|
1 // Copyright 2008 the V8 project authors. All rights reserved. |
|
2 // Copyright 1996 John Maloney and Mario Wolczko. |
|
3 |
|
4 // This program is free software; you can redistribute it and/or modify |
|
5 // it under the terms of the GNU General Public License as published by |
|
6 // the Free Software Foundation; either version 2 of the License, or |
|
7 // (at your option) any later version. |
|
8 // |
|
9 // This program is distributed in the hope that it will be useful, |
|
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12 // GNU General Public License for more details. |
|
13 // |
|
14 // You should have received a copy of the GNU General Public License |
|
15 // along with this program; if not, write to the Free Software |
|
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
17 |
|
18 |
|
19 // This implementation of the DeltaBlue benchmark is derived |
|
20 // from the Smalltalk implementation by John Maloney and Mario |
|
21 // Wolczko. Some parts have been translated directly, whereas |
|
22 // others have been modified more aggresively to make it feel |
|
23 // more like a JavaScript program. |
|
24 |
|
25 |
|
26 var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [ |
|
27 new Benchmark('DeltaBlue', deltaBlue) |
|
28 ]); |
|
29 |
|
30 |
|
31 /** |
|
32 * A JavaScript implementation of the DeltaBlue constraint-solving |
|
33 * algorithm, as described in: |
|
34 * |
|
35 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" |
|
36 * Bjorn N. Freeman-Benson and John Maloney |
|
37 * January 1990 Communications of the ACM, |
|
38 * also available as University of Washington TR 89-08-06. |
|
39 * |
|
40 * Beware: this benchmark is written in a grotesque style where |
|
41 * the constraint model is built by side-effects from constructors. |
|
42 * I've kept it this way to avoid deviating too much from the original |
|
43 * implementation. |
|
44 */ |
|
45 |
|
46 |
|
47 /* --- O b j e c t M o d e l --- */ |
|
48 |
|
49 Object.prototype.inheritsFrom = function (shuper) { |
|
50 function Inheriter() { } |
|
51 Inheriter.prototype = shuper.prototype; |
|
52 this.prototype = new Inheriter(); |
|
53 this.superConstructor = shuper; |
|
54 } |
|
55 |
|
56 function OrderedCollection() { |
|
57 this.elms = new Array(); |
|
58 } |
|
59 |
|
60 OrderedCollection.prototype.add = function (elm) { |
|
61 this.elms.push(elm); |
|
62 } |
|
63 |
|
64 OrderedCollection.prototype.at = function (index) { |
|
65 return this.elms[index]; |
|
66 } |
|
67 |
|
68 OrderedCollection.prototype.size = function () { |
|
69 return this.elms.length; |
|
70 } |
|
71 |
|
72 OrderedCollection.prototype.removeFirst = function () { |
|
73 return this.elms.pop(); |
|
74 } |
|
75 |
|
76 OrderedCollection.prototype.remove = function (elm) { |
|
77 var index = 0, skipped = 0; |
|
78 for (var i = 0; i < this.elms.length; i++) { |
|
79 var value = this.elms[i]; |
|
80 if (value != elm) { |
|
81 this.elms[index] = value; |
|
82 index++; |
|
83 } else { |
|
84 skipped++; |
|
85 } |
|
86 } |
|
87 for (var i = 0; i < skipped; i++) |
|
88 this.elms.pop(); |
|
89 } |
|
90 |
|
91 /* --- * |
|
92 * S t r e n g t h |
|
93 * --- */ |
|
94 |
|
95 /** |
|
96 * Strengths are used to measure the relative importance of constraints. |
|
97 * New strengths may be inserted in the strength hierarchy without |
|
98 * disrupting current constraints. Strengths cannot be created outside |
|
99 * this class, so pointer comparison can be used for value comparison. |
|
100 */ |
|
101 function Strength(strengthValue, name) { |
|
102 this.strengthValue = strengthValue; |
|
103 this.name = name; |
|
104 } |
|
105 |
|
106 Strength.stronger = function (s1, s2) { |
|
107 return s1.strengthValue < s2.strengthValue; |
|
108 } |
|
109 |
|
110 Strength.weaker = function (s1, s2) { |
|
111 return s1.strengthValue > s2.strengthValue; |
|
112 } |
|
113 |
|
114 Strength.weakestOf = function (s1, s2) { |
|
115 return this.weaker(s1, s2) ? s1 : s2; |
|
116 } |
|
117 |
|
118 Strength.strongest = function (s1, s2) { |
|
119 return this.stronger(s1, s2) ? s1 : s2; |
|
120 } |
|
121 |
|
122 Strength.prototype.nextWeaker = function () { |
|
123 switch (this.strengthValue) { |
|
124 case 0: return Strength.WEAKEST; |
|
125 case 1: return Strength.WEAK_DEFAULT; |
|
126 case 2: return Strength.NORMAL; |
|
127 case 3: return Strength.STRONG_DEFAULT; |
|
128 case 4: return Strength.PREFERRED; |
|
129 case 5: return Strength.REQUIRED; |
|
130 } |
|
131 } |
|
132 |
|
133 // Strength constants. |
|
134 Strength.REQUIRED = new Strength(0, "required"); |
|
135 Strength.STONG_PREFERRED = new Strength(1, "strongPreferred"); |
|
136 Strength.PREFERRED = new Strength(2, "preferred"); |
|
137 Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); |
|
138 Strength.NORMAL = new Strength(4, "normal"); |
|
139 Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); |
|
140 Strength.WEAKEST = new Strength(6, "weakest"); |
|
141 |
|
142 /* --- * |
|
143 * C o n s t r a i n t |
|
144 * --- */ |
|
145 |
|
146 /** |
|
147 * An abstract class representing a system-maintainable relationship |
|
148 * (or "constraint") between a set of variables. A constraint supplies |
|
149 * a strength instance variable; concrete subclasses provide a means |
|
150 * of storing the constrained variables and other information required |
|
151 * to represent a constraint. |
|
152 */ |
|
153 function Constraint(strength) { |
|
154 this.strength = strength; |
|
155 } |
|
156 |
|
157 /** |
|
158 * Activate this constraint and attempt to satisfy it. |
|
159 */ |
|
160 Constraint.prototype.addConstraint = function () { |
|
161 this.addToGraph(); |
|
162 planner.incrementalAdd(this); |
|
163 } |
|
164 |
|
165 /** |
|
166 * Attempt to find a way to enforce this constraint. If successful, |
|
167 * record the solution, perhaps modifying the current dataflow |
|
168 * graph. Answer the constraint that this constraint overrides, if |
|
169 * there is one, or nil, if there isn't. |
|
170 * Assume: I am not already satisfied. |
|
171 */ |
|
172 Constraint.prototype.satisfy = function (mark) { |
|
173 this.chooseMethod(mark); |
|
174 if (!this.isSatisfied()) { |
|
175 if (this.strength == Strength.REQUIRED) |
|
176 alert("Could not satisfy a required constraint!"); |
|
177 return null; |
|
178 } |
|
179 this.markInputs(mark); |
|
180 var out = this.output(); |
|
181 var overridden = out.determinedBy; |
|
182 if (overridden != null) overridden.markUnsatisfied(); |
|
183 out.determinedBy = this; |
|
184 if (!planner.addPropagate(this, mark)) |
|
185 alert("Cycle encountered"); |
|
186 out.mark = mark; |
|
187 return overridden; |
|
188 } |
|
189 |
|
190 Constraint.prototype.destroyConstraint = function () { |
|
191 if (this.isSatisfied()) planner.incrementalRemove(this); |
|
192 else this.removeFromGraph(); |
|
193 } |
|
194 |
|
195 /** |
|
196 * Normal constraints are not input constraints. An input constraint |
|
197 * is one that depends on external state, such as the mouse, the |
|
198 * keybord, a clock, or some arbitraty piece of imperative code. |
|
199 */ |
|
200 Constraint.prototype.isInput = function () { |
|
201 return false; |
|
202 } |
|
203 |
|
204 /* --- * |
|
205 * U n a r y C o n s t r a i n t |
|
206 * --- */ |
|
207 |
|
208 /** |
|
209 * Abstract superclass for constraints having a single possible output |
|
210 * variable. |
|
211 */ |
|
212 function UnaryConstraint(v, strength) { |
|
213 UnaryConstraint.superConstructor.call(this, strength); |
|
214 this.myOutput = v; |
|
215 this.satisfied = false; |
|
216 this.addConstraint(); |
|
217 } |
|
218 |
|
219 UnaryConstraint.inheritsFrom(Constraint); |
|
220 |
|
221 /** |
|
222 * Adds this constraint to the constraint graph |
|
223 */ |
|
224 UnaryConstraint.prototype.addToGraph = function () { |
|
225 this.myOutput.addConstraint(this); |
|
226 this.satisfied = false; |
|
227 } |
|
228 |
|
229 /** |
|
230 * Decides if this constraint can be satisfied and records that |
|
231 * decision. |
|
232 */ |
|
233 UnaryConstraint.prototype.chooseMethod = function (mark) { |
|
234 this.satisfied = (this.myOutput.mark != mark) |
|
235 && Strength.stronger(this.strength, this.myOutput.walkStrength); |
|
236 } |
|
237 |
|
238 /** |
|
239 * Returns true if this constraint is satisfied in the current solution. |
|
240 */ |
|
241 UnaryConstraint.prototype.isSatisfied = function () { |
|
242 return this.satisfied; |
|
243 } |
|
244 |
|
245 UnaryConstraint.prototype.markInputs = function (mark) { |
|
246 // has no inputs |
|
247 } |
|
248 |
|
249 /** |
|
250 * Returns the current output variable. |
|
251 */ |
|
252 UnaryConstraint.prototype.output = function () { |
|
253 return this.myOutput; |
|
254 } |
|
255 |
|
256 /** |
|
257 * Calculate the walkabout strength, the stay flag, and, if it is |
|
258 * 'stay', the value for the current output of this constraint. Assume |
|
259 * this constraint is satisfied. |
|
260 */ |
|
261 UnaryConstraint.prototype.recalculate = function () { |
|
262 this.myOutput.walkStrength = this.strength; |
|
263 this.myOutput.stay = !this.isInput(); |
|
264 if (this.myOutput.stay) this.execute(); // Stay optimization |
|
265 } |
|
266 |
|
267 /** |
|
268 * Records that this constraint is unsatisfied |
|
269 */ |
|
270 UnaryConstraint.prototype.markUnsatisfied = function () { |
|
271 this.satisfied = false; |
|
272 } |
|
273 |
|
274 UnaryConstraint.prototype.inputsKnown = function () { |
|
275 return true; |
|
276 } |
|
277 |
|
278 UnaryConstraint.prototype.removeFromGraph = function () { |
|
279 if (this.myOutput != null) this.myOutput.removeConstraint(this); |
|
280 this.satisfied = false; |
|
281 } |
|
282 |
|
283 /* --- * |
|
284 * S t a y C o n s t r a i n t |
|
285 * --- */ |
|
286 |
|
287 /** |
|
288 * Variables that should, with some level of preference, stay the same. |
|
289 * Planners may exploit the fact that instances, if satisfied, will not |
|
290 * change their output during plan execution. This is called "stay |
|
291 * optimization". |
|
292 */ |
|
293 function StayConstraint(v, str) { |
|
294 StayConstraint.superConstructor.call(this, v, str); |
|
295 } |
|
296 |
|
297 StayConstraint.inheritsFrom(UnaryConstraint); |
|
298 |
|
299 StayConstraint.prototype.execute = function () { |
|
300 // Stay constraints do nothing |
|
301 } |
|
302 |
|
303 /* --- * |
|
304 * E d i t C o n s t r a i n t |
|
305 * --- */ |
|
306 |
|
307 /** |
|
308 * A unary input constraint used to mark a variable that the client |
|
309 * wishes to change. |
|
310 */ |
|
311 function EditConstraint(v, str) { |
|
312 EditConstraint.superConstructor.call(this, v, str); |
|
313 } |
|
314 |
|
315 EditConstraint.inheritsFrom(UnaryConstraint); |
|
316 |
|
317 /** |
|
318 * Edits indicate that a variable is to be changed by imperative code. |
|
319 */ |
|
320 EditConstraint.prototype.isInput = function () { |
|
321 return true; |
|
322 } |
|
323 |
|
324 EditConstraint.prototype.execute = function () { |
|
325 // Edit constraints do nothing |
|
326 } |
|
327 |
|
328 /* --- * |
|
329 * B i n a r y C o n s t r a i n t |
|
330 * --- */ |
|
331 |
|
332 var Direction = new Object(); |
|
333 Direction.NONE = 0; |
|
334 Direction.FORWARD = 1; |
|
335 Direction.BACKWARD = -1; |
|
336 |
|
337 /** |
|
338 * Abstract superclass for constraints having two possible output |
|
339 * variables. |
|
340 */ |
|
341 function BinaryConstraint(var1, var2, strength) { |
|
342 BinaryConstraint.superConstructor.call(this, strength); |
|
343 this.v1 = var1; |
|
344 this.v2 = var2; |
|
345 this.direction = Direction.NONE; |
|
346 this.addConstraint(); |
|
347 } |
|
348 |
|
349 BinaryConstraint.inheritsFrom(Constraint); |
|
350 |
|
351 /** |
|
352 * Decides if this constraint can be satisfied and which way it |
|
353 * should flow based on the relative strength of the variables related, |
|
354 * and record that decision. |
|
355 */ |
|
356 BinaryConstraint.prototype.chooseMethod = function (mark) { |
|
357 if (this.v1.mark == mark) { |
|
358 this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) |
|
359 ? Direction.FORWARD |
|
360 : Direction.NONE; |
|
361 } |
|
362 if (this.v2.mark == mark) { |
|
363 this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) |
|
364 ? Direction.BACKWARD |
|
365 : Direction.NONE; |
|
366 } |
|
367 if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { |
|
368 this.direction = Strength.stronger(this.strength, this.v1.walkStrength) |
|
369 ? Direction.BACKWARD |
|
370 : Direction.NONE; |
|
371 } else { |
|
372 this.direction = Strength.stronger(this.strength, this.v2.walkStrength) |
|
373 ? Direction.FORWARD |
|
374 : Direction.BACKWARD |
|
375 } |
|
376 } |
|
377 |
|
378 /** |
|
379 * Add this constraint to the constraint graph |
|
380 */ |
|
381 BinaryConstraint.prototype.addToGraph = function () { |
|
382 this.v1.addConstraint(this); |
|
383 this.v2.addConstraint(this); |
|
384 this.direction = Direction.NONE; |
|
385 } |
|
386 |
|
387 /** |
|
388 * Answer true if this constraint is satisfied in the current solution. |
|
389 */ |
|
390 BinaryConstraint.prototype.isSatisfied = function () { |
|
391 return this.direction != Direction.NONE; |
|
392 } |
|
393 |
|
394 /** |
|
395 * Mark the input variable with the given mark. |
|
396 */ |
|
397 BinaryConstraint.prototype.markInputs = function (mark) { |
|
398 this.input().mark = mark; |
|
399 } |
|
400 |
|
401 /** |
|
402 * Returns the current input variable |
|
403 */ |
|
404 BinaryConstraint.prototype.input = function () { |
|
405 return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; |
|
406 } |
|
407 |
|
408 /** |
|
409 * Returns the current output variable |
|
410 */ |
|
411 BinaryConstraint.prototype.output = function () { |
|
412 return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; |
|
413 } |
|
414 |
|
415 /** |
|
416 * Calculate the walkabout strength, the stay flag, and, if it is |
|
417 * 'stay', the value for the current output of this |
|
418 * constraint. Assume this constraint is satisfied. |
|
419 */ |
|
420 BinaryConstraint.prototype.recalculate = function () { |
|
421 var ihn = this.input(), out = this.output(); |
|
422 out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
|
423 out.stay = ihn.stay; |
|
424 if (out.stay) this.execute(); |
|
425 } |
|
426 |
|
427 /** |
|
428 * Record the fact that this constraint is unsatisfied. |
|
429 */ |
|
430 BinaryConstraint.prototype.markUnsatisfied = function () { |
|
431 this.direction = Direction.NONE; |
|
432 } |
|
433 |
|
434 BinaryConstraint.prototype.inputsKnown = function (mark) { |
|
435 var i = this.input(); |
|
436 return i.mark == mark || i.stay || i.determinedBy == null; |
|
437 } |
|
438 |
|
439 BinaryConstraint.prototype.removeFromGraph = function () { |
|
440 if (this.v1 != null) this.v1.removeConstraint(this); |
|
441 if (this.v2 != null) this.v2.removeConstraint(this); |
|
442 this.direction = Direction.NONE; |
|
443 } |
|
444 |
|
445 /* --- * |
|
446 * S c a l e C o n s t r a i n t |
|
447 * --- */ |
|
448 |
|
449 /** |
|
450 * Relates two variables by the linear scaling relationship: "v2 = |
|
451 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain |
|
452 * this relationship but the scale factor and offset are considered |
|
453 * read-only. |
|
454 */ |
|
455 function ScaleConstraint(src, scale, offset, dest, strength) { |
|
456 this.direction = Direction.NONE; |
|
457 this.scale = scale; |
|
458 this.offset = offset; |
|
459 ScaleConstraint.superConstructor.call(this, src, dest, strength); |
|
460 } |
|
461 |
|
462 ScaleConstraint.inheritsFrom(BinaryConstraint); |
|
463 |
|
464 /** |
|
465 * Adds this constraint to the constraint graph. |
|
466 */ |
|
467 ScaleConstraint.prototype.addToGraph = function () { |
|
468 ScaleConstraint.superConstructor.prototype.addToGraph.call(this); |
|
469 this.scale.addConstraint(this); |
|
470 this.offset.addConstraint(this); |
|
471 } |
|
472 |
|
473 ScaleConstraint.prototype.removeFromGraph = function () { |
|
474 ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); |
|
475 if (this.scale != null) this.scale.removeConstraint(this); |
|
476 if (this.offset != null) this.offset.removeConstraint(this); |
|
477 } |
|
478 |
|
479 ScaleConstraint.prototype.markInputs = function (mark) { |
|
480 ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); |
|
481 this.scale.mark = this.offset.mark = mark; |
|
482 } |
|
483 |
|
484 /** |
|
485 * Enforce this constraint. Assume that it is satisfied. |
|
486 */ |
|
487 ScaleConstraint.prototype.execute = function () { |
|
488 if (this.direction == Direction.FORWARD) { |
|
489 this.v2.value = this.v1.value * this.scale.value + this.offset.value; |
|
490 } else { |
|
491 this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; |
|
492 } |
|
493 } |
|
494 |
|
495 /** |
|
496 * Calculate the walkabout strength, the stay flag, and, if it is |
|
497 * 'stay', the value for the current output of this constraint. Assume |
|
498 * this constraint is satisfied. |
|
499 */ |
|
500 ScaleConstraint.prototype.recalculate = function () { |
|
501 var ihn = this.input(), out = this.output(); |
|
502 out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
|
503 out.stay = ihn.stay && this.scale.stay && this.offset.stay; |
|
504 if (out.stay) this.execute(); |
|
505 } |
|
506 |
|
507 /* --- * |
|
508 * E q u a l i t y C o n s t r a i n t |
|
509 * --- */ |
|
510 |
|
511 /** |
|
512 * Constrains two variables to have the same value. |
|
513 */ |
|
514 function EqualityConstraint(var1, var2, strength) { |
|
515 EqualityConstraint.superConstructor.call(this, var1, var2, strength); |
|
516 } |
|
517 |
|
518 EqualityConstraint.inheritsFrom(BinaryConstraint); |
|
519 |
|
520 /** |
|
521 * Enforce this constraint. Assume that it is satisfied. |
|
522 */ |
|
523 EqualityConstraint.prototype.execute = function () { |
|
524 this.output().value = this.input().value; |
|
525 } |
|
526 |
|
527 /* --- * |
|
528 * V a r i a b l e |
|
529 * --- */ |
|
530 |
|
531 /** |
|
532 * A constrained variable. In addition to its value, it maintain the |
|
533 * structure of the constraint graph, the current dataflow graph, and |
|
534 * various parameters of interest to the DeltaBlue incremental |
|
535 * constraint solver. |
|
536 **/ |
|
537 function Variable(name, initialValue) { |
|
538 this.value = initialValue || 0; |
|
539 this.constraints = new OrderedCollection(); |
|
540 this.determinedBy = null; |
|
541 this.mark = 0; |
|
542 this.walkStrength = Strength.WEAKEST; |
|
543 this.stay = true; |
|
544 this.name = name; |
|
545 } |
|
546 |
|
547 /** |
|
548 * Add the given constraint to the set of all constraints that refer |
|
549 * this variable. |
|
550 */ |
|
551 Variable.prototype.addConstraint = function (c) { |
|
552 this.constraints.add(c); |
|
553 } |
|
554 |
|
555 /** |
|
556 * Removes all traces of c from this variable. |
|
557 */ |
|
558 Variable.prototype.removeConstraint = function (c) { |
|
559 this.constraints.remove(c); |
|
560 if (this.determinedBy == c) this.determinedBy = null; |
|
561 } |
|
562 |
|
563 /* --- * |
|
564 * P l a n n e r |
|
565 * --- */ |
|
566 |
|
567 /** |
|
568 * The DeltaBlue planner |
|
569 */ |
|
570 function Planner() { |
|
571 this.currentMark = 0; |
|
572 } |
|
573 |
|
574 /** |
|
575 * Attempt to satisfy the given constraint and, if successful, |
|
576 * incrementally update the dataflow graph. Details: If satifying |
|
577 * the constraint is successful, it may override a weaker constraint |
|
578 * on its output. The algorithm attempts to resatisfy that |
|
579 * constraint using some other method. This process is repeated |
|
580 * until either a) it reaches a variable that was not previously |
|
581 * determined by any constraint or b) it reaches a constraint that |
|
582 * is too weak to be satisfied using any of its methods. The |
|
583 * variables of constraints that have been processed are marked with |
|
584 * a unique mark value so that we know where we've been. This allows |
|
585 * the algorithm to avoid getting into an infinite loop even if the |
|
586 * constraint graph has an inadvertent cycle. |
|
587 */ |
|
588 Planner.prototype.incrementalAdd = function (c) { |
|
589 var mark = this.newMark(); |
|
590 var overridden = c.satisfy(mark); |
|
591 while (overridden != null) |
|
592 overridden = overridden.satisfy(mark); |
|
593 } |
|
594 |
|
595 /** |
|
596 * Entry point for retracting a constraint. Remove the given |
|
597 * constraint and incrementally update the dataflow graph. |
|
598 * Details: Retracting the given constraint may allow some currently |
|
599 * unsatisfiable downstream constraint to be satisfied. We therefore collect |
|
600 * a list of unsatisfied downstream constraints and attempt to |
|
601 * satisfy each one in turn. This list is traversed by constraint |
|
602 * strength, strongest first, as a heuristic for avoiding |
|
603 * unnecessarily adding and then overriding weak constraints. |
|
604 * Assume: c is satisfied. |
|
605 */ |
|
606 Planner.prototype.incrementalRemove = function (c) { |
|
607 var out = c.output(); |
|
608 c.markUnsatisfied(); |
|
609 c.removeFromGraph(); |
|
610 var unsatisfied = this.removePropagateFrom(out); |
|
611 var strength = Strength.REQUIRED; |
|
612 do { |
|
613 for (var i = 0; i < unsatisfied.size(); i++) { |
|
614 var u = unsatisfied.at(i); |
|
615 if (u.strength == strength) |
|
616 this.incrementalAdd(u); |
|
617 } |
|
618 strength = strength.nextWeaker(); |
|
619 } while (strength != Strength.WEAKEST); |
|
620 } |
|
621 |
|
622 /** |
|
623 * Select a previously unused mark value. |
|
624 */ |
|
625 Planner.prototype.newMark = function () { |
|
626 return ++this.currentMark; |
|
627 } |
|
628 |
|
629 /** |
|
630 * Extract a plan for resatisfaction starting from the given source |
|
631 * constraints, usually a set of input constraints. This method |
|
632 * assumes that stay optimization is desired; the plan will contain |
|
633 * only constraints whose output variables are not stay. Constraints |
|
634 * that do no computation, such as stay and edit constraints, are |
|
635 * not included in the plan. |
|
636 * Details: The outputs of a constraint are marked when it is added |
|
637 * to the plan under construction. A constraint may be appended to |
|
638 * the plan when all its input variables are known. A variable is |
|
639 * known if either a) the variable is marked (indicating that has |
|
640 * been computed by a constraint appearing earlier in the plan), b) |
|
641 * the variable is 'stay' (i.e. it is a constant at plan execution |
|
642 * time), or c) the variable is not determined by any |
|
643 * constraint. The last provision is for past states of history |
|
644 * variables, which are not stay but which are also not computed by |
|
645 * any constraint. |
|
646 * Assume: sources are all satisfied. |
|
647 */ |
|
648 Planner.prototype.makePlan = function (sources) { |
|
649 var mark = this.newMark(); |
|
650 var plan = new Plan(); |
|
651 var todo = sources; |
|
652 while (todo.size() > 0) { |
|
653 var c = todo.removeFirst(); |
|
654 if (c.output().mark != mark && c.inputsKnown(mark)) { |
|
655 plan.addConstraint(c); |
|
656 c.output().mark = mark; |
|
657 this.addConstraintsConsumingTo(c.output(), todo); |
|
658 } |
|
659 } |
|
660 return plan; |
|
661 } |
|
662 |
|
663 /** |
|
664 * Extract a plan for resatisfying starting from the output of the |
|
665 * given constraints, usually a set of input constraints. |
|
666 */ |
|
667 Planner.prototype.extractPlanFromConstraints = function (constraints) { |
|
668 var sources = new OrderedCollection(); |
|
669 for (var i = 0; i < constraints.size(); i++) { |
|
670 var c = constraints.at(i); |
|
671 if (c.isInput() && c.isSatisfied()) |
|
672 // not in plan already and eligible for inclusion |
|
673 sources.add(c); |
|
674 } |
|
675 return this.makePlan(sources); |
|
676 } |
|
677 |
|
678 /** |
|
679 * Recompute the walkabout strengths and stay flags of all variables |
|
680 * downstream of the given constraint and recompute the actual |
|
681 * values of all variables whose stay flag is true. If a cycle is |
|
682 * detected, remove the given constraint and answer |
|
683 * false. Otherwise, answer true. |
|
684 * Details: Cycles are detected when a marked variable is |
|
685 * encountered downstream of the given constraint. The sender is |
|
686 * assumed to have marked the inputs of the given constraint with |
|
687 * the given mark. Thus, encountering a marked node downstream of |
|
688 * the output constraint means that there is a path from the |
|
689 * constraint's output to one of its inputs. |
|
690 */ |
|
691 Planner.prototype.addPropagate = function (c, mark) { |
|
692 var todo = new OrderedCollection(); |
|
693 todo.add(c); |
|
694 while (todo.size() > 0) { |
|
695 var d = todo.removeFirst(); |
|
696 if (d.output().mark == mark) { |
|
697 this.incrementalRemove(c); |
|
698 return false; |
|
699 } |
|
700 d.recalculate(); |
|
701 this.addConstraintsConsumingTo(d.output(), todo); |
|
702 } |
|
703 return true; |
|
704 } |
|
705 |
|
706 |
|
707 /** |
|
708 * Update the walkabout strengths and stay flags of all variables |
|
709 * downstream of the given constraint. Answer a collection of |
|
710 * unsatisfied constraints sorted in order of decreasing strength. |
|
711 */ |
|
712 Planner.prototype.removePropagateFrom = function (out) { |
|
713 out.determinedBy = null; |
|
714 out.walkStrength = Strength.WEAKEST; |
|
715 out.stay = true; |
|
716 var unsatisfied = new OrderedCollection(); |
|
717 var todo = new OrderedCollection(); |
|
718 todo.add(out); |
|
719 while (todo.size() > 0) { |
|
720 var v = todo.removeFirst(); |
|
721 for (var i = 0; i < v.constraints.size(); i++) { |
|
722 var c = v.constraints.at(i); |
|
723 if (!c.isSatisfied()) |
|
724 unsatisfied.add(c); |
|
725 } |
|
726 var determining = v.determinedBy; |
|
727 for (var i = 0; i < v.constraints.size(); i++) { |
|
728 var next = v.constraints.at(i); |
|
729 if (next != determining && next.isSatisfied()) { |
|
730 next.recalculate(); |
|
731 todo.add(next.output()); |
|
732 } |
|
733 } |
|
734 } |
|
735 return unsatisfied; |
|
736 } |
|
737 |
|
738 Planner.prototype.addConstraintsConsumingTo = function (v, coll) { |
|
739 var determining = v.determinedBy; |
|
740 var cc = v.constraints; |
|
741 for (var i = 0; i < cc.size(); i++) { |
|
742 var c = cc.at(i); |
|
743 if (c != determining && c.isSatisfied()) |
|
744 coll.add(c); |
|
745 } |
|
746 } |
|
747 |
|
748 /* --- * |
|
749 * P l a n |
|
750 * --- */ |
|
751 |
|
752 /** |
|
753 * A Plan is an ordered list of constraints to be executed in sequence |
|
754 * to resatisfy all currently satisfiable constraints in the face of |
|
755 * one or more changing inputs. |
|
756 */ |
|
757 function Plan() { |
|
758 this.v = new OrderedCollection(); |
|
759 } |
|
760 |
|
761 Plan.prototype.addConstraint = function (c) { |
|
762 this.v.add(c); |
|
763 } |
|
764 |
|
765 Plan.prototype.size = function () { |
|
766 return this.v.size(); |
|
767 } |
|
768 |
|
769 Plan.prototype.constraintAt = function (index) { |
|
770 return this.v.at(index); |
|
771 } |
|
772 |
|
773 Plan.prototype.execute = function () { |
|
774 for (var i = 0; i < this.size(); i++) { |
|
775 var c = this.constraintAt(i); |
|
776 c.execute(); |
|
777 } |
|
778 } |
|
779 |
|
780 /* --- * |
|
781 * M a i n |
|
782 * --- */ |
|
783 |
|
784 /** |
|
785 * This is the standard DeltaBlue benchmark. A long chain of equality |
|
786 * constraints is constructed with a stay constraint on one end. An |
|
787 * edit constraint is then added to the opposite end and the time is |
|
788 * measured for adding and removing this constraint, and extracting |
|
789 * and executing a constraint satisfaction plan. There are two cases. |
|
790 * In case 1, the added constraint is stronger than the stay |
|
791 * constraint and values must propagate down the entire length of the |
|
792 * chain. In case 2, the added constraint is weaker than the stay |
|
793 * constraint so it cannot be accomodated. The cost in this case is, |
|
794 * of course, very low. Typical situations lie somewhere between these |
|
795 * two extremes. |
|
796 */ |
|
797 function chainTest(n) { |
|
798 planner = new Planner(); |
|
799 var prev = null, first = null, last = null; |
|
800 |
|
801 // Build chain of n equality constraints |
|
802 for (var i = 0; i <= n; i++) { |
|
803 var name = "v" + i; |
|
804 var v = new Variable(name); |
|
805 if (prev != null) |
|
806 new EqualityConstraint(prev, v, Strength.REQUIRED); |
|
807 if (i == 0) first = v; |
|
808 if (i == n) last = v; |
|
809 prev = v; |
|
810 } |
|
811 |
|
812 new StayConstraint(last, Strength.STRONG_DEFAULT); |
|
813 var edit = new EditConstraint(first, Strength.PREFERRED); |
|
814 var edits = new OrderedCollection(); |
|
815 edits.add(edit); |
|
816 var plan = planner.extractPlanFromConstraints(edits); |
|
817 for (var i = 0; i < 100; i++) { |
|
818 first.value = i; |
|
819 plan.execute(); |
|
820 if (last.value != i) |
|
821 alert("Chain test failed."); |
|
822 } |
|
823 } |
|
824 |
|
825 /** |
|
826 * This test constructs a two sets of variables related to each |
|
827 * other by a simple linear transformation (scale and offset). The |
|
828 * time is measured to change a variable on either side of the |
|
829 * mapping and to change the scale and offset factors. |
|
830 */ |
|
831 function projectionTest(n) { |
|
832 planner = new Planner(); |
|
833 var scale = new Variable("scale", 10); |
|
834 var offset = new Variable("offset", 1000); |
|
835 var src = null, dst = null; |
|
836 |
|
837 var dests = new OrderedCollection(); |
|
838 for (var i = 0; i < n; i++) { |
|
839 src = new Variable("src" + i, i); |
|
840 dst = new Variable("dst" + i, i); |
|
841 dests.add(dst); |
|
842 new StayConstraint(src, Strength.NORMAL); |
|
843 new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); |
|
844 } |
|
845 |
|
846 change(src, 17); |
|
847 if (dst.value != 1170) alert("Projection 1 failed"); |
|
848 change(dst, 1050); |
|
849 if (src.value != 5) alert("Projection 2 failed"); |
|
850 change(scale, 5); |
|
851 for (var i = 0; i < n - 1; i++) { |
|
852 if (dests.at(i).value != i * 5 + 1000) |
|
853 alert("Projection 3 failed"); |
|
854 } |
|
855 change(offset, 2000); |
|
856 for (var i = 0; i < n - 1; i++) { |
|
857 if (dests.at(i).value != i * 5 + 2000) |
|
858 alert("Projection 4 failed"); |
|
859 } |
|
860 } |
|
861 |
|
862 function change(v, newValue) { |
|
863 var edit = new EditConstraint(v, Strength.PREFERRED); |
|
864 var edits = new OrderedCollection(); |
|
865 edits.add(edit); |
|
866 var plan = planner.extractPlanFromConstraints(edits); |
|
867 for (var i = 0; i < 10; i++) { |
|
868 v.value = newValue; |
|
869 plan.execute(); |
|
870 } |
|
871 edit.destroyConstraint(); |
|
872 } |
|
873 |
|
874 // Global variable holding the current planner. |
|
875 var planner = null; |
|
876 |
|
877 function deltaBlue() { |
|
878 chainTest(100); |
|
879 projectionTest(100); |
|
880 } |