|
1 /* |
|
2 * Copyright (c) 2003-2005 Tom Wu |
|
3 * All Rights Reserved. |
|
4 * |
|
5 * Permission is hereby granted, free of charge, to any person obtaining |
|
6 * a copy of this software and associated documentation files (the |
|
7 * "Software"), to deal in the Software without restriction, including |
|
8 * without limitation the rights to use, copy, modify, merge, publish, |
|
9 * distribute, sublicense, and/or sell copies of the Software, and to |
|
10 * permit persons to whom the Software is furnished to do so, subject to |
|
11 * the following conditions: |
|
12 * |
|
13 * The above copyright notice and this permission notice shall be |
|
14 * included in all copies or substantial portions of the Software. |
|
15 * |
|
16 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
|
17 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
|
18 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
|
19 * |
|
20 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
|
21 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
|
22 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
|
23 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
|
24 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
|
25 * |
|
26 * In addition, the following condition applies: |
|
27 * |
|
28 * All redistributions must retain an intact copy of this copyright notice |
|
29 * and disclaimer. |
|
30 */ |
|
31 |
|
32 |
|
33 // The code has been adapted for use as a benchmark by Google. |
|
34 var Crypto = new BenchmarkSuite('Crypto', 266181, [ |
|
35 new Benchmark("Encrypt", encrypt), |
|
36 new Benchmark("Decrypt", decrypt) |
|
37 ]); |
|
38 |
|
39 |
|
40 // Basic JavaScript BN library - subset useful for RSA encryption. |
|
41 |
|
42 // Bits per digit |
|
43 var dbits; |
|
44 var BI_DB; |
|
45 var BI_DM; |
|
46 var BI_DV; |
|
47 |
|
48 var BI_FP; |
|
49 var BI_FV; |
|
50 var BI_F1; |
|
51 var BI_F2; |
|
52 |
|
53 // JavaScript engine analysis |
|
54 var canary = 0xdeadbeefcafe; |
|
55 var j_lm = ((canary&0xffffff)==0xefcafe); |
|
56 |
|
57 // (public) Constructor |
|
58 function BigInteger(a,b,c) { |
|
59 this.array = new Array(); |
|
60 if(a != null) |
|
61 if("number" == typeof a) this.fromNumber(a,b,c); |
|
62 else if(b == null && "string" != typeof a) this.fromString(a,256); |
|
63 else this.fromString(a,b); |
|
64 } |
|
65 |
|
66 // return new, unset BigInteger |
|
67 function nbi() { return new BigInteger(null); } |
|
68 |
|
69 // am: Compute w_j += (x*this_i), propagate carries, |
|
70 // c is initial carry, returns final carry. |
|
71 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
|
72 // We need to select the fastest one that works in this environment. |
|
73 |
|
74 // am1: use a single mult and divide to get the high bits, |
|
75 // max digit bits should be 26 because |
|
76 // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
|
77 function am1(i,x,w,j,c,n) { |
|
78 var this_array = this.array; |
|
79 var w_array = w.array; |
|
80 while(--n >= 0) { |
|
81 var v = x*this_array[i++]+w_array[j]+c; |
|
82 c = Math.floor(v/0x4000000); |
|
83 w_array[j++] = v&0x3ffffff; |
|
84 } |
|
85 return c; |
|
86 } |
|
87 |
|
88 // am2 avoids a big mult-and-extract completely. |
|
89 // Max digit bits should be <= 30 because we do bitwise ops |
|
90 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
|
91 function am2(i,x,w,j,c,n) { |
|
92 var this_array = this.array; |
|
93 var w_array = w.array; |
|
94 var xl = x&0x7fff, xh = x>>15; |
|
95 while(--n >= 0) { |
|
96 var l = this_array[i]&0x7fff; |
|
97 var h = this_array[i++]>>15; |
|
98 var m = xh*l+h*xl; |
|
99 l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); |
|
100 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
|
101 w_array[j++] = l&0x3fffffff; |
|
102 } |
|
103 return c; |
|
104 } |
|
105 |
|
106 // Alternately, set max digit bits to 28 since some |
|
107 // browsers slow down when dealing with 32-bit numbers. |
|
108 function am3(i,x,w,j,c,n) { |
|
109 var this_array = this.array; |
|
110 var w_array = w.array; |
|
111 |
|
112 var xl = x&0x3fff, xh = x>>14; |
|
113 while(--n >= 0) { |
|
114 var l = this_array[i]&0x3fff; |
|
115 var h = this_array[i++]>>14; |
|
116 var m = xh*l+h*xl; |
|
117 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; |
|
118 c = (l>>28)+(m>>14)+xh*h; |
|
119 w_array[j++] = l&0xfffffff; |
|
120 } |
|
121 return c; |
|
122 } |
|
123 |
|
124 // This is tailored to VMs with 2-bit tagging. It makes sure |
|
125 // that all the computations stay within the 29 bits available. |
|
126 function am4(i,x,w,j,c,n) { |
|
127 var this_array = this.array; |
|
128 var w_array = w.array; |
|
129 |
|
130 var xl = x&0x1fff, xh = x>>13; |
|
131 while(--n >= 0) { |
|
132 var l = this_array[i]&0x1fff; |
|
133 var h = this_array[i++]>>13; |
|
134 var m = xh*l+h*xl; |
|
135 l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; |
|
136 c = (l>>26)+(m>>13)+xh*h; |
|
137 w_array[j++] = l&0x3ffffff; |
|
138 } |
|
139 return c; |
|
140 } |
|
141 |
|
142 // am3/28 is best for SM, Rhino, but am4/26 is best for v8. |
|
143 // Kestrel (Opera 9.5) gets its best result with am4/26. |
|
144 // IE7 does 9% better with am3/28 than with am4/26. |
|
145 // Firefox (SM) gets 10% faster with am3/28 than with am4/26. |
|
146 |
|
147 setupEngine = function(fn, bits) { |
|
148 BigInteger.prototype.am = fn; |
|
149 dbits = bits; |
|
150 |
|
151 BI_DB = dbits; |
|
152 BI_DM = ((1<<dbits)-1); |
|
153 BI_DV = (1<<dbits); |
|
154 |
|
155 BI_FP = 52; |
|
156 BI_FV = Math.pow(2,BI_FP); |
|
157 BI_F1 = BI_FP-dbits; |
|
158 BI_F2 = 2*dbits-BI_FP; |
|
159 } |
|
160 |
|
161 |
|
162 // Digit conversions |
|
163 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
|
164 var BI_RC = new Array(); |
|
165 var rr,vv; |
|
166 rr = "0".charCodeAt(0); |
|
167 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
|
168 rr = "a".charCodeAt(0); |
|
169 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
|
170 rr = "A".charCodeAt(0); |
|
171 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
|
172 |
|
173 function int2char(n) { return BI_RM.charAt(n); } |
|
174 function intAt(s,i) { |
|
175 var c = BI_RC[s.charCodeAt(i)]; |
|
176 return (c==null)?-1:c; |
|
177 } |
|
178 |
|
179 // (protected) copy this to r |
|
180 function bnpCopyTo(r) { |
|
181 var this_array = this.array; |
|
182 var r_array = r.array; |
|
183 |
|
184 for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; |
|
185 r.t = this.t; |
|
186 r.s = this.s; |
|
187 } |
|
188 |
|
189 // (protected) set from integer value x, -DV <= x < DV |
|
190 function bnpFromInt(x) { |
|
191 var this_array = this.array; |
|
192 this.t = 1; |
|
193 this.s = (x<0)?-1:0; |
|
194 if(x > 0) this_array[0] = x; |
|
195 else if(x < -1) this_array[0] = x+DV; |
|
196 else this.t = 0; |
|
197 } |
|
198 |
|
199 // return bigint initialized to value |
|
200 function nbv(i) { var r = nbi(); r.fromInt(i); return r; } |
|
201 |
|
202 // (protected) set from string and radix |
|
203 function bnpFromString(s,b) { |
|
204 var this_array = this.array; |
|
205 var k; |
|
206 if(b == 16) k = 4; |
|
207 else if(b == 8) k = 3; |
|
208 else if(b == 256) k = 8; // byte array |
|
209 else if(b == 2) k = 1; |
|
210 else if(b == 32) k = 5; |
|
211 else if(b == 4) k = 2; |
|
212 else { this.fromRadix(s,b); return; } |
|
213 this.t = 0; |
|
214 this.s = 0; |
|
215 var i = s.length, mi = false, sh = 0; |
|
216 while(--i >= 0) { |
|
217 var x = (k==8)?s[i]&0xff:intAt(s,i); |
|
218 if(x < 0) { |
|
219 if(s.charAt(i) == "-") mi = true; |
|
220 continue; |
|
221 } |
|
222 mi = false; |
|
223 if(sh == 0) |
|
224 this_array[this.t++] = x; |
|
225 else if(sh+k > BI_DB) { |
|
226 this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; |
|
227 this_array[this.t++] = (x>>(BI_DB-sh)); |
|
228 } |
|
229 else |
|
230 this_array[this.t-1] |= x<<sh; |
|
231 sh += k; |
|
232 if(sh >= BI_DB) sh -= BI_DB; |
|
233 } |
|
234 if(k == 8 && (s[0]&0x80) != 0) { |
|
235 this.s = -1; |
|
236 if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; |
|
237 } |
|
238 this.clamp(); |
|
239 if(mi) BigInteger.ZERO.subTo(this,this); |
|
240 } |
|
241 |
|
242 // (protected) clamp off excess high words |
|
243 function bnpClamp() { |
|
244 var this_array = this.array; |
|
245 var c = this.s&BI_DM; |
|
246 while(this.t > 0 && this_array[this.t-1] == c) --this.t; |
|
247 } |
|
248 |
|
249 // (public) return string representation in given radix |
|
250 function bnToString(b) { |
|
251 var this_array = this.array; |
|
252 if(this.s < 0) return "-"+this.negate().toString(b); |
|
253 var k; |
|
254 if(b == 16) k = 4; |
|
255 else if(b == 8) k = 3; |
|
256 else if(b == 2) k = 1; |
|
257 else if(b == 32) k = 5; |
|
258 else if(b == 4) k = 2; |
|
259 else return this.toRadix(b); |
|
260 var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
|
261 var p = BI_DB-(i*BI_DB)%k; |
|
262 if(i-- > 0) { |
|
263 if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } |
|
264 while(i >= 0) { |
|
265 if(p < k) { |
|
266 d = (this_array[i]&((1<<p)-1))<<(k-p); |
|
267 d |= this_array[--i]>>(p+=BI_DB-k); |
|
268 } |
|
269 else { |
|
270 d = (this_array[i]>>(p-=k))&km; |
|
271 if(p <= 0) { p += BI_DB; --i; } |
|
272 } |
|
273 if(d > 0) m = true; |
|
274 if(m) r += int2char(d); |
|
275 } |
|
276 } |
|
277 return m?r:"0"; |
|
278 } |
|
279 |
|
280 // (public) -this |
|
281 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } |
|
282 |
|
283 // (public) |this| |
|
284 function bnAbs() { return (this.s<0)?this.negate():this; } |
|
285 |
|
286 // (public) return + if this > a, - if this < a, 0 if equal |
|
287 function bnCompareTo(a) { |
|
288 var this_array = this.array; |
|
289 var a_array = a.array; |
|
290 |
|
291 var r = this.s-a.s; |
|
292 if(r != 0) return r; |
|
293 var i = this.t; |
|
294 r = i-a.t; |
|
295 if(r != 0) return r; |
|
296 while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; |
|
297 return 0; |
|
298 } |
|
299 |
|
300 // returns bit length of the integer x |
|
301 function nbits(x) { |
|
302 var r = 1, t; |
|
303 if((t=x>>>16) != 0) { x = t; r += 16; } |
|
304 if((t=x>>8) != 0) { x = t; r += 8; } |
|
305 if((t=x>>4) != 0) { x = t; r += 4; } |
|
306 if((t=x>>2) != 0) { x = t; r += 2; } |
|
307 if((t=x>>1) != 0) { x = t; r += 1; } |
|
308 return r; |
|
309 } |
|
310 |
|
311 // (public) return the number of bits in "this" |
|
312 function bnBitLength() { |
|
313 var this_array = this.array; |
|
314 if(this.t <= 0) return 0; |
|
315 return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); |
|
316 } |
|
317 |
|
318 // (protected) r = this << n*DB |
|
319 function bnpDLShiftTo(n,r) { |
|
320 var this_array = this.array; |
|
321 var r_array = r.array; |
|
322 var i; |
|
323 for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; |
|
324 for(i = n-1; i >= 0; --i) r_array[i] = 0; |
|
325 r.t = this.t+n; |
|
326 r.s = this.s; |
|
327 } |
|
328 |
|
329 // (protected) r = this >> n*DB |
|
330 function bnpDRShiftTo(n,r) { |
|
331 var this_array = this.array; |
|
332 var r_array = r.array; |
|
333 for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; |
|
334 r.t = Math.max(this.t-n,0); |
|
335 r.s = this.s; |
|
336 } |
|
337 |
|
338 // (protected) r = this << n |
|
339 function bnpLShiftTo(n,r) { |
|
340 var this_array = this.array; |
|
341 var r_array = r.array; |
|
342 var bs = n%BI_DB; |
|
343 var cbs = BI_DB-bs; |
|
344 var bm = (1<<cbs)-1; |
|
345 var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; |
|
346 for(i = this.t-1; i >= 0; --i) { |
|
347 r_array[i+ds+1] = (this_array[i]>>cbs)|c; |
|
348 c = (this_array[i]&bm)<<bs; |
|
349 } |
|
350 for(i = ds-1; i >= 0; --i) r_array[i] = 0; |
|
351 r_array[ds] = c; |
|
352 r.t = this.t+ds+1; |
|
353 r.s = this.s; |
|
354 r.clamp(); |
|
355 } |
|
356 |
|
357 // (protected) r = this >> n |
|
358 function bnpRShiftTo(n,r) { |
|
359 var this_array = this.array; |
|
360 var r_array = r.array; |
|
361 r.s = this.s; |
|
362 var ds = Math.floor(n/BI_DB); |
|
363 if(ds >= this.t) { r.t = 0; return; } |
|
364 var bs = n%BI_DB; |
|
365 var cbs = BI_DB-bs; |
|
366 var bm = (1<<bs)-1; |
|
367 r_array[0] = this_array[ds]>>bs; |
|
368 for(var i = ds+1; i < this.t; ++i) { |
|
369 r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; |
|
370 r_array[i-ds] = this_array[i]>>bs; |
|
371 } |
|
372 if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; |
|
373 r.t = this.t-ds; |
|
374 r.clamp(); |
|
375 } |
|
376 |
|
377 // (protected) r = this - a |
|
378 function bnpSubTo(a,r) { |
|
379 var this_array = this.array; |
|
380 var r_array = r.array; |
|
381 var a_array = a.array; |
|
382 var i = 0, c = 0, m = Math.min(a.t,this.t); |
|
383 while(i < m) { |
|
384 c += this_array[i]-a_array[i]; |
|
385 r_array[i++] = c&BI_DM; |
|
386 c >>= BI_DB; |
|
387 } |
|
388 if(a.t < this.t) { |
|
389 c -= a.s; |
|
390 while(i < this.t) { |
|
391 c += this_array[i]; |
|
392 r_array[i++] = c&BI_DM; |
|
393 c >>= BI_DB; |
|
394 } |
|
395 c += this.s; |
|
396 } |
|
397 else { |
|
398 c += this.s; |
|
399 while(i < a.t) { |
|
400 c -= a_array[i]; |
|
401 r_array[i++] = c&BI_DM; |
|
402 c >>= BI_DB; |
|
403 } |
|
404 c -= a.s; |
|
405 } |
|
406 r.s = (c<0)?-1:0; |
|
407 if(c < -1) r_array[i++] = BI_DV+c; |
|
408 else if(c > 0) r_array[i++] = c; |
|
409 r.t = i; |
|
410 r.clamp(); |
|
411 } |
|
412 |
|
413 // (protected) r = this * a, r != this,a (HAC 14.12) |
|
414 // "this" should be the larger one if appropriate. |
|
415 function bnpMultiplyTo(a,r) { |
|
416 var this_array = this.array; |
|
417 var r_array = r.array; |
|
418 var x = this.abs(), y = a.abs(); |
|
419 var y_array = y.array; |
|
420 |
|
421 var i = x.t; |
|
422 r.t = i+y.t; |
|
423 while(--i >= 0) r_array[i] = 0; |
|
424 for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); |
|
425 r.s = 0; |
|
426 r.clamp(); |
|
427 if(this.s != a.s) BigInteger.ZERO.subTo(r,r); |
|
428 } |
|
429 |
|
430 // (protected) r = this^2, r != this (HAC 14.16) |
|
431 function bnpSquareTo(r) { |
|
432 var x = this.abs(); |
|
433 var x_array = x.array; |
|
434 var r_array = r.array; |
|
435 |
|
436 var i = r.t = 2*x.t; |
|
437 while(--i >= 0) r_array[i] = 0; |
|
438 for(i = 0; i < x.t-1; ++i) { |
|
439 var c = x.am(i,x_array[i],r,2*i,0,1); |
|
440 if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { |
|
441 r_array[i+x.t] -= BI_DV; |
|
442 r_array[i+x.t+1] = 1; |
|
443 } |
|
444 } |
|
445 if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); |
|
446 r.s = 0; |
|
447 r.clamp(); |
|
448 } |
|
449 |
|
450 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
|
451 // r != q, this != m. q or r may be null. |
|
452 function bnpDivRemTo(m,q,r) { |
|
453 var pm = m.abs(); |
|
454 if(pm.t <= 0) return; |
|
455 var pt = this.abs(); |
|
456 if(pt.t < pm.t) { |
|
457 if(q != null) q.fromInt(0); |
|
458 if(r != null) this.copyTo(r); |
|
459 return; |
|
460 } |
|
461 if(r == null) r = nbi(); |
|
462 var y = nbi(), ts = this.s, ms = m.s; |
|
463 var pm_array = pm.array; |
|
464 var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus |
|
465 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } |
|
466 else { pm.copyTo(y); pt.copyTo(r); } |
|
467 var ys = y.t; |
|
468 |
|
469 var y_array = y.array; |
|
470 var y0 = y_array[ys-1]; |
|
471 if(y0 == 0) return; |
|
472 var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); |
|
473 var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; |
|
474 var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
|
475 y.dlShiftTo(j,t); |
|
476 |
|
477 var r_array = r.array; |
|
478 if(r.compareTo(t) >= 0) { |
|
479 r_array[r.t++] = 1; |
|
480 r.subTo(t,r); |
|
481 } |
|
482 BigInteger.ONE.dlShiftTo(ys,t); |
|
483 t.subTo(y,y); // "negative" y so we can replace sub with am later |
|
484 while(y.t < ys) y_array[y.t++] = 0; |
|
485 while(--j >= 0) { |
|
486 // Estimate quotient digit |
|
487 var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2); |
|
488 if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
|
489 y.dlShiftTo(j,t); |
|
490 r.subTo(t,r); |
|
491 while(r_array[i] < --qd) r.subTo(t,r); |
|
492 } |
|
493 } |
|
494 if(q != null) { |
|
495 r.drShiftTo(ys,q); |
|
496 if(ts != ms) BigInteger.ZERO.subTo(q,q); |
|
497 } |
|
498 r.t = ys; |
|
499 r.clamp(); |
|
500 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder |
|
501 if(ts < 0) BigInteger.ZERO.subTo(r,r); |
|
502 } |
|
503 |
|
504 // (public) this mod a |
|
505 function bnMod(a) { |
|
506 var r = nbi(); |
|
507 this.abs().divRemTo(a,null,r); |
|
508 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); |
|
509 return r; |
|
510 } |
|
511 |
|
512 // Modular reduction using "classic" algorithm |
|
513 function Classic(m) { this.m = m; } |
|
514 function cConvert(x) { |
|
515 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
|
516 else return x; |
|
517 } |
|
518 function cRevert(x) { return x; } |
|
519 function cReduce(x) { x.divRemTo(this.m,null,x); } |
|
520 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
|
521 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
|
522 |
|
523 Classic.prototype.convert = cConvert; |
|
524 Classic.prototype.revert = cRevert; |
|
525 Classic.prototype.reduce = cReduce; |
|
526 Classic.prototype.mulTo = cMulTo; |
|
527 Classic.prototype.sqrTo = cSqrTo; |
|
528 |
|
529 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
|
530 // justification: |
|
531 // xy == 1 (mod m) |
|
532 // xy = 1+km |
|
533 // xy(2-xy) = (1+km)(1-km) |
|
534 // x[y(2-xy)] = 1-k^2m^2 |
|
535 // x[y(2-xy)] == 1 (mod m^2) |
|
536 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
|
537 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
|
538 // JS multiply "overflows" differently from C/C++, so care is needed here. |
|
539 function bnpInvDigit() { |
|
540 var this_array = this.array; |
|
541 if(this.t < 1) return 0; |
|
542 var x = this_array[0]; |
|
543 if((x&1) == 0) return 0; |
|
544 var y = x&3; // y == 1/x mod 2^2 |
|
545 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
|
546 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
|
547 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
|
548 // last step - calculate inverse mod DV directly; |
|
549 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
|
550 y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits |
|
551 // we really want the negative inverse, and -DV < y < DV |
|
552 return (y>0)?BI_DV-y:-y; |
|
553 } |
|
554 |
|
555 // Montgomery reduction |
|
556 function Montgomery(m) { |
|
557 this.m = m; |
|
558 this.mp = m.invDigit(); |
|
559 this.mpl = this.mp&0x7fff; |
|
560 this.mph = this.mp>>15; |
|
561 this.um = (1<<(BI_DB-15))-1; |
|
562 this.mt2 = 2*m.t; |
|
563 } |
|
564 |
|
565 // xR mod m |
|
566 function montConvert(x) { |
|
567 var r = nbi(); |
|
568 x.abs().dlShiftTo(this.m.t,r); |
|
569 r.divRemTo(this.m,null,r); |
|
570 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); |
|
571 return r; |
|
572 } |
|
573 |
|
574 // x/R mod m |
|
575 function montRevert(x) { |
|
576 var r = nbi(); |
|
577 x.copyTo(r); |
|
578 this.reduce(r); |
|
579 return r; |
|
580 } |
|
581 |
|
582 // x = x/R mod m (HAC 14.32) |
|
583 function montReduce(x) { |
|
584 var x_array = x.array; |
|
585 while(x.t <= this.mt2) // pad x so am has enough room later |
|
586 x_array[x.t++] = 0; |
|
587 for(var i = 0; i < this.m.t; ++i) { |
|
588 // faster way of calculating u0 = x[i]*mp mod DV |
|
589 var j = x_array[i]&0x7fff; |
|
590 var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM; |
|
591 // use am to combine the multiply-shift-add into one call |
|
592 j = i+this.m.t; |
|
593 x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); |
|
594 // propagate carry |
|
595 while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } |
|
596 } |
|
597 x.clamp(); |
|
598 x.drShiftTo(this.m.t,x); |
|
599 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
|
600 } |
|
601 |
|
602 // r = "x^2/R mod m"; x != r |
|
603 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
|
604 |
|
605 // r = "xy/R mod m"; x,y != r |
|
606 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
|
607 |
|
608 Montgomery.prototype.convert = montConvert; |
|
609 Montgomery.prototype.revert = montRevert; |
|
610 Montgomery.prototype.reduce = montReduce; |
|
611 Montgomery.prototype.mulTo = montMulTo; |
|
612 Montgomery.prototype.sqrTo = montSqrTo; |
|
613 |
|
614 // (protected) true iff this is even |
|
615 function bnpIsEven() { |
|
616 var this_array = this.array; |
|
617 return ((this.t>0)?(this_array[0]&1):this.s) == 0; |
|
618 } |
|
619 |
|
620 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
|
621 function bnpExp(e,z) { |
|
622 if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
|
623 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
|
624 g.copyTo(r); |
|
625 while(--i >= 0) { |
|
626 z.sqrTo(r,r2); |
|
627 if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
|
628 else { var t = r; r = r2; r2 = t; } |
|
629 } |
|
630 return z.revert(r); |
|
631 } |
|
632 |
|
633 // (public) this^e % m, 0 <= e < 2^32 |
|
634 function bnModPowInt(e,m) { |
|
635 var z; |
|
636 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); |
|
637 return this.exp(e,z); |
|
638 } |
|
639 |
|
640 // protected |
|
641 BigInteger.prototype.copyTo = bnpCopyTo; |
|
642 BigInteger.prototype.fromInt = bnpFromInt; |
|
643 BigInteger.prototype.fromString = bnpFromString; |
|
644 BigInteger.prototype.clamp = bnpClamp; |
|
645 BigInteger.prototype.dlShiftTo = bnpDLShiftTo; |
|
646 BigInteger.prototype.drShiftTo = bnpDRShiftTo; |
|
647 BigInteger.prototype.lShiftTo = bnpLShiftTo; |
|
648 BigInteger.prototype.rShiftTo = bnpRShiftTo; |
|
649 BigInteger.prototype.subTo = bnpSubTo; |
|
650 BigInteger.prototype.multiplyTo = bnpMultiplyTo; |
|
651 BigInteger.prototype.squareTo = bnpSquareTo; |
|
652 BigInteger.prototype.divRemTo = bnpDivRemTo; |
|
653 BigInteger.prototype.invDigit = bnpInvDigit; |
|
654 BigInteger.prototype.isEven = bnpIsEven; |
|
655 BigInteger.prototype.exp = bnpExp; |
|
656 |
|
657 // public |
|
658 BigInteger.prototype.toString = bnToString; |
|
659 BigInteger.prototype.negate = bnNegate; |
|
660 BigInteger.prototype.abs = bnAbs; |
|
661 BigInteger.prototype.compareTo = bnCompareTo; |
|
662 BigInteger.prototype.bitLength = bnBitLength; |
|
663 BigInteger.prototype.mod = bnMod; |
|
664 BigInteger.prototype.modPowInt = bnModPowInt; |
|
665 |
|
666 // "constants" |
|
667 BigInteger.ZERO = nbv(0); |
|
668 BigInteger.ONE = nbv(1); |
|
669 // Copyright (c) 2005 Tom Wu |
|
670 // All Rights Reserved. |
|
671 // See "LICENSE" for details. |
|
672 |
|
673 // Extended JavaScript BN functions, required for RSA private ops. |
|
674 |
|
675 // (public) |
|
676 function bnClone() { var r = nbi(); this.copyTo(r); return r; } |
|
677 |
|
678 // (public) return value as integer |
|
679 function bnIntValue() { |
|
680 var this_array = this.array; |
|
681 if(this.s < 0) { |
|
682 if(this.t == 1) return this_array[0]-BI_DV; |
|
683 else if(this.t == 0) return -1; |
|
684 } |
|
685 else if(this.t == 1) return this_array[0]; |
|
686 else if(this.t == 0) return 0; |
|
687 // assumes 16 < DB < 32 |
|
688 return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; |
|
689 } |
|
690 |
|
691 // (public) return value as byte |
|
692 function bnByteValue() { |
|
693 var this_array = this.array; |
|
694 return (this.t==0)?this.s:(this_array[0]<<24)>>24; |
|
695 } |
|
696 |
|
697 // (public) return value as short (assumes DB>=16) |
|
698 function bnShortValue() { |
|
699 var this_array = this.array; |
|
700 return (this.t==0)?this.s:(this_array[0]<<16)>>16; |
|
701 } |
|
702 |
|
703 // (protected) return x s.t. r^x < DV |
|
704 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } |
|
705 |
|
706 // (public) 0 if this == 0, 1 if this > 0 |
|
707 function bnSigNum() { |
|
708 var this_array = this.array; |
|
709 if(this.s < 0) return -1; |
|
710 else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; |
|
711 else return 1; |
|
712 } |
|
713 |
|
714 // (protected) convert to radix string |
|
715 function bnpToRadix(b) { |
|
716 if(b == null) b = 10; |
|
717 if(this.signum() == 0 || b < 2 || b > 36) return "0"; |
|
718 var cs = this.chunkSize(b); |
|
719 var a = Math.pow(b,cs); |
|
720 var d = nbv(a), y = nbi(), z = nbi(), r = ""; |
|
721 this.divRemTo(d,y,z); |
|
722 while(y.signum() > 0) { |
|
723 r = (a+z.intValue()).toString(b).substr(1) + r; |
|
724 y.divRemTo(d,y,z); |
|
725 } |
|
726 return z.intValue().toString(b) + r; |
|
727 } |
|
728 |
|
729 // (protected) convert from radix string |
|
730 function bnpFromRadix(s,b) { |
|
731 this.fromInt(0); |
|
732 if(b == null) b = 10; |
|
733 var cs = this.chunkSize(b); |
|
734 var d = Math.pow(b,cs), mi = false, j = 0, w = 0; |
|
735 for(var i = 0; i < s.length; ++i) { |
|
736 var x = intAt(s,i); |
|
737 if(x < 0) { |
|
738 if(s.charAt(i) == "-" && this.signum() == 0) mi = true; |
|
739 continue; |
|
740 } |
|
741 w = b*w+x; |
|
742 if(++j >= cs) { |
|
743 this.dMultiply(d); |
|
744 this.dAddOffset(w,0); |
|
745 j = 0; |
|
746 w = 0; |
|
747 } |
|
748 } |
|
749 if(j > 0) { |
|
750 this.dMultiply(Math.pow(b,j)); |
|
751 this.dAddOffset(w,0); |
|
752 } |
|
753 if(mi) BigInteger.ZERO.subTo(this,this); |
|
754 } |
|
755 |
|
756 // (protected) alternate constructor |
|
757 function bnpFromNumber(a,b,c) { |
|
758 if("number" == typeof b) { |
|
759 // new BigInteger(int,int,RNG) |
|
760 if(a < 2) this.fromInt(1); |
|
761 else { |
|
762 this.fromNumber(a,c); |
|
763 if(!this.testBit(a-1)) // force MSB set |
|
764 this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); |
|
765 if(this.isEven()) this.dAddOffset(1,0); // force odd |
|
766 while(!this.isProbablePrime(b)) { |
|
767 this.dAddOffset(2,0); |
|
768 if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); |
|
769 } |
|
770 } |
|
771 } |
|
772 else { |
|
773 // new BigInteger(int,RNG) |
|
774 var x = new Array(), t = a&7; |
|
775 x.length = (a>>3)+1; |
|
776 b.nextBytes(x); |
|
777 if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; |
|
778 this.fromString(x,256); |
|
779 } |
|
780 } |
|
781 |
|
782 // (public) convert to bigendian byte array |
|
783 function bnToByteArray() { |
|
784 var this_array = this.array; |
|
785 var i = this.t, r = new Array(); |
|
786 r[0] = this.s; |
|
787 var p = BI_DB-(i*BI_DB)%8, d, k = 0; |
|
788 if(i-- > 0) { |
|
789 if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) |
|
790 r[k++] = d|(this.s<<(BI_DB-p)); |
|
791 while(i >= 0) { |
|
792 if(p < 8) { |
|
793 d = (this_array[i]&((1<<p)-1))<<(8-p); |
|
794 d |= this_array[--i]>>(p+=BI_DB-8); |
|
795 } |
|
796 else { |
|
797 d = (this_array[i]>>(p-=8))&0xff; |
|
798 if(p <= 0) { p += BI_DB; --i; } |
|
799 } |
|
800 if((d&0x80) != 0) d |= -256; |
|
801 if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; |
|
802 if(k > 0 || d != this.s) r[k++] = d; |
|
803 } |
|
804 } |
|
805 return r; |
|
806 } |
|
807 |
|
808 function bnEquals(a) { return(this.compareTo(a)==0); } |
|
809 function bnMin(a) { return(this.compareTo(a)<0)?this:a; } |
|
810 function bnMax(a) { return(this.compareTo(a)>0)?this:a; } |
|
811 |
|
812 // (protected) r = this op a (bitwise) |
|
813 function bnpBitwiseTo(a,op,r) { |
|
814 var this_array = this.array; |
|
815 var a_array = a.array; |
|
816 var r_array = r.array; |
|
817 var i, f, m = Math.min(a.t,this.t); |
|
818 for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); |
|
819 if(a.t < this.t) { |
|
820 f = a.s&BI_DM; |
|
821 for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); |
|
822 r.t = this.t; |
|
823 } |
|
824 else { |
|
825 f = this.s&BI_DM; |
|
826 for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); |
|
827 r.t = a.t; |
|
828 } |
|
829 r.s = op(this.s,a.s); |
|
830 r.clamp(); |
|
831 } |
|
832 |
|
833 // (public) this & a |
|
834 function op_and(x,y) { return x&y; } |
|
835 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } |
|
836 |
|
837 // (public) this | a |
|
838 function op_or(x,y) { return x|y; } |
|
839 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } |
|
840 |
|
841 // (public) this ^ a |
|
842 function op_xor(x,y) { return x^y; } |
|
843 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } |
|
844 |
|
845 // (public) this & ~a |
|
846 function op_andnot(x,y) { return x&~y; } |
|
847 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } |
|
848 |
|
849 // (public) ~this |
|
850 function bnNot() { |
|
851 var this_array = this.array; |
|
852 var r = nbi(); |
|
853 var r_array = r.array; |
|
854 |
|
855 for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; |
|
856 r.t = this.t; |
|
857 r.s = ~this.s; |
|
858 return r; |
|
859 } |
|
860 |
|
861 // (public) this << n |
|
862 function bnShiftLeft(n) { |
|
863 var r = nbi(); |
|
864 if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); |
|
865 return r; |
|
866 } |
|
867 |
|
868 // (public) this >> n |
|
869 function bnShiftRight(n) { |
|
870 var r = nbi(); |
|
871 if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); |
|
872 return r; |
|
873 } |
|
874 |
|
875 // return index of lowest 1-bit in x, x < 2^31 |
|
876 function lbit(x) { |
|
877 if(x == 0) return -1; |
|
878 var r = 0; |
|
879 if((x&0xffff) == 0) { x >>= 16; r += 16; } |
|
880 if((x&0xff) == 0) { x >>= 8; r += 8; } |
|
881 if((x&0xf) == 0) { x >>= 4; r += 4; } |
|
882 if((x&3) == 0) { x >>= 2; r += 2; } |
|
883 if((x&1) == 0) ++r; |
|
884 return r; |
|
885 } |
|
886 |
|
887 // (public) returns index of lowest 1-bit (or -1 if none) |
|
888 function bnGetLowestSetBit() { |
|
889 var this_array = this.array; |
|
890 for(var i = 0; i < this.t; ++i) |
|
891 if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); |
|
892 if(this.s < 0) return this.t*BI_DB; |
|
893 return -1; |
|
894 } |
|
895 |
|
896 // return number of 1 bits in x |
|
897 function cbit(x) { |
|
898 var r = 0; |
|
899 while(x != 0) { x &= x-1; ++r; } |
|
900 return r; |
|
901 } |
|
902 |
|
903 // (public) return number of set bits |
|
904 function bnBitCount() { |
|
905 var r = 0, x = this.s&BI_DM; |
|
906 for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); |
|
907 return r; |
|
908 } |
|
909 |
|
910 // (public) true iff nth bit is set |
|
911 function bnTestBit(n) { |
|
912 var this_array = this.array; |
|
913 var j = Math.floor(n/BI_DB); |
|
914 if(j >= this.t) return(this.s!=0); |
|
915 return((this_array[j]&(1<<(n%BI_DB)))!=0); |
|
916 } |
|
917 |
|
918 // (protected) this op (1<<n) |
|
919 function bnpChangeBit(n,op) { |
|
920 var r = BigInteger.ONE.shiftLeft(n); |
|
921 this.bitwiseTo(r,op,r); |
|
922 return r; |
|
923 } |
|
924 |
|
925 // (public) this | (1<<n) |
|
926 function bnSetBit(n) { return this.changeBit(n,op_or); } |
|
927 |
|
928 // (public) this & ~(1<<n) |
|
929 function bnClearBit(n) { return this.changeBit(n,op_andnot); } |
|
930 |
|
931 // (public) this ^ (1<<n) |
|
932 function bnFlipBit(n) { return this.changeBit(n,op_xor); } |
|
933 |
|
934 // (protected) r = this + a |
|
935 function bnpAddTo(a,r) { |
|
936 var this_array = this.array; |
|
937 var a_array = a.array; |
|
938 var r_array = r.array; |
|
939 var i = 0, c = 0, m = Math.min(a.t,this.t); |
|
940 while(i < m) { |
|
941 c += this_array[i]+a_array[i]; |
|
942 r_array[i++] = c&BI_DM; |
|
943 c >>= BI_DB; |
|
944 } |
|
945 if(a.t < this.t) { |
|
946 c += a.s; |
|
947 while(i < this.t) { |
|
948 c += this_array[i]; |
|
949 r_array[i++] = c&BI_DM; |
|
950 c >>= BI_DB; |
|
951 } |
|
952 c += this.s; |
|
953 } |
|
954 else { |
|
955 c += this.s; |
|
956 while(i < a.t) { |
|
957 c += a_array[i]; |
|
958 r_array[i++] = c&BI_DM; |
|
959 c >>= BI_DB; |
|
960 } |
|
961 c += a.s; |
|
962 } |
|
963 r.s = (c<0)?-1:0; |
|
964 if(c > 0) r_array[i++] = c; |
|
965 else if(c < -1) r_array[i++] = BI_DV+c; |
|
966 r.t = i; |
|
967 r.clamp(); |
|
968 } |
|
969 |
|
970 // (public) this + a |
|
971 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } |
|
972 |
|
973 // (public) this - a |
|
974 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } |
|
975 |
|
976 // (public) this * a |
|
977 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } |
|
978 |
|
979 // (public) this / a |
|
980 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } |
|
981 |
|
982 // (public) this % a |
|
983 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } |
|
984 |
|
985 // (public) [this/a,this%a] |
|
986 function bnDivideAndRemainder(a) { |
|
987 var q = nbi(), r = nbi(); |
|
988 this.divRemTo(a,q,r); |
|
989 return new Array(q,r); |
|
990 } |
|
991 |
|
992 // (protected) this *= n, this >= 0, 1 < n < DV |
|
993 function bnpDMultiply(n) { |
|
994 var this_array = this.array; |
|
995 this_array[this.t] = this.am(0,n-1,this,0,0,this.t); |
|
996 ++this.t; |
|
997 this.clamp(); |
|
998 } |
|
999 |
|
1000 // (protected) this += n << w words, this >= 0 |
|
1001 function bnpDAddOffset(n,w) { |
|
1002 var this_array = this.array; |
|
1003 while(this.t <= w) this_array[this.t++] = 0; |
|
1004 this_array[w] += n; |
|
1005 while(this_array[w] >= BI_DV) { |
|
1006 this_array[w] -= BI_DV; |
|
1007 if(++w >= this.t) this_array[this.t++] = 0; |
|
1008 ++this_array[w]; |
|
1009 } |
|
1010 } |
|
1011 |
|
1012 // A "null" reducer |
|
1013 function NullExp() {} |
|
1014 function nNop(x) { return x; } |
|
1015 function nMulTo(x,y,r) { x.multiplyTo(y,r); } |
|
1016 function nSqrTo(x,r) { x.squareTo(r); } |
|
1017 |
|
1018 NullExp.prototype.convert = nNop; |
|
1019 NullExp.prototype.revert = nNop; |
|
1020 NullExp.prototype.mulTo = nMulTo; |
|
1021 NullExp.prototype.sqrTo = nSqrTo; |
|
1022 |
|
1023 // (public) this^e |
|
1024 function bnPow(e) { return this.exp(e,new NullExp()); } |
|
1025 |
|
1026 // (protected) r = lower n words of "this * a", a.t <= n |
|
1027 // "this" should be the larger one if appropriate. |
|
1028 function bnpMultiplyLowerTo(a,n,r) { |
|
1029 var r_array = r.array; |
|
1030 var a_array = a.array; |
|
1031 var i = Math.min(this.t+a.t,n); |
|
1032 r.s = 0; // assumes a,this >= 0 |
|
1033 r.t = i; |
|
1034 while(i > 0) r_array[--i] = 0; |
|
1035 var j; |
|
1036 for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t); |
|
1037 for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); |
|
1038 r.clamp(); |
|
1039 } |
|
1040 |
|
1041 // (protected) r = "this * a" without lower n words, n > 0 |
|
1042 // "this" should be the larger one if appropriate. |
|
1043 function bnpMultiplyUpperTo(a,n,r) { |
|
1044 var r_array = r.array; |
|
1045 var a_array = a.array; |
|
1046 --n; |
|
1047 var i = r.t = this.t+a.t-n; |
|
1048 r.s = 0; // assumes a,this >= 0 |
|
1049 while(--i >= 0) r_array[i] = 0; |
|
1050 for(i = Math.max(n-this.t,0); i < a.t; ++i) |
|
1051 r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); |
|
1052 r.clamp(); |
|
1053 r.drShiftTo(1,r); |
|
1054 } |
|
1055 |
|
1056 // Barrett modular reduction |
|
1057 function Barrett(m) { |
|
1058 // setup Barrett |
|
1059 this.r2 = nbi(); |
|
1060 this.q3 = nbi(); |
|
1061 BigInteger.ONE.dlShiftTo(2*m.t,this.r2); |
|
1062 this.mu = this.r2.divide(m); |
|
1063 this.m = m; |
|
1064 } |
|
1065 |
|
1066 function barrettConvert(x) { |
|
1067 if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); |
|
1068 else if(x.compareTo(this.m) < 0) return x; |
|
1069 else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } |
|
1070 } |
|
1071 |
|
1072 function barrettRevert(x) { return x; } |
|
1073 |
|
1074 // x = x mod m (HAC 14.42) |
|
1075 function barrettReduce(x) { |
|
1076 x.drShiftTo(this.m.t-1,this.r2); |
|
1077 if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } |
|
1078 this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); |
|
1079 this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); |
|
1080 while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); |
|
1081 x.subTo(this.r2,x); |
|
1082 while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
|
1083 } |
|
1084 |
|
1085 // r = x^2 mod m; x != r |
|
1086 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
|
1087 |
|
1088 // r = x*y mod m; x,y != r |
|
1089 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
|
1090 |
|
1091 Barrett.prototype.convert = barrettConvert; |
|
1092 Barrett.prototype.revert = barrettRevert; |
|
1093 Barrett.prototype.reduce = barrettReduce; |
|
1094 Barrett.prototype.mulTo = barrettMulTo; |
|
1095 Barrett.prototype.sqrTo = barrettSqrTo; |
|
1096 |
|
1097 // (public) this^e % m (HAC 14.85) |
|
1098 function bnModPow(e,m) { |
|
1099 var e_array = e.array; |
|
1100 var i = e.bitLength(), k, r = nbv(1), z; |
|
1101 if(i <= 0) return r; |
|
1102 else if(i < 18) k = 1; |
|
1103 else if(i < 48) k = 3; |
|
1104 else if(i < 144) k = 4; |
|
1105 else if(i < 768) k = 5; |
|
1106 else k = 6; |
|
1107 if(i < 8) |
|
1108 z = new Classic(m); |
|
1109 else if(m.isEven()) |
|
1110 z = new Barrett(m); |
|
1111 else |
|
1112 z = new Montgomery(m); |
|
1113 |
|
1114 // precomputation |
|
1115 var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; |
|
1116 g[1] = z.convert(this); |
|
1117 if(k > 1) { |
|
1118 var g2 = nbi(); |
|
1119 z.sqrTo(g[1],g2); |
|
1120 while(n <= km) { |
|
1121 g[n] = nbi(); |
|
1122 z.mulTo(g2,g[n-2],g[n]); |
|
1123 n += 2; |
|
1124 } |
|
1125 } |
|
1126 |
|
1127 var j = e.t-1, w, is1 = true, r2 = nbi(), t; |
|
1128 i = nbits(e_array[j])-1; |
|
1129 while(j >= 0) { |
|
1130 if(i >= k1) w = (e_array[j]>>(i-k1))&km; |
|
1131 else { |
|
1132 w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); |
|
1133 if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); |
|
1134 } |
|
1135 |
|
1136 n = k; |
|
1137 while((w&1) == 0) { w >>= 1; --n; } |
|
1138 if((i -= n) < 0) { i += BI_DB; --j; } |
|
1139 if(is1) { // ret == 1, don't bother squaring or multiplying it |
|
1140 g[w].copyTo(r); |
|
1141 is1 = false; |
|
1142 } |
|
1143 else { |
|
1144 while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } |
|
1145 if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } |
|
1146 z.mulTo(r2,g[w],r); |
|
1147 } |
|
1148 |
|
1149 while(j >= 0 && (e_array[j]&(1<<i)) == 0) { |
|
1150 z.sqrTo(r,r2); t = r; r = r2; r2 = t; |
|
1151 if(--i < 0) { i = BI_DB-1; --j; } |
|
1152 } |
|
1153 } |
|
1154 return z.revert(r); |
|
1155 } |
|
1156 |
|
1157 // (public) gcd(this,a) (HAC 14.54) |
|
1158 function bnGCD(a) { |
|
1159 var x = (this.s<0)?this.negate():this.clone(); |
|
1160 var y = (a.s<0)?a.negate():a.clone(); |
|
1161 if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } |
|
1162 var i = x.getLowestSetBit(), g = y.getLowestSetBit(); |
|
1163 if(g < 0) return x; |
|
1164 if(i < g) g = i; |
|
1165 if(g > 0) { |
|
1166 x.rShiftTo(g,x); |
|
1167 y.rShiftTo(g,y); |
|
1168 } |
|
1169 while(x.signum() > 0) { |
|
1170 if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); |
|
1171 if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); |
|
1172 if(x.compareTo(y) >= 0) { |
|
1173 x.subTo(y,x); |
|
1174 x.rShiftTo(1,x); |
|
1175 } |
|
1176 else { |
|
1177 y.subTo(x,y); |
|
1178 y.rShiftTo(1,y); |
|
1179 } |
|
1180 } |
|
1181 if(g > 0) y.lShiftTo(g,y); |
|
1182 return y; |
|
1183 } |
|
1184 |
|
1185 // (protected) this % n, n < 2^26 |
|
1186 function bnpModInt(n) { |
|
1187 var this_array = this.array; |
|
1188 if(n <= 0) return 0; |
|
1189 var d = BI_DV%n, r = (this.s<0)?n-1:0; |
|
1190 if(this.t > 0) |
|
1191 if(d == 0) r = this_array[0]%n; |
|
1192 else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; |
|
1193 return r; |
|
1194 } |
|
1195 |
|
1196 // (public) 1/this % m (HAC 14.61) |
|
1197 function bnModInverse(m) { |
|
1198 var ac = m.isEven(); |
|
1199 if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; |
|
1200 var u = m.clone(), v = this.clone(); |
|
1201 var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); |
|
1202 while(u.signum() != 0) { |
|
1203 while(u.isEven()) { |
|
1204 u.rShiftTo(1,u); |
|
1205 if(ac) { |
|
1206 if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } |
|
1207 a.rShiftTo(1,a); |
|
1208 } |
|
1209 else if(!b.isEven()) b.subTo(m,b); |
|
1210 b.rShiftTo(1,b); |
|
1211 } |
|
1212 while(v.isEven()) { |
|
1213 v.rShiftTo(1,v); |
|
1214 if(ac) { |
|
1215 if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } |
|
1216 c.rShiftTo(1,c); |
|
1217 } |
|
1218 else if(!d.isEven()) d.subTo(m,d); |
|
1219 d.rShiftTo(1,d); |
|
1220 } |
|
1221 if(u.compareTo(v) >= 0) { |
|
1222 u.subTo(v,u); |
|
1223 if(ac) a.subTo(c,a); |
|
1224 b.subTo(d,b); |
|
1225 } |
|
1226 else { |
|
1227 v.subTo(u,v); |
|
1228 if(ac) c.subTo(a,c); |
|
1229 d.subTo(b,d); |
|
1230 } |
|
1231 } |
|
1232 if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; |
|
1233 if(d.compareTo(m) >= 0) return d.subtract(m); |
|
1234 if(d.signum() < 0) d.addTo(m,d); else return d; |
|
1235 if(d.signum() < 0) return d.add(m); else return d; |
|
1236 } |
|
1237 |
|
1238 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; |
|
1239 var lplim = (1<<26)/lowprimes[lowprimes.length-1]; |
|
1240 |
|
1241 // (public) test primality with certainty >= 1-.5^t |
|
1242 function bnIsProbablePrime(t) { |
|
1243 var i, x = this.abs(); |
|
1244 var x_array = x.array; |
|
1245 if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { |
|
1246 for(i = 0; i < lowprimes.length; ++i) |
|
1247 if(x_array[0] == lowprimes[i]) return true; |
|
1248 return false; |
|
1249 } |
|
1250 if(x.isEven()) return false; |
|
1251 i = 1; |
|
1252 while(i < lowprimes.length) { |
|
1253 var m = lowprimes[i], j = i+1; |
|
1254 while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; |
|
1255 m = x.modInt(m); |
|
1256 while(i < j) if(m%lowprimes[i++] == 0) return false; |
|
1257 } |
|
1258 return x.millerRabin(t); |
|
1259 } |
|
1260 |
|
1261 // (protected) true if probably prime (HAC 4.24, Miller-Rabin) |
|
1262 function bnpMillerRabin(t) { |
|
1263 var n1 = this.subtract(BigInteger.ONE); |
|
1264 var k = n1.getLowestSetBit(); |
|
1265 if(k <= 0) return false; |
|
1266 var r = n1.shiftRight(k); |
|
1267 t = (t+1)>>1; |
|
1268 if(t > lowprimes.length) t = lowprimes.length; |
|
1269 var a = nbi(); |
|
1270 for(var i = 0; i < t; ++i) { |
|
1271 a.fromInt(lowprimes[i]); |
|
1272 var y = a.modPow(r,this); |
|
1273 if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { |
|
1274 var j = 1; |
|
1275 while(j++ < k && y.compareTo(n1) != 0) { |
|
1276 y = y.modPowInt(2,this); |
|
1277 if(y.compareTo(BigInteger.ONE) == 0) return false; |
|
1278 } |
|
1279 if(y.compareTo(n1) != 0) return false; |
|
1280 } |
|
1281 } |
|
1282 return true; |
|
1283 } |
|
1284 |
|
1285 // protected |
|
1286 BigInteger.prototype.chunkSize = bnpChunkSize; |
|
1287 BigInteger.prototype.toRadix = bnpToRadix; |
|
1288 BigInteger.prototype.fromRadix = bnpFromRadix; |
|
1289 BigInteger.prototype.fromNumber = bnpFromNumber; |
|
1290 BigInteger.prototype.bitwiseTo = bnpBitwiseTo; |
|
1291 BigInteger.prototype.changeBit = bnpChangeBit; |
|
1292 BigInteger.prototype.addTo = bnpAddTo; |
|
1293 BigInteger.prototype.dMultiply = bnpDMultiply; |
|
1294 BigInteger.prototype.dAddOffset = bnpDAddOffset; |
|
1295 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; |
|
1296 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; |
|
1297 BigInteger.prototype.modInt = bnpModInt; |
|
1298 BigInteger.prototype.millerRabin = bnpMillerRabin; |
|
1299 |
|
1300 // public |
|
1301 BigInteger.prototype.clone = bnClone; |
|
1302 BigInteger.prototype.intValue = bnIntValue; |
|
1303 BigInteger.prototype.byteValue = bnByteValue; |
|
1304 BigInteger.prototype.shortValue = bnShortValue; |
|
1305 BigInteger.prototype.signum = bnSigNum; |
|
1306 BigInteger.prototype.toByteArray = bnToByteArray; |
|
1307 BigInteger.prototype.equals = bnEquals; |
|
1308 BigInteger.prototype.min = bnMin; |
|
1309 BigInteger.prototype.max = bnMax; |
|
1310 BigInteger.prototype.and = bnAnd; |
|
1311 BigInteger.prototype.or = bnOr; |
|
1312 BigInteger.prototype.xor = bnXor; |
|
1313 BigInteger.prototype.andNot = bnAndNot; |
|
1314 BigInteger.prototype.not = bnNot; |
|
1315 BigInteger.prototype.shiftLeft = bnShiftLeft; |
|
1316 BigInteger.prototype.shiftRight = bnShiftRight; |
|
1317 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; |
|
1318 BigInteger.prototype.bitCount = bnBitCount; |
|
1319 BigInteger.prototype.testBit = bnTestBit; |
|
1320 BigInteger.prototype.setBit = bnSetBit; |
|
1321 BigInteger.prototype.clearBit = bnClearBit; |
|
1322 BigInteger.prototype.flipBit = bnFlipBit; |
|
1323 BigInteger.prototype.add = bnAdd; |
|
1324 BigInteger.prototype.subtract = bnSubtract; |
|
1325 BigInteger.prototype.multiply = bnMultiply; |
|
1326 BigInteger.prototype.divide = bnDivide; |
|
1327 BigInteger.prototype.remainder = bnRemainder; |
|
1328 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; |
|
1329 BigInteger.prototype.modPow = bnModPow; |
|
1330 BigInteger.prototype.modInverse = bnModInverse; |
|
1331 BigInteger.prototype.pow = bnPow; |
|
1332 BigInteger.prototype.gcd = bnGCD; |
|
1333 BigInteger.prototype.isProbablePrime = bnIsProbablePrime; |
|
1334 |
|
1335 // BigInteger interfaces not implemented in jsbn: |
|
1336 |
|
1337 // BigInteger(int signum, byte[] magnitude) |
|
1338 // double doubleValue() |
|
1339 // float floatValue() |
|
1340 // int hashCode() |
|
1341 // long longValue() |
|
1342 // static BigInteger valueOf(long val) |
|
1343 // prng4.js - uses Arcfour as a PRNG |
|
1344 |
|
1345 function Arcfour() { |
|
1346 this.i = 0; |
|
1347 this.j = 0; |
|
1348 this.S = new Array(); |
|
1349 } |
|
1350 |
|
1351 // Initialize arcfour context from key, an array of ints, each from [0..255] |
|
1352 function ARC4init(key) { |
|
1353 var i, j, t; |
|
1354 for(i = 0; i < 256; ++i) |
|
1355 this.S[i] = i; |
|
1356 j = 0; |
|
1357 for(i = 0; i < 256; ++i) { |
|
1358 j = (j + this.S[i] + key[i % key.length]) & 255; |
|
1359 t = this.S[i]; |
|
1360 this.S[i] = this.S[j]; |
|
1361 this.S[j] = t; |
|
1362 } |
|
1363 this.i = 0; |
|
1364 this.j = 0; |
|
1365 } |
|
1366 |
|
1367 function ARC4next() { |
|
1368 var t; |
|
1369 this.i = (this.i + 1) & 255; |
|
1370 this.j = (this.j + this.S[this.i]) & 255; |
|
1371 t = this.S[this.i]; |
|
1372 this.S[this.i] = this.S[this.j]; |
|
1373 this.S[this.j] = t; |
|
1374 return this.S[(t + this.S[this.i]) & 255]; |
|
1375 } |
|
1376 |
|
1377 Arcfour.prototype.init = ARC4init; |
|
1378 Arcfour.prototype.next = ARC4next; |
|
1379 |
|
1380 // Plug in your RNG constructor here |
|
1381 function prng_newstate() { |
|
1382 return new Arcfour(); |
|
1383 } |
|
1384 |
|
1385 // Pool size must be a multiple of 4 and greater than 32. |
|
1386 // An array of bytes the size of the pool will be passed to init() |
|
1387 var rng_psize = 256; |
|
1388 // Random number generator - requires a PRNG backend, e.g. prng4.js |
|
1389 |
|
1390 // For best results, put code like |
|
1391 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> |
|
1392 // in your main HTML document. |
|
1393 |
|
1394 var rng_state; |
|
1395 var rng_pool; |
|
1396 var rng_pptr; |
|
1397 |
|
1398 // Mix in a 32-bit integer into the pool |
|
1399 function rng_seed_int(x) { |
|
1400 rng_pool[rng_pptr++] ^= x & 255; |
|
1401 rng_pool[rng_pptr++] ^= (x >> 8) & 255; |
|
1402 rng_pool[rng_pptr++] ^= (x >> 16) & 255; |
|
1403 rng_pool[rng_pptr++] ^= (x >> 24) & 255; |
|
1404 if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; |
|
1405 } |
|
1406 |
|
1407 // Mix in the current time (w/milliseconds) into the pool |
|
1408 function rng_seed_time() { |
|
1409 // Use pre-computed date to avoid making the benchmark |
|
1410 // results dependent on the current date. |
|
1411 rng_seed_int(1122926989487); |
|
1412 } |
|
1413 |
|
1414 // Initialize the pool with junk if needed. |
|
1415 if(rng_pool == null) { |
|
1416 rng_pool = new Array(); |
|
1417 rng_pptr = 0; |
|
1418 var t; |
|
1419 while(rng_pptr < rng_psize) { // extract some randomness from Math.random() |
|
1420 t = Math.floor(65536 * Math.random()); |
|
1421 rng_pool[rng_pptr++] = t >>> 8; |
|
1422 rng_pool[rng_pptr++] = t & 255; |
|
1423 } |
|
1424 rng_pptr = 0; |
|
1425 rng_seed_time(); |
|
1426 //rng_seed_int(window.screenX); |
|
1427 //rng_seed_int(window.screenY); |
|
1428 } |
|
1429 |
|
1430 function rng_get_byte() { |
|
1431 if(rng_state == null) { |
|
1432 rng_seed_time(); |
|
1433 rng_state = prng_newstate(); |
|
1434 rng_state.init(rng_pool); |
|
1435 for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) |
|
1436 rng_pool[rng_pptr] = 0; |
|
1437 rng_pptr = 0; |
|
1438 //rng_pool = null; |
|
1439 } |
|
1440 // TODO: allow reseeding after first request |
|
1441 return rng_state.next(); |
|
1442 } |
|
1443 |
|
1444 function rng_get_bytes(ba) { |
|
1445 var i; |
|
1446 for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); |
|
1447 } |
|
1448 |
|
1449 function SecureRandom() {} |
|
1450 |
|
1451 SecureRandom.prototype.nextBytes = rng_get_bytes; |
|
1452 // Depends on jsbn.js and rng.js |
|
1453 |
|
1454 // convert a (hex) string to a bignum object |
|
1455 function parseBigInt(str,r) { |
|
1456 return new BigInteger(str,r); |
|
1457 } |
|
1458 |
|
1459 function linebrk(s,n) { |
|
1460 var ret = ""; |
|
1461 var i = 0; |
|
1462 while(i + n < s.length) { |
|
1463 ret += s.substring(i,i+n) + "\n"; |
|
1464 i += n; |
|
1465 } |
|
1466 return ret + s.substring(i,s.length); |
|
1467 } |
|
1468 |
|
1469 function byte2Hex(b) { |
|
1470 if(b < 0x10) |
|
1471 return "0" + b.toString(16); |
|
1472 else |
|
1473 return b.toString(16); |
|
1474 } |
|
1475 |
|
1476 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint |
|
1477 function pkcs1pad2(s,n) { |
|
1478 if(n < s.length + 11) { |
|
1479 alert("Message too long for RSA"); |
|
1480 return null; |
|
1481 } |
|
1482 var ba = new Array(); |
|
1483 var i = s.length - 1; |
|
1484 while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); |
|
1485 ba[--n] = 0; |
|
1486 var rng = new SecureRandom(); |
|
1487 var x = new Array(); |
|
1488 while(n > 2) { // random non-zero pad |
|
1489 x[0] = 0; |
|
1490 while(x[0] == 0) rng.nextBytes(x); |
|
1491 ba[--n] = x[0]; |
|
1492 } |
|
1493 ba[--n] = 2; |
|
1494 ba[--n] = 0; |
|
1495 return new BigInteger(ba); |
|
1496 } |
|
1497 |
|
1498 // "empty" RSA key constructor |
|
1499 function RSAKey() { |
|
1500 this.n = null; |
|
1501 this.e = 0; |
|
1502 this.d = null; |
|
1503 this.p = null; |
|
1504 this.q = null; |
|
1505 this.dmp1 = null; |
|
1506 this.dmq1 = null; |
|
1507 this.coeff = null; |
|
1508 } |
|
1509 |
|
1510 // Set the public key fields N and e from hex strings |
|
1511 function RSASetPublic(N,E) { |
|
1512 if(N != null && E != null && N.length > 0 && E.length > 0) { |
|
1513 this.n = parseBigInt(N,16); |
|
1514 this.e = parseInt(E,16); |
|
1515 } |
|
1516 else |
|
1517 alert("Invalid RSA public key"); |
|
1518 } |
|
1519 |
|
1520 // Perform raw public operation on "x": return x^e (mod n) |
|
1521 function RSADoPublic(x) { |
|
1522 return x.modPowInt(this.e, this.n); |
|
1523 } |
|
1524 |
|
1525 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string |
|
1526 function RSAEncrypt(text) { |
|
1527 var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); |
|
1528 if(m == null) return null; |
|
1529 var c = this.doPublic(m); |
|
1530 if(c == null) return null; |
|
1531 var h = c.toString(16); |
|
1532 if((h.length & 1) == 0) return h; else return "0" + h; |
|
1533 } |
|
1534 |
|
1535 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string |
|
1536 //function RSAEncryptB64(text) { |
|
1537 // var h = this.encrypt(text); |
|
1538 // if(h) return hex2b64(h); else return null; |
|
1539 //} |
|
1540 |
|
1541 // protected |
|
1542 RSAKey.prototype.doPublic = RSADoPublic; |
|
1543 |
|
1544 // public |
|
1545 RSAKey.prototype.setPublic = RSASetPublic; |
|
1546 RSAKey.prototype.encrypt = RSAEncrypt; |
|
1547 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; |
|
1548 // Depends on rsa.js and jsbn2.js |
|
1549 |
|
1550 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext |
|
1551 function pkcs1unpad2(d,n) { |
|
1552 var b = d.toByteArray(); |
|
1553 var i = 0; |
|
1554 while(i < b.length && b[i] == 0) ++i; |
|
1555 if(b.length-i != n-1 || b[i] != 2) |
|
1556 return null; |
|
1557 ++i; |
|
1558 while(b[i] != 0) |
|
1559 if(++i >= b.length) return null; |
|
1560 var ret = ""; |
|
1561 while(++i < b.length) |
|
1562 ret += String.fromCharCode(b[i]); |
|
1563 return ret; |
|
1564 } |
|
1565 |
|
1566 // Set the private key fields N, e, and d from hex strings |
|
1567 function RSASetPrivate(N,E,D) { |
|
1568 if(N != null && E != null && N.length > 0 && E.length > 0) { |
|
1569 this.n = parseBigInt(N,16); |
|
1570 this.e = parseInt(E,16); |
|
1571 this.d = parseBigInt(D,16); |
|
1572 } |
|
1573 else |
|
1574 alert("Invalid RSA private key"); |
|
1575 } |
|
1576 |
|
1577 // Set the private key fields N, e, d and CRT params from hex strings |
|
1578 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { |
|
1579 if(N != null && E != null && N.length > 0 && E.length > 0) { |
|
1580 this.n = parseBigInt(N,16); |
|
1581 this.e = parseInt(E,16); |
|
1582 this.d = parseBigInt(D,16); |
|
1583 this.p = parseBigInt(P,16); |
|
1584 this.q = parseBigInt(Q,16); |
|
1585 this.dmp1 = parseBigInt(DP,16); |
|
1586 this.dmq1 = parseBigInt(DQ,16); |
|
1587 this.coeff = parseBigInt(C,16); |
|
1588 } |
|
1589 else |
|
1590 alert("Invalid RSA private key"); |
|
1591 } |
|
1592 |
|
1593 // Generate a new random private key B bits long, using public expt E |
|
1594 function RSAGenerate(B,E) { |
|
1595 var rng = new SecureRandom(); |
|
1596 var qs = B>>1; |
|
1597 this.e = parseInt(E,16); |
|
1598 var ee = new BigInteger(E,16); |
|
1599 for(;;) { |
|
1600 for(;;) { |
|
1601 this.p = new BigInteger(B-qs,1,rng); |
|
1602 if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; |
|
1603 } |
|
1604 for(;;) { |
|
1605 this.q = new BigInteger(qs,1,rng); |
|
1606 if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; |
|
1607 } |
|
1608 if(this.p.compareTo(this.q) <= 0) { |
|
1609 var t = this.p; |
|
1610 this.p = this.q; |
|
1611 this.q = t; |
|
1612 } |
|
1613 var p1 = this.p.subtract(BigInteger.ONE); |
|
1614 var q1 = this.q.subtract(BigInteger.ONE); |
|
1615 var phi = p1.multiply(q1); |
|
1616 if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { |
|
1617 this.n = this.p.multiply(this.q); |
|
1618 this.d = ee.modInverse(phi); |
|
1619 this.dmp1 = this.d.mod(p1); |
|
1620 this.dmq1 = this.d.mod(q1); |
|
1621 this.coeff = this.q.modInverse(this.p); |
|
1622 break; |
|
1623 } |
|
1624 } |
|
1625 } |
|
1626 |
|
1627 // Perform raw private operation on "x": return x^d (mod n) |
|
1628 function RSADoPrivate(x) { |
|
1629 if(this.p == null || this.q == null) |
|
1630 return x.modPow(this.d, this.n); |
|
1631 |
|
1632 // TODO: re-calculate any missing CRT params |
|
1633 var xp = x.mod(this.p).modPow(this.dmp1, this.p); |
|
1634 var xq = x.mod(this.q).modPow(this.dmq1, this.q); |
|
1635 |
|
1636 while(xp.compareTo(xq) < 0) |
|
1637 xp = xp.add(this.p); |
|
1638 return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); |
|
1639 } |
|
1640 |
|
1641 // Return the PKCS#1 RSA decryption of "ctext". |
|
1642 // "ctext" is an even-length hex string and the output is a plain string. |
|
1643 function RSADecrypt(ctext) { |
|
1644 var c = parseBigInt(ctext, 16); |
|
1645 var m = this.doPrivate(c); |
|
1646 if(m == null) return null; |
|
1647 return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); |
|
1648 } |
|
1649 |
|
1650 // Return the PKCS#1 RSA decryption of "ctext". |
|
1651 // "ctext" is a Base64-encoded string and the output is a plain string. |
|
1652 //function RSAB64Decrypt(ctext) { |
|
1653 // var h = b64tohex(ctext); |
|
1654 // if(h) return this.decrypt(h); else return null; |
|
1655 //} |
|
1656 |
|
1657 // protected |
|
1658 RSAKey.prototype.doPrivate = RSADoPrivate; |
|
1659 |
|
1660 // public |
|
1661 RSAKey.prototype.setPrivate = RSASetPrivate; |
|
1662 RSAKey.prototype.setPrivateEx = RSASetPrivateEx; |
|
1663 RSAKey.prototype.generate = RSAGenerate; |
|
1664 RSAKey.prototype.decrypt = RSADecrypt; |
|
1665 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; |
|
1666 |
|
1667 |
|
1668 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; |
|
1669 eValue="10001"; |
|
1670 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161"; |
|
1671 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; |
|
1672 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; |
|
1673 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; |
|
1674 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; |
|
1675 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; |
|
1676 |
|
1677 setupEngine(am3, 28); |
|
1678 |
|
1679 var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + |
|
1680 "Now is the time for all good men to come to the party."; |
|
1681 var encrypted; |
|
1682 |
|
1683 function encrypt() { |
|
1684 var RSA = new RSAKey(); |
|
1685 RSA.setPublic(nValue, eValue); |
|
1686 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); |
|
1687 encrypted = RSA.encrypt(TEXT); |
|
1688 } |
|
1689 |
|
1690 function decrypt() { |
|
1691 var RSA = new RSAKey(); |
|
1692 RSA.setPublic(nValue, eValue); |
|
1693 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); |
|
1694 var decrypted = RSA.decrypt(encrypted); |
|
1695 if (decrypted != TEXT) { |
|
1696 throw new Error("Crypto operation failed"); |
|
1697 } |
|
1698 } |