|
245 UnaryConstraint.prototype.isSatisfied = function () { |
|
246 return this.satisfied; |
|
247 } |
|
248 |
|
249 UnaryConstraint.prototype.markInputs = function (mark) { |
|
250 // has no inputs |
|
251 } |
|
252 |
|
253 /** |
|
254 * Returns the current output variable. |
|
255 */ |
|
256 UnaryConstraint.prototype.output = function () { |
|
257 return this.myOutput; |
|
258 } |
|
259 |
|
260 /** |
|
261 * Calculate the walkabout strength, the stay flag, and, if it is |
|
262 * 'stay', the value for the current output of this constraint. Assume |
|
263 * this constraint is satisfied. |
|
264 */ |
|
265 UnaryConstraint.prototype.recalculate = function () { |
|
266 this.myOutput.walkStrength = this.strength; |
|
267 this.myOutput.stay = !this.isInput(); |
|
268 if (this.myOutput.stay) this.execute(); // Stay optimization |
|
269 } |
|
270 |
|
271 /** |
|
272 * Records that this constraint is unsatisfied |
|
273 */ |
|
274 UnaryConstraint.prototype.markUnsatisfied = function () { |
|
275 this.satisfied = false; |
|
276 } |
|
277 |
|
278 UnaryConstraint.prototype.inputsKnown = function () { |
|
279 return true; |
|
280 } |
|
281 |
|
282 UnaryConstraint.prototype.removeFromGraph = function () { |
|
283 if (this.myOutput != null) this.myOutput.removeConstraint(this); |
|
284 this.satisfied = false; |
|
285 } |
|
286 |
|
287 /* --- * |
|
288 * S t a y C o n s t r a i n t |
|
289 * --- */ |
|
290 |
|
291 /** |
|
292 * Variables that should, with some level of preference, stay the same. |
|
293 * Planners may exploit the fact that instances, if satisfied, will not |
|
294 * change their output during plan execution. This is called "stay |
|
295 * optimization". |
|
296 */ |
|
297 function StayConstraint(v, str) { |
|
298 StayConstraint.superConstructor.call(this, v, str); |
|
299 } |
|
300 |
|
301 StayConstraint.inheritsFrom(UnaryConstraint); |
|
302 |
|
303 StayConstraint.prototype.execute = function () { |
|
304 // Stay constraints do nothing |
|
305 } |
|
306 |
|
307 /* --- * |
|
308 * E d i t C o n s t r a i n t |
|
309 * --- */ |
|
310 |
|
311 /** |
|
312 * A unary input constraint used to mark a variable that the client |
|
313 * wishes to change. |
|
314 */ |
|
315 function EditConstraint(v, str) { |
|
316 EditConstraint.superConstructor.call(this, v, str); |
|
317 } |
|
318 |
|
319 EditConstraint.inheritsFrom(UnaryConstraint); |
|
320 |
|
321 /** |
|
322 * Edits indicate that a variable is to be changed by imperative code. |
|
323 */ |
|
324 EditConstraint.prototype.isInput = function () { |
|
325 return true; |
|
326 } |
|
327 |
|
328 EditConstraint.prototype.execute = function () { |
|
329 // Edit constraints do nothing |
|
330 } |
|
331 |
|
332 /* --- * |
|
333 * B i n a r y C o n s t r a i n t |
|
334 * --- */ |
|
335 |
|
336 var Direction = new Object(); |
|
337 Direction.NONE = 0; |
|
338 Direction.FORWARD = 1; |
|
339 Direction.BACKWARD = -1; |
|
340 |
|
341 /** |
|
342 * Abstract superclass for constraints having two possible output |
|
343 * variables. |
|
344 */ |
|
345 function BinaryConstraint(var1, var2, strength) { |
|
346 BinaryConstraint.superConstructor.call(this, strength); |
|
347 this.v1 = var1; |
|
348 this.v2 = var2; |
|
349 this.direction = Direction.NONE; |
|
350 this.addConstraint(); |
|
351 } |
|
352 |
|
353 BinaryConstraint.inheritsFrom(Constraint); |
|
354 |
|
355 /** |
|
356 * Decides if this constratint can be satisfied and which way it |
|
357 * should flow based on the relative strength of the variables related, |
|
358 * and record that decision. |
|
359 */ |
|
360 BinaryConstraint.prototype.chooseMethod = function (mark) { |
|
361 if (this.v1.mark == mark) { |
|
362 this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) |
|
363 ? Direction.FORWARD |
|
364 : Direction.NONE; |
|
365 } |
|
366 if (this.v2.mark == mark) { |
|
367 this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) |
|
368 ? Direction.BACKWARD |
|
369 : Direction.NONE; |
|
370 } |
|
371 if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { |
|
372 this.direction = Strength.stronger(this.strength, this.v1.walkStrength) |
|
373 ? Direction.BACKWARD |
|
374 : Direction.NONE; |
|
375 } else { |
|
376 this.direction = Strength.stronger(this.strength, this.v2.walkStrength) |
|
377 ? Direction.FORWARD |
|
378 : Direction.BACKWARD |
|
379 } |
|
380 } |
|
381 |
|
382 /** |
|
383 * Add this constraint to the constraint graph |
|
384 */ |
|
385 BinaryConstraint.prototype.addToGraph = function () { |
|
386 this.v1.addConstraint(this); |
|
387 this.v2.addConstraint(this); |
|
388 this.direction = Direction.NONE; |
|
389 } |
|
390 |
|
391 /** |
|
392 * Answer true if this constraint is satisfied in the current solution. |
|
393 */ |
|
394 BinaryConstraint.prototype.isSatisfied = function () { |
|
395 return this.direction != Direction.NONE; |
|
396 } |
|
397 |
|
398 /** |
|
399 * Mark the input variable with the given mark. |
|
400 */ |
|
401 BinaryConstraint.prototype.markInputs = function (mark) { |
|
402 this.input().mark = mark; |
|
403 } |
|
404 |
|
405 /** |
|
406 * Returns the current input variable |
|
407 */ |
|
408 BinaryConstraint.prototype.input = function () { |
|
409 return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; |
|
410 } |
|
411 |
|
412 /** |
|
413 * Returns the current output variable |
|
414 */ |
|
415 BinaryConstraint.prototype.output = function () { |
|
416 return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; |
|
417 } |
|
418 |
|
419 /** |
|
420 * Calculate the walkabout strength, the stay flag, and, if it is |
|
421 * 'stay', the value for the current output of this |
|
422 * constraint. Assume this constraint is satisfied. |
|
423 */ |
|
424 BinaryConstraint.prototype.recalculate = function () { |
|
425 var ihn = this.input(), out = this.output(); |
|
426 out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
|
427 out.stay = ihn.stay; |
|
428 if (out.stay) this.execute(); |
|
429 } |
|
430 |
|
431 /** |
|
432 * Record the fact that this constraint is unsatisfied. |
|
433 */ |
|
434 BinaryConstraint.prototype.markUnsatisfied = function () { |
|
435 this.direction = Direction.NONE; |
|
436 } |
|
437 |
|
438 BinaryConstraint.prototype.inputsKnown = function (mark) { |
|
439 var i = this.input(); |
|
440 return i.mark == mark || i.stay || i.determinedBy == null; |
|
441 } |
|
442 |
|
443 BinaryConstraint.prototype.removeFromGraph = function () { |
|
444 if (this.v1 != null) this.v1.removeConstraint(this); |
|
445 if (this.v2 != null) this.v2.removeConstraint(this); |
|
446 this.direction = Direction.NONE; |
|
447 } |
|
448 |
|
449 /* --- * |
|
450 * S c a l e C o n s t r a i n t |
|
451 * --- */ |
|
452 |
|
453 /** |
|
454 * Relates two variables by the linear scaling relationship: "v2 = |
|
455 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain |
|
456 * this relationship but the scale factor and offset are considered |
|
457 * read-only. |
|
458 */ |
|
459 function ScaleConstraint(src, scale, offset, dest, strength) { |
|
460 this.direction = Direction.NONE; |
|
461 this.scale = scale; |
|
462 this.offset = offset; |
|
463 ScaleConstraint.superConstructor.call(this, src, dest, strength); |
|
464 } |
|
465 |
|
466 ScaleConstraint.inheritsFrom(BinaryConstraint); |
|
467 |
|
468 /** |
|
469 * Adds this constraint to the constraint graph. |
|
470 */ |
|
471 ScaleConstraint.prototype.addToGraph = function () { |
|
472 ScaleConstraint.superConstructor.prototype.addToGraph.call(this); |
|
473 this.scale.addConstraint(this); |
|
474 this.offset.addConstraint(this); |
|
475 } |
|
476 |
|
477 ScaleConstraint.prototype.removeFromGraph = function () { |
|
478 ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); |
|
479 if (this.scale != null) this.scale.removeConstraint(this); |
|
480 if (this.offset != null) this.offset.removeConstraint(this); |
|
481 } |
|
482 |
|
483 ScaleConstraint.prototype.markInputs = function (mark) { |
|
484 ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); |
|
485 this.scale.mark = this.offset.mark = mark; |
|
486 } |
|
487 |
|
488 /** |
|
489 * Enforce this constraint. Assume that it is satisfied. |
|
490 */ |
|
491 ScaleConstraint.prototype.execute = function () { |
|
492 if (this.direction == Direction.FORWARD) { |
|
493 this.v2.value = this.v1.value * this.scale.value + this.offset.value; |
|
494 } else { |
|
495 this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; |
|
496 } |
|
497 } |
|
498 |
|
499 /** |
|
500 * Calculate the walkabout strength, the stay flag, and, if it is |
|
501 * 'stay', the value for the current output of this constraint. Assume |
|
502 * this constraint is satisfied. |
|
503 */ |
|
504 ScaleConstraint.prototype.recalculate = function () { |
|
505 var ihn = this.input(), out = this.output(); |
|
506 out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
|
507 out.stay = ihn.stay && this.scale.stay && this.offset.stay; |
|
508 if (out.stay) this.execute(); |
|
509 } |
|
510 |
|
511 /* --- * |
|
512 * E q u a l i t y C o n s t r a i n t |
|
513 * --- */ |
|
514 |
|
515 /** |
|
516 * Constrains two variables to have the same value. |
|
517 */ |
|
518 function EqualityConstraint(var1, var2, strength) { |
|
519 EqualityConstraint.superConstructor.call(this, var1, var2, strength); |
|
520 } |
|
521 |
|
522 EqualityConstraint.inheritsFrom(BinaryConstraint); |
|
523 |
|
524 /** |
|
525 * Enforce this constraint. Assume that it is satisfied. |
|
526 */ |
|
527 EqualityConstraint.prototype.execute = function () { |
|
528 this.output().value = this.input().value; |
|
529 } |
|
530 |
|
531 /* --- * |
|
532 * V a r i a b l e |
|
533 * --- */ |
|
534 |
|
535 /** |
|
536 * A constrained variable. In addition to its value, it maintain the |
|
537 * structure of the constraint graph, the current dataflow graph, and |
|
538 * various parameters of interest to the DeltaBlue incremental |
|
539 * constraint solver. |
|
540 **/ |
|
541 function Variable(name, initialValue) { |
|
542 this.value = initialValue || 0; |
|
543 this.constraints = new OrderedCollection(); |
|
544 this.determinedBy = null; |
|
545 this.mark = 0; |
|
546 this.walkStrength = Strength.WEAKEST; |
|
547 this.stay = true; |
|
548 this.name = name; |
|
549 } |
|
550 |
|
551 /** |
|
552 * Add the given constraint to the set of all constraints that refer |
|
553 * this variable. |
|
554 */ |
|
555 Variable.prototype.addConstraint = function (c) { |
|
556 this.constraints.add(c); |
|
557 } |
|
558 |
|
559 /** |
|
560 * Removes all traces of c from this variable. |
|
561 */ |
|
562 Variable.prototype.removeConstraint = function (c) { |
|
563 this.constraints.remove(c); |
|
564 if (this.determinedBy == c) this.determinedBy = null; |
|
565 } |
|
566 |
|
567 /* --- * |
|
568 * P l a n n e r |
|
569 * --- */ |
|
570 |
|
571 /** |
|
572 * The DeltaBlue planner |
|
573 */ |
|
574 function Planner() { |
|
575 this.currentMark = 0; |
|
576 } |
|
577 |
|
578 /** |
|
579 * Attempt to satisfy the given constraint and, if successful, |
|
580 * incrementally update the dataflow graph. Details: If satifying |
|
581 * the constraint is successful, it may override a weaker constraint |
|
582 * on its output. The algorithm attempts to resatisfy that |
|
583 * constraint using some other method. This process is repeated |
|
584 * until either a) it reaches a variable that was not previously |
|
585 * determined by any constraint or b) it reaches a constraint that |
|
586 * is too weak to be satisfied using any of its methods. The |
|
587 * variables of constraints that have been processed are marked with |
|
588 * a unique mark value so that we know where we've been. This allows |
|
589 * the algorithm to avoid getting into an infinite loop even if the |
|
590 * constraint graph has an inadvertent cycle. |
|
591 */ |
|
592 Planner.prototype.incrementalAdd = function (c) { |
|
593 var mark = this.newMark(); |
|
594 var overridden = c.satisfy(mark); |
|
595 while (overridden != null) |
|
596 overridden = overridden.satisfy(mark); |
|
597 } |
|
598 |
|
599 /** |
|
600 * Entry point for retracting a constraint. Remove the given |
|
601 * constraint and incrementally update the dataflow graph. |
|
602 * Details: Retracting the given constraint may allow some currently |
|
603 * unsatisfiable downstream constraint to be satisfied. We therefore collect |
|
604 * a list of unsatisfied downstream constraints and attempt to |
|
605 * satisfy each one in turn. This list is traversed by constraint |
|
606 * strength, strongest first, as a heuristic for avoiding |
|
607 * unnecessarily adding and then overriding weak constraints. |
|
608 * Assume: c is satisfied. |
|
609 */ |
|
610 Planner.prototype.incrementalRemove = function (c) { |
|
611 var out = c.output(); |
|
612 c.markUnsatisfied(); |
|
613 c.removeFromGraph(); |
|
614 var unsatisfied = this.removePropagateFrom(out); |
|
615 var strength = Strength.REQUIRED; |
|
616 do { |
|
617 for (var i = 0; i < unsatisfied.size(); i++) { |
|
618 var u = unsatisfied.at(i); |
|
619 if (u.strength == strength) |
|
620 this.incrementalAdd(u); |
|
621 } |
|
622 strength = strength.nextWeaker(); |
|
623 } while (strength != Strength.WEAKEST); |
|
624 } |
|
625 |
|
626 /** |
|
627 * Select a previously unused mark value. |
|
628 */ |
|
629 Planner.prototype.newMark = function () { |
|
630 return ++this.currentMark; |
|
631 } |
|
632 |
|
633 /** |
|
634 * Extract a plan for resatisfaction starting from the given source |
|
635 * constraints, usually a set of input constraints. This method |
|
636 * assumes that stay optimization is desired; the plan will contain |
|
637 * only constraints whose output variables are not stay. Constraints |
|
638 * that do no computation, such as stay and edit constraints, are |
|
639 * not included in the plan. |
|
640 * Details: The outputs of a constraint are marked when it is added |
|
641 * to the plan under construction. A constraint may be appended to |
|
642 * the plan when all its input variables are known. A variable is |
|
643 * known if either a) the variable is marked (indicating that has |
|
644 * been computed by a constraint appearing earlier in the plan), b) |
|
645 * the variable is 'stay' (i.e. it is a constant at plan execution |
|
646 * time), or c) the variable is not determined by any |
|
647 * constraint. The last provision is for past states of history |
|
648 * variables, which are not stay but which are also not computed by |
|
649 * any constraint. |
|
650 * Assume: sources are all satisfied. |
|
651 */ |
|
652 Planner.prototype.makePlan = function (sources) { |
|
653 var mark = this.newMark(); |
|
654 var plan = new Plan(); |
|
655 var todo = sources; |
|
656 while (todo.size() > 0) { |
|
657 var c = todo.removeFirst(); |
|
658 if (c.output().mark != mark && c.inputsKnown(mark)) { |
|
659 plan.addConstraint(c); |
|
660 c.output().mark = mark; |
|
661 this.addConstraintsConsumingTo(c.output(), todo); |
|
662 } |
|
663 } |
|
664 return plan; |
|
665 } |
|
666 |
|
667 /** |
|
668 * Extract a plan for resatisfying starting from the output of the |
|
669 * given constraints, usually a set of input constraints. |
|
670 */ |
|
671 Planner.prototype.extractPlanFromConstraints = function (constraints) { |
|
672 var sources = new OrderedCollection(); |
|
673 for (var i = 0; i < constraints.size(); i++) { |
|
674 var c = constraints.at(i); |
|
675 if (c.isInput() && c.isSatisfied()) |
|
676 // not in plan already and eligible for inclusion |
|
677 sources.add(c); |
|
678 } |
|
679 return this.makePlan(sources); |
|
680 } |
|
681 |
|
682 /** |
|
683 * Recompute the walkabout strengths and stay flags of all variables |
|
684 * downstream of the given constraint and recompute the actual |
|
685 * values of all variables whose stay flag is true. If a cycle is |
|
686 * detected, remove the given constraint and answer |
|
687 * false. Otherwise, answer true. |
|
688 * Details: Cycles are detected when a marked variable is |
|
689 * encountered downstream of the given constraint. The sender is |
|
690 * assumed to have marked the inputs of the given constraint with |
|
691 * the given mark. Thus, encountering a marked node downstream of |
|
692 * the output constraint means that there is a path from the |
|
693 * constraint's output to one of its inputs. |
|
694 */ |
|
695 Planner.prototype.addPropagate = function (c, mark) { |
|
696 var todo = new OrderedCollection(); |
|
697 todo.add(c); |
|
698 while (todo.size() > 0) { |
|
699 var d = todo.removeFirst(); |
|
700 if (d.output().mark == mark) { |
|
701 this.incrementalRemove(c); |
|
702 return false; |
|
703 } |
|
704 d.recalculate(); |
|
705 this.addConstraintsConsumingTo(d.output(), todo); |
|
706 } |
|
707 return true; |
|
708 } |
|
709 |
|
710 |
|
711 /** |
|
712 * Update the walkabout strengths and stay flags of all variables |
|
713 * downstream of the given constraint. Answer a collection of |
|
714 * unsatisfied constraints sorted in order of decreasing strength. |
|
715 */ |
|
716 Planner.prototype.removePropagateFrom = function (out) { |
|
717 out.determinedBy = null; |
|
718 out.walkStrength = Strength.WEAKEST; |
|
719 out.stay = true; |
|
720 var unsatisfied = new OrderedCollection(); |
|
721 var todo = new OrderedCollection(); |
|
722 todo.add(out); |
|
723 while (todo.size() > 0) { |
|
724 var v = todo.removeFirst(); |
|
725 for (var i = 0; i < v.constraints.size(); i++) { |
|
726 var c = v.constraints.at(i); |
|
727 if (!c.isSatisfied()) |
|
728 unsatisfied.add(c); |
|
729 } |
|
730 var determining = v.determinedBy; |
|
731 for (var i = 0; i < v.constraints.size(); i++) { |
|
732 var next = v.constraints.at(i); |
|
733 if (next != determining && next.isSatisfied()) { |
|
734 next.recalculate(); |
|
735 todo.add(next.output()); |
|
736 } |
|
737 } |
|
738 } |
|
739 return unsatisfied; |
|
740 } |
|
741 |
|
742 Planner.prototype.addConstraintsConsumingTo = function (v, coll) { |
|
743 var determining = v.determinedBy; |
|
744 var cc = v.constraints; |
|
745 for (var i = 0; i < cc.size(); i++) { |
|
746 var c = cc.at(i); |
|
747 if (c != determining && c.isSatisfied()) |
|
748 coll.add(c); |
|
749 } |
|
750 } |
|
751 |
|
752 /* --- * |
|
753 * P l a n |
|
754 * --- */ |
|
755 |
|
756 /** |
|
757 * A Plan is an ordered list of constraints to be executed in sequence |
|
758 * to resatisfy all currently satisfiable constraints in the face of |
|
759 * one or more changing inputs. |
|
760 */ |
|
761 function Plan() { |
|
762 this.v = new OrderedCollection(); |
|
763 } |
|
764 |
|
765 Plan.prototype.addConstraint = function (c) { |
|
766 this.v.add(c); |
|
767 } |
|
768 |
|
769 Plan.prototype.size = function () { |
|
770 return this.v.size(); |
|
771 } |
|
772 |
|
773 Plan.prototype.constraintAt = function (index) { |
|
774 return this.v.at(index); |
|
775 } |
|
776 |
|
777 Plan.prototype.execute = function () { |
|
778 for (var i = 0; i < this.size(); i++) { |
|
779 var c = this.constraintAt(i); |
|
780 c.execute(); |
|
781 } |
|
782 } |
|
783 |
|
784 /* --- * |
|
785 * M a i n |
|
786 * --- */ |
|
787 |
|
788 /** |
|
789 * This is the standard DeltaBlue benchmark. A long chain of equality |
|
790 * constraints is constructed with a stay constraint on one end. An |
|
791 * edit constraint is then added to the opposite end and the time is |
|
792 * measured for adding and removing this constraint, and extracting |
|
793 * and executing a constraint satisfaction plan. There are two cases. |
|
794 * In case 1, the added constraint is stronger than the stay |
|
795 * constraint and values must propagate down the entire length of the |
|
796 * chain. In case 2, the added constraint is weaker than the stay |
|
797 * constraint so it cannot be accomodated. The cost in this case is, |
|
798 * of course, very low. Typical situations lie somewhere between these |
|
799 * two extremes. |
|
800 */ |
|
801 function chainTest(n) { |
|
802 planner = new Planner(); |
|
803 var prev = null, first = null, last = null; |
|
804 |
|
805 // Build chain of n equality constraints |
|
806 for (var i = 0; i <= n; i++) { |
|
807 var name = "v" + i; |
|
808 var v = new Variable(name); |
|
809 if (prev != null) |
|
810 new EqualityConstraint(prev, v, Strength.REQUIRED); |
|
811 if (i == 0) first = v; |
|
812 if (i == n) last = v; |
|
813 prev = v; |
|
814 } |
|
815 |
|
816 new StayConstraint(last, Strength.STRONG_DEFAULT); |
|
817 var edit = new EditConstraint(first, Strength.PREFERRED); |
|
818 var edits = new OrderedCollection(); |
|
819 edits.add(edit); |
|
820 var plan = planner.extractPlanFromConstraints(edits); |
|
821 for (var i = 0; i < 100; i++) { |
|
822 first.value = i; |
|
823 plan.execute(); |
|
824 assertEq(last.value, i); |
|
825 } |
|
826 } |
|
827 |
|
828 /** |
|
829 * This test constructs a two sets of variables related to each |
|
830 * other by a simple linear transformation (scale and offset). The |
|
831 * time is measured to change a variable on either side of the |
|
832 * mapping and to change the scale and offset factors. |
|
833 */ |
|
834 function projectionTest(n) { |
|
835 planner = new Planner(); |
|
836 var scale = new Variable("scale", 10); |
|
837 var offset = new Variable("offset", 1000); |
|
838 var src = null, dst = null; |
|
839 |
|
840 var dests = new OrderedCollection(); |
|
841 for (var i = 0; i < n; i++) { |
|
842 src = new Variable("src" + i, i); |
|
843 dst = new Variable("dst" + i, i); |
|
844 dests.add(dst); |
|
845 new StayConstraint(src, Strength.NORMAL); |
|
846 new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); |
|
847 } |
|
848 |
|
849 change(src, 17); |
|
850 assertEq(dst.value, 1170); |
|
851 change(dst, 1050); |
|
852 assertEq(src.value, 5); |
|
853 change(scale, 5); |
|
854 for (var i = 0; i < n - 1; i++) { |
|
855 assertEq(dests.at(i).value, i * 5 + 1000); |
|
856 } |
|
857 change(offset, 2000); |
|
858 for (var i = 0; i < n - 1; i++) { |
|
859 assertEq(dests.at(i).value, i * 5 + 2000); |
|
860 } |
|
861 } |
|
862 |
|
863 function change(v, newValue) { |
|
864 var edit = new EditConstraint(v, Strength.PREFERRED); |
|
865 var edits = new OrderedCollection(); |
|
866 edits.add(edit); |
|
867 var plan = planner.extractPlanFromConstraints(edits); |
|
868 for (var i = 0; i < 10; i++) { |
|
869 v.value = newValue; |
|
870 plan.execute(); |
|
871 } |
|
872 edit.destroyConstraint(); |
|
873 } |
|
874 |
|
875 // Global variable holding the current planner. |
|
876 var planner = null; |
|
877 |
|
878 function deltaBlue() { |
|
879 chainTest(100); |
|
880 projectionTest(100); |
|
881 } |
|
882 |
|
883 deltaBlue(); |