|
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 // vim:cindent:ts=2:et:sw=2: |
|
3 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #include "nsStyleConsts.h" |
|
8 #include "nsCSSColorUtils.h" |
|
9 #include "GeckoProfiler.h" |
|
10 #include "nsExpirationTracker.h" |
|
11 #include "RoundedRect.h" |
|
12 #include "nsClassHashtable.h" |
|
13 #include "nsStyleStruct.h" |
|
14 #include "gfxContext.h" |
|
15 #include "nsCSSRenderingBorders.h" |
|
16 #include "mozilla/gfx/2D.h" |
|
17 #include "gfx2DGlue.h" |
|
18 #include "gfxGradientCache.h" |
|
19 #include <algorithm> |
|
20 |
|
21 using namespace mozilla; |
|
22 using namespace mozilla::gfx; |
|
23 |
|
24 /** |
|
25 * nsCSSRendering::PaintBorder |
|
26 * nsCSSRendering::PaintOutline |
|
27 * -> DrawBorders |
|
28 * |
|
29 * DrawBorders |
|
30 * -> Ability to use specialized approach? |
|
31 * |- Draw using specialized function |
|
32 * |- separate corners? |
|
33 * |- dashed side mask |
|
34 * | |
|
35 * -> can border be drawn in 1 pass? (e.g., solid border same color all around) |
|
36 * |- DrawBorderSides with all 4 sides |
|
37 * -> more than 1 pass? |
|
38 * |- for each corner |
|
39 * |- clip to DoCornerClipSubPath |
|
40 * |- for each side adjacent to corner |
|
41 * |- clip to DoSideClipSubPath |
|
42 * |- DrawBorderSides with one side |
|
43 * |- for each side |
|
44 * |- DoSideClipWithoutCornersSubPath |
|
45 * |- DrawDashedSide || DrawBorderSides with one side |
|
46 */ |
|
47 |
|
48 static void ComputeBorderCornerDimensions(const gfxRect& aOuterRect, |
|
49 const gfxRect& aInnerRect, |
|
50 const gfxCornerSizes& aRadii, |
|
51 gfxCornerSizes *aDimsResult); |
|
52 |
|
53 // given a side index, get the previous and next side index |
|
54 #define NEXT_SIDE(_s) mozilla::css::Side(((_s) + 1) & 3) |
|
55 #define PREV_SIDE(_s) mozilla::css::Side(((_s) + 3) & 3) |
|
56 |
|
57 // from the given base color and the background color, turn |
|
58 // color into a color for the given border pattern style |
|
59 static gfxRGBA MakeBorderColor(const gfxRGBA& aColor, |
|
60 const gfxRGBA& aBackgroundColor, |
|
61 BorderColorStyle aBorderColorStyle); |
|
62 |
|
63 |
|
64 // Given a line index (an index starting from the outside of the |
|
65 // border going inwards) and an array of line styles, calculate the |
|
66 // color that that stripe of the border should be rendered in. |
|
67 static gfxRGBA ComputeColorForLine(uint32_t aLineIndex, |
|
68 const BorderColorStyle* aBorderColorStyle, |
|
69 uint32_t aBorderColorStyleCount, |
|
70 nscolor aBorderColor, |
|
71 nscolor aBackgroundColor); |
|
72 |
|
73 static gfxRGBA ComputeCompositeColorForLine(uint32_t aLineIndex, |
|
74 const nsBorderColors* aBorderColors); |
|
75 |
|
76 // little helper function to check if the array of 4 floats given are |
|
77 // equal to the given value |
|
78 static bool |
|
79 CheckFourFloatsEqual(const gfxFloat *vals, gfxFloat k) |
|
80 { |
|
81 return (vals[0] == k && |
|
82 vals[1] == k && |
|
83 vals[2] == k && |
|
84 vals[3] == k); |
|
85 } |
|
86 |
|
87 static bool |
|
88 IsZeroSize(const gfxSize& sz) { |
|
89 return sz.width == 0.0 || sz.height == 0.0; |
|
90 } |
|
91 |
|
92 static bool |
|
93 AllCornersZeroSize(const gfxCornerSizes& corners) { |
|
94 return IsZeroSize(corners[NS_CORNER_TOP_LEFT]) && |
|
95 IsZeroSize(corners[NS_CORNER_TOP_RIGHT]) && |
|
96 IsZeroSize(corners[NS_CORNER_BOTTOM_RIGHT]) && |
|
97 IsZeroSize(corners[NS_CORNER_BOTTOM_LEFT]); |
|
98 } |
|
99 |
|
100 typedef enum { |
|
101 // Normal solid square corner. Will be rectangular, the size of the |
|
102 // adjacent sides. If the corner has a border radius, the corner |
|
103 // will always be solid, since we don't do dotted/dashed etc. |
|
104 CORNER_NORMAL, |
|
105 |
|
106 // Paint the corner in whatever style is not dotted/dashed of the |
|
107 // adjacent corners. |
|
108 CORNER_SOLID, |
|
109 |
|
110 // Paint the corner as a dot, the size of the bigger of the adjacent |
|
111 // sides. |
|
112 CORNER_DOT |
|
113 } CornerStyle; |
|
114 |
|
115 nsCSSBorderRenderer::nsCSSBorderRenderer(int32_t aAppUnitsPerPixel, |
|
116 gfxContext* aDestContext, |
|
117 gfxRect& aOuterRect, |
|
118 const uint8_t* aBorderStyles, |
|
119 const gfxFloat* aBorderWidths, |
|
120 gfxCornerSizes& aBorderRadii, |
|
121 const nscolor* aBorderColors, |
|
122 nsBorderColors* const* aCompositeColors, |
|
123 int aSkipSides, |
|
124 nscolor aBackgroundColor) |
|
125 : mContext(aDestContext), |
|
126 mOuterRect(aOuterRect), |
|
127 mBorderStyles(aBorderStyles), |
|
128 mBorderWidths(aBorderWidths), |
|
129 mBorderRadii(aBorderRadii), |
|
130 mBorderColors(aBorderColors), |
|
131 mCompositeColors(aCompositeColors), |
|
132 mAUPP(aAppUnitsPerPixel), |
|
133 mSkipSides(aSkipSides), |
|
134 mBackgroundColor(aBackgroundColor) |
|
135 { |
|
136 if (!mCompositeColors) { |
|
137 static nsBorderColors * const noColors[4] = { nullptr }; |
|
138 mCompositeColors = &noColors[0]; |
|
139 } |
|
140 |
|
141 mInnerRect = mOuterRect; |
|
142 mInnerRect.Deflate( |
|
143 gfxMargin(mBorderStyles[0] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[0] : 0, |
|
144 mBorderStyles[1] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[1] : 0, |
|
145 mBorderStyles[2] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[2] : 0, |
|
146 mBorderStyles[3] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[3] : 0)); |
|
147 |
|
148 ComputeBorderCornerDimensions(mOuterRect, mInnerRect, mBorderRadii, &mBorderCornerDimensions); |
|
149 |
|
150 mOneUnitBorder = CheckFourFloatsEqual(mBorderWidths, 1.0); |
|
151 mNoBorderRadius = AllCornersZeroSize(mBorderRadii); |
|
152 mAvoidStroke = false; |
|
153 } |
|
154 |
|
155 /* static */ void |
|
156 nsCSSBorderRenderer::ComputeInnerRadii(const gfxCornerSizes& aRadii, |
|
157 const gfxFloat *aBorderSizes, |
|
158 gfxCornerSizes *aInnerRadiiRet) |
|
159 { |
|
160 gfxCornerSizes& iRadii = *aInnerRadiiRet; |
|
161 |
|
162 iRadii[C_TL].width = std::max(0.0, aRadii[C_TL].width - aBorderSizes[NS_SIDE_LEFT]); |
|
163 iRadii[C_TL].height = std::max(0.0, aRadii[C_TL].height - aBorderSizes[NS_SIDE_TOP]); |
|
164 |
|
165 iRadii[C_TR].width = std::max(0.0, aRadii[C_TR].width - aBorderSizes[NS_SIDE_RIGHT]); |
|
166 iRadii[C_TR].height = std::max(0.0, aRadii[C_TR].height - aBorderSizes[NS_SIDE_TOP]); |
|
167 |
|
168 iRadii[C_BR].width = std::max(0.0, aRadii[C_BR].width - aBorderSizes[NS_SIDE_RIGHT]); |
|
169 iRadii[C_BR].height = std::max(0.0, aRadii[C_BR].height - aBorderSizes[NS_SIDE_BOTTOM]); |
|
170 |
|
171 iRadii[C_BL].width = std::max(0.0, aRadii[C_BL].width - aBorderSizes[NS_SIDE_LEFT]); |
|
172 iRadii[C_BL].height = std::max(0.0, aRadii[C_BL].height - aBorderSizes[NS_SIDE_BOTTOM]); |
|
173 } |
|
174 |
|
175 /* static */ void |
|
176 nsCSSBorderRenderer::ComputeOuterRadii(const gfxCornerSizes& aRadii, |
|
177 const gfxFloat *aBorderSizes, |
|
178 gfxCornerSizes *aOuterRadiiRet) |
|
179 { |
|
180 gfxCornerSizes& oRadii = *aOuterRadiiRet; |
|
181 |
|
182 // default all corners to sharp corners |
|
183 oRadii = gfxCornerSizes(0.0); |
|
184 |
|
185 // round the edges that have radii > 0.0 to start with |
|
186 if (aRadii[C_TL].width > 0.0 && aRadii[C_TL].height > 0.0) { |
|
187 oRadii[C_TL].width = std::max(0.0, aRadii[C_TL].width + aBorderSizes[NS_SIDE_LEFT]); |
|
188 oRadii[C_TL].height = std::max(0.0, aRadii[C_TL].height + aBorderSizes[NS_SIDE_TOP]); |
|
189 } |
|
190 |
|
191 if (aRadii[C_TR].width > 0.0 && aRadii[C_TR].height > 0.0) { |
|
192 oRadii[C_TR].width = std::max(0.0, aRadii[C_TR].width + aBorderSizes[NS_SIDE_RIGHT]); |
|
193 oRadii[C_TR].height = std::max(0.0, aRadii[C_TR].height + aBorderSizes[NS_SIDE_TOP]); |
|
194 } |
|
195 |
|
196 if (aRadii[C_BR].width > 0.0 && aRadii[C_BR].height > 0.0) { |
|
197 oRadii[C_BR].width = std::max(0.0, aRadii[C_BR].width + aBorderSizes[NS_SIDE_RIGHT]); |
|
198 oRadii[C_BR].height = std::max(0.0, aRadii[C_BR].height + aBorderSizes[NS_SIDE_BOTTOM]); |
|
199 } |
|
200 |
|
201 if (aRadii[C_BL].width > 0.0 && aRadii[C_BL].height > 0.0) { |
|
202 oRadii[C_BL].width = std::max(0.0, aRadii[C_BL].width + aBorderSizes[NS_SIDE_LEFT]); |
|
203 oRadii[C_BL].height = std::max(0.0, aRadii[C_BL].height + aBorderSizes[NS_SIDE_BOTTOM]); |
|
204 } |
|
205 } |
|
206 |
|
207 /*static*/ void |
|
208 ComputeBorderCornerDimensions(const gfxRect& aOuterRect, |
|
209 const gfxRect& aInnerRect, |
|
210 const gfxCornerSizes& aRadii, |
|
211 gfxCornerSizes *aDimsRet) |
|
212 { |
|
213 gfxFloat leftWidth = aInnerRect.X() - aOuterRect.X(); |
|
214 gfxFloat topWidth = aInnerRect.Y() - aOuterRect.Y(); |
|
215 gfxFloat rightWidth = aOuterRect.Width() - aInnerRect.Width() - leftWidth; |
|
216 gfxFloat bottomWidth = aOuterRect.Height() - aInnerRect.Height() - topWidth; |
|
217 |
|
218 if (AllCornersZeroSize(aRadii)) { |
|
219 // These will always be in pixel units from CSS |
|
220 (*aDimsRet)[C_TL] = gfxSize(leftWidth, topWidth); |
|
221 (*aDimsRet)[C_TR] = gfxSize(rightWidth, topWidth); |
|
222 (*aDimsRet)[C_BR] = gfxSize(rightWidth, bottomWidth); |
|
223 (*aDimsRet)[C_BL] = gfxSize(leftWidth, bottomWidth); |
|
224 } else { |
|
225 // Always round up to whole pixels for the corners; it's safe to |
|
226 // make the corners bigger than necessary, and this way we ensure |
|
227 // that we avoid seams. |
|
228 (*aDimsRet)[C_TL] = gfxSize(ceil(std::max(leftWidth, aRadii[C_TL].width)), |
|
229 ceil(std::max(topWidth, aRadii[C_TL].height))); |
|
230 (*aDimsRet)[C_TR] = gfxSize(ceil(std::max(rightWidth, aRadii[C_TR].width)), |
|
231 ceil(std::max(topWidth, aRadii[C_TR].height))); |
|
232 (*aDimsRet)[C_BR] = gfxSize(ceil(std::max(rightWidth, aRadii[C_BR].width)), |
|
233 ceil(std::max(bottomWidth, aRadii[C_BR].height))); |
|
234 (*aDimsRet)[C_BL] = gfxSize(ceil(std::max(leftWidth, aRadii[C_BL].width)), |
|
235 ceil(std::max(bottomWidth, aRadii[C_BL].height))); |
|
236 } |
|
237 } |
|
238 |
|
239 bool |
|
240 nsCSSBorderRenderer::AreBorderSideFinalStylesSame(uint8_t aSides) |
|
241 { |
|
242 NS_ASSERTION(aSides != 0 && (aSides & ~SIDE_BITS_ALL) == 0, |
|
243 "AreBorderSidesSame: invalid whichSides!"); |
|
244 |
|
245 /* First check if the specified styles and colors are the same for all sides */ |
|
246 int firstStyle = 0; |
|
247 NS_FOR_CSS_SIDES (i) { |
|
248 if (firstStyle == i) { |
|
249 if (((1 << i) & aSides) == 0) |
|
250 firstStyle++; |
|
251 continue; |
|
252 } |
|
253 |
|
254 if (((1 << i) & aSides) == 0) { |
|
255 continue; |
|
256 } |
|
257 |
|
258 if (mBorderStyles[firstStyle] != mBorderStyles[i] || |
|
259 mBorderColors[firstStyle] != mBorderColors[i] || |
|
260 !nsBorderColors::Equal(mCompositeColors[firstStyle], |
|
261 mCompositeColors[i])) |
|
262 return false; |
|
263 } |
|
264 |
|
265 /* Then if it's one of the two-tone styles and we're not |
|
266 * just comparing the TL or BR sides */ |
|
267 switch (mBorderStyles[firstStyle]) { |
|
268 case NS_STYLE_BORDER_STYLE_GROOVE: |
|
269 case NS_STYLE_BORDER_STYLE_RIDGE: |
|
270 case NS_STYLE_BORDER_STYLE_INSET: |
|
271 case NS_STYLE_BORDER_STYLE_OUTSET: |
|
272 return ((aSides & ~(SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0 || |
|
273 (aSides & ~(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0); |
|
274 } |
|
275 |
|
276 return true; |
|
277 } |
|
278 |
|
279 bool |
|
280 nsCSSBorderRenderer::IsSolidCornerStyle(uint8_t aStyle, mozilla::css::Corner aCorner) |
|
281 { |
|
282 switch (aStyle) { |
|
283 case NS_STYLE_BORDER_STYLE_DOTTED: |
|
284 case NS_STYLE_BORDER_STYLE_DASHED: |
|
285 case NS_STYLE_BORDER_STYLE_SOLID: |
|
286 return true; |
|
287 |
|
288 case NS_STYLE_BORDER_STYLE_INSET: |
|
289 case NS_STYLE_BORDER_STYLE_OUTSET: |
|
290 return (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT); |
|
291 |
|
292 case NS_STYLE_BORDER_STYLE_GROOVE: |
|
293 case NS_STYLE_BORDER_STYLE_RIDGE: |
|
294 return mOneUnitBorder && (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT); |
|
295 |
|
296 case NS_STYLE_BORDER_STYLE_DOUBLE: |
|
297 return mOneUnitBorder; |
|
298 |
|
299 default: |
|
300 return false; |
|
301 } |
|
302 } |
|
303 |
|
304 BorderColorStyle |
|
305 nsCSSBorderRenderer::BorderColorStyleForSolidCorner(uint8_t aStyle, mozilla::css::Corner aCorner) |
|
306 { |
|
307 // note that this function assumes that the corner is already solid, |
|
308 // as per the earlier function |
|
309 switch (aStyle) { |
|
310 case NS_STYLE_BORDER_STYLE_DOTTED: |
|
311 case NS_STYLE_BORDER_STYLE_DASHED: |
|
312 case NS_STYLE_BORDER_STYLE_SOLID: |
|
313 case NS_STYLE_BORDER_STYLE_DOUBLE: |
|
314 return BorderColorStyleSolid; |
|
315 |
|
316 case NS_STYLE_BORDER_STYLE_INSET: |
|
317 case NS_STYLE_BORDER_STYLE_GROOVE: |
|
318 if (aCorner == NS_CORNER_TOP_LEFT) |
|
319 return BorderColorStyleDark; |
|
320 else if (aCorner == NS_CORNER_BOTTOM_RIGHT) |
|
321 return BorderColorStyleLight; |
|
322 break; |
|
323 |
|
324 case NS_STYLE_BORDER_STYLE_OUTSET: |
|
325 case NS_STYLE_BORDER_STYLE_RIDGE: |
|
326 if (aCorner == NS_CORNER_TOP_LEFT) |
|
327 return BorderColorStyleLight; |
|
328 else if (aCorner == NS_CORNER_BOTTOM_RIGHT) |
|
329 return BorderColorStyleDark; |
|
330 break; |
|
331 } |
|
332 |
|
333 return BorderColorStyleNone; |
|
334 } |
|
335 |
|
336 void |
|
337 nsCSSBorderRenderer::DoCornerSubPath(mozilla::css::Corner aCorner) |
|
338 { |
|
339 gfxPoint offset(0.0, 0.0); |
|
340 |
|
341 if (aCorner == C_TR || aCorner == C_BR) |
|
342 offset.x = mOuterRect.Width() - mBorderCornerDimensions[aCorner].width; |
|
343 if (aCorner == C_BR || aCorner == C_BL) |
|
344 offset.y = mOuterRect.Height() - mBorderCornerDimensions[aCorner].height; |
|
345 |
|
346 mContext->Rectangle(gfxRect(mOuterRect.TopLeft() + offset, |
|
347 mBorderCornerDimensions[aCorner])); |
|
348 } |
|
349 |
|
350 void |
|
351 nsCSSBorderRenderer::DoSideClipWithoutCornersSubPath(mozilla::css::Side aSide) |
|
352 { |
|
353 gfxPoint offset(0.0, 0.0); |
|
354 |
|
355 // The offset from the outside rect to the start of this side's |
|
356 // box. For the top and bottom sides, the height of the box |
|
357 // must be the border height; the x start must take into account |
|
358 // the corner size (which may be bigger than the right or left |
|
359 // side's width). The same applies to the right and left sides. |
|
360 if (aSide == NS_SIDE_TOP) { |
|
361 offset.x = mBorderCornerDimensions[C_TL].width; |
|
362 } else if (aSide == NS_SIDE_RIGHT) { |
|
363 offset.x = mOuterRect.Width() - mBorderWidths[NS_SIDE_RIGHT]; |
|
364 offset.y = mBorderCornerDimensions[C_TR].height; |
|
365 } else if (aSide == NS_SIDE_BOTTOM) { |
|
366 offset.x = mBorderCornerDimensions[C_BL].width; |
|
367 offset.y = mOuterRect.Height() - mBorderWidths[NS_SIDE_BOTTOM]; |
|
368 } else if (aSide == NS_SIDE_LEFT) { |
|
369 offset.y = mBorderCornerDimensions[C_TL].height; |
|
370 } |
|
371 |
|
372 // The sum of the width & height of the corners adjacent to the |
|
373 // side. This relies on the relationship between side indexing and |
|
374 // corner indexing; that is, 0 == SIDE_TOP and 0 == CORNER_TOP_LEFT, |
|
375 // with both proceeding clockwise. |
|
376 gfxSize sideCornerSum = mBorderCornerDimensions[mozilla::css::Corner(aSide)] |
|
377 + mBorderCornerDimensions[mozilla::css::Corner(NEXT_SIDE(aSide))]; |
|
378 gfxRect rect(mOuterRect.TopLeft() + offset, |
|
379 mOuterRect.Size() - sideCornerSum); |
|
380 |
|
381 if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM) |
|
382 rect.height = mBorderWidths[aSide]; |
|
383 else |
|
384 rect.width = mBorderWidths[aSide]; |
|
385 |
|
386 mContext->Rectangle(rect); |
|
387 } |
|
388 |
|
389 // The side border type and the adjacent border types are |
|
390 // examined and one of the different types of clipping (listed |
|
391 // below) is selected. |
|
392 |
|
393 typedef enum { |
|
394 // clip to the trapezoid formed by the corners of the |
|
395 // inner and outer rectangles for the given side |
|
396 SIDE_CLIP_TRAPEZOID, |
|
397 |
|
398 // clip to the trapezoid formed by the outer rectangle |
|
399 // corners and the center of the region, making sure |
|
400 // that diagonal lines all go directly from the outside |
|
401 // corner to the inside corner, but that they then continue on |
|
402 // to the middle. |
|
403 // |
|
404 // This is needed for correctly clipping rounded borders, |
|
405 // which might extend past the SIDE_CLIP_TRAPEZOID trap. |
|
406 SIDE_CLIP_TRAPEZOID_FULL, |
|
407 |
|
408 // clip to the rectangle formed by the given side; a specific |
|
409 // overlap algorithm is used; see the function for details. |
|
410 // this is currently used for dashing. |
|
411 SIDE_CLIP_RECTANGLE |
|
412 } SideClipType; |
|
413 |
|
414 // Given three points, p0, p1, and midPoint, move p1 further in to the |
|
415 // rectangle (of which aMidPoint is the center) so that it reaches the |
|
416 // closer of the horizontal or vertical lines intersecting the midpoint, |
|
417 // while maintaing the slope of the line. If p0 and p1 are the same, |
|
418 // just move p1 to midPoint (since there's no slope to maintain). |
|
419 // FIXME: Extending only to the midpoint isn't actually sufficient for |
|
420 // boxes with asymmetric radii. |
|
421 static void |
|
422 MaybeMoveToMidPoint(gfxPoint& aP0, gfxPoint& aP1, const gfxPoint& aMidPoint) |
|
423 { |
|
424 gfxPoint ps = aP1 - aP0; |
|
425 |
|
426 if (ps.x == 0.0) { |
|
427 if (ps.y == 0.0) { |
|
428 aP1 = aMidPoint; |
|
429 } else { |
|
430 aP1.y = aMidPoint.y; |
|
431 } |
|
432 } else { |
|
433 if (ps.y == 0.0) { |
|
434 aP1.x = aMidPoint.x; |
|
435 } else { |
|
436 gfxFloat k = std::min((aMidPoint.x - aP0.x) / ps.x, |
|
437 (aMidPoint.y - aP0.y) / ps.y); |
|
438 aP1 = aP0 + ps * k; |
|
439 } |
|
440 } |
|
441 } |
|
442 |
|
443 void |
|
444 nsCSSBorderRenderer::DoSideClipSubPath(mozilla::css::Side aSide) |
|
445 { |
|
446 // the clip proceeds clockwise from the top left corner; |
|
447 // so "start" in each case is the start of the region from that side. |
|
448 // |
|
449 // the final path will be formed like: |
|
450 // s0 ------- e0 |
|
451 // | / |
|
452 // s1 ----- e1 |
|
453 // |
|
454 // that is, the second point will always be on the inside |
|
455 |
|
456 gfxPoint start[2]; |
|
457 gfxPoint end[2]; |
|
458 |
|
459 #define IS_DASHED_OR_DOTTED(_s) ((_s) == NS_STYLE_BORDER_STYLE_DASHED || (_s) == NS_STYLE_BORDER_STYLE_DOTTED) |
|
460 bool isDashed = IS_DASHED_OR_DOTTED(mBorderStyles[aSide]); |
|
461 bool startIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[PREV_SIDE(aSide)]); |
|
462 bool endIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[NEXT_SIDE(aSide)]); |
|
463 #undef IS_DASHED_OR_DOTTED |
|
464 |
|
465 SideClipType startType = SIDE_CLIP_TRAPEZOID; |
|
466 SideClipType endType = SIDE_CLIP_TRAPEZOID; |
|
467 |
|
468 if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(aSide)])) |
|
469 startType = SIDE_CLIP_TRAPEZOID_FULL; |
|
470 else if (startIsDashed && isDashed) |
|
471 startType = SIDE_CLIP_RECTANGLE; |
|
472 |
|
473 if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(NEXT_SIDE(aSide))])) |
|
474 endType = SIDE_CLIP_TRAPEZOID_FULL; |
|
475 else if (endIsDashed && isDashed) |
|
476 endType = SIDE_CLIP_RECTANGLE; |
|
477 |
|
478 gfxPoint midPoint = mInnerRect.Center(); |
|
479 |
|
480 start[0] = mOuterRect.CCWCorner(aSide); |
|
481 start[1] = mInnerRect.CCWCorner(aSide); |
|
482 |
|
483 end[0] = mOuterRect.CWCorner(aSide); |
|
484 end[1] = mInnerRect.CWCorner(aSide); |
|
485 |
|
486 if (startType == SIDE_CLIP_TRAPEZOID_FULL) { |
|
487 MaybeMoveToMidPoint(start[0], start[1], midPoint); |
|
488 } else if (startType == SIDE_CLIP_RECTANGLE) { |
|
489 if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM) |
|
490 start[1] = gfxPoint(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y); |
|
491 else |
|
492 start[1] = gfxPoint(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y); |
|
493 } |
|
494 |
|
495 if (endType == SIDE_CLIP_TRAPEZOID_FULL) { |
|
496 MaybeMoveToMidPoint(end[0], end[1], midPoint); |
|
497 } else if (endType == SIDE_CLIP_RECTANGLE) { |
|
498 if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM) |
|
499 end[0] = gfxPoint(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y); |
|
500 else |
|
501 end[0] = gfxPoint(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y); |
|
502 } |
|
503 |
|
504 mContext->MoveTo(start[0]); |
|
505 mContext->LineTo(end[0]); |
|
506 mContext->LineTo(end[1]); |
|
507 mContext->LineTo(start[1]); |
|
508 mContext->ClosePath(); |
|
509 } |
|
510 |
|
511 void |
|
512 nsCSSBorderRenderer::FillSolidBorder(const gfxRect& aOuterRect, |
|
513 const gfxRect& aInnerRect, |
|
514 const gfxCornerSizes& aBorderRadii, |
|
515 const gfxFloat *aBorderSizes, |
|
516 int aSides, |
|
517 const gfxRGBA& aColor) |
|
518 { |
|
519 mContext->SetColor(aColor); |
|
520 // Note that this function is allowed to draw more than just the |
|
521 // requested sides. |
|
522 |
|
523 // If we have a border radius, do full rounded rectangles |
|
524 // and fill, regardless of what sides we're asked to draw. |
|
525 if (!AllCornersZeroSize(aBorderRadii)) { |
|
526 gfxCornerSizes innerRadii; |
|
527 ComputeInnerRadii(aBorderRadii, aBorderSizes, &innerRadii); |
|
528 |
|
529 mContext->NewPath(); |
|
530 |
|
531 // do the outer border |
|
532 mContext->RoundedRectangle(aOuterRect, aBorderRadii, true); |
|
533 |
|
534 // then do the inner border CCW |
|
535 mContext->RoundedRectangle(aInnerRect, innerRadii, false); |
|
536 |
|
537 mContext->Fill(); |
|
538 |
|
539 return; |
|
540 } |
|
541 |
|
542 // If we're asked to draw all sides of an equal-sized border, |
|
543 // stroking is fastest. This is a fairly common path, but partial |
|
544 // sides is probably second in the list -- there are a bunch of |
|
545 // common border styles, such as inset and outset, that are |
|
546 // top-left/bottom-right split. |
|
547 if (aSides == SIDE_BITS_ALL && |
|
548 CheckFourFloatsEqual(aBorderSizes, aBorderSizes[0]) && |
|
549 !mAvoidStroke) |
|
550 { |
|
551 gfxRect r(aOuterRect); |
|
552 r.Deflate(aBorderSizes[0] / 2.0); |
|
553 mContext->SetLineWidth(aBorderSizes[0]); |
|
554 |
|
555 mContext->NewPath(); |
|
556 mContext->Rectangle(r); |
|
557 mContext->Stroke(); |
|
558 |
|
559 return; |
|
560 } |
|
561 |
|
562 // Otherwise, we have unequal sized borders or we're only |
|
563 // drawing some sides; create rectangles for each side |
|
564 // and fill them. |
|
565 |
|
566 gfxRect r[4]; |
|
567 |
|
568 // compute base rects for each side |
|
569 if (aSides & SIDE_BIT_TOP) { |
|
570 r[NS_SIDE_TOP] = |
|
571 gfxRect(aOuterRect.X(), aOuterRect.Y(), |
|
572 aOuterRect.Width(), aBorderSizes[NS_SIDE_TOP]); |
|
573 } |
|
574 |
|
575 if (aSides & SIDE_BIT_BOTTOM) { |
|
576 r[NS_SIDE_BOTTOM] = |
|
577 gfxRect(aOuterRect.X(), aOuterRect.YMost() - aBorderSizes[NS_SIDE_BOTTOM], |
|
578 aOuterRect.Width(), aBorderSizes[NS_SIDE_BOTTOM]); |
|
579 } |
|
580 |
|
581 if (aSides & SIDE_BIT_LEFT) { |
|
582 r[NS_SIDE_LEFT] = |
|
583 gfxRect(aOuterRect.X(), aOuterRect.Y(), |
|
584 aBorderSizes[NS_SIDE_LEFT], aOuterRect.Height()); |
|
585 } |
|
586 |
|
587 if (aSides & SIDE_BIT_RIGHT) { |
|
588 r[NS_SIDE_RIGHT] = |
|
589 gfxRect(aOuterRect.XMost() - aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Y(), |
|
590 aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Height()); |
|
591 } |
|
592 |
|
593 // If two sides meet at a corner that we're rendering, then |
|
594 // make sure that we adjust one of the sides to avoid overlap. |
|
595 // This is especially important in the case of colors with |
|
596 // an alpha channel. |
|
597 |
|
598 if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) { |
|
599 // adjust the left's top down a bit |
|
600 r[NS_SIDE_LEFT].y += aBorderSizes[NS_SIDE_TOP]; |
|
601 r[NS_SIDE_LEFT].height -= aBorderSizes[NS_SIDE_TOP]; |
|
602 } |
|
603 |
|
604 if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) == (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) { |
|
605 // adjust the top's left a bit |
|
606 r[NS_SIDE_TOP].width -= aBorderSizes[NS_SIDE_RIGHT]; |
|
607 } |
|
608 |
|
609 if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) { |
|
610 // adjust the right's bottom a bit |
|
611 r[NS_SIDE_RIGHT].height -= aBorderSizes[NS_SIDE_BOTTOM]; |
|
612 } |
|
613 |
|
614 if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) { |
|
615 // adjust the bottom's left a bit |
|
616 r[NS_SIDE_BOTTOM].x += aBorderSizes[NS_SIDE_LEFT]; |
|
617 r[NS_SIDE_BOTTOM].width -= aBorderSizes[NS_SIDE_LEFT]; |
|
618 } |
|
619 |
|
620 // Filling these one by one is faster than filling them all at once. |
|
621 for (uint32_t i = 0; i < 4; i++) { |
|
622 if (aSides & (1 << i)) { |
|
623 mContext->NewPath(); |
|
624 mContext->Rectangle(r[i], true); |
|
625 mContext->Fill(); |
|
626 } |
|
627 } |
|
628 } |
|
629 |
|
630 gfxRGBA |
|
631 MakeBorderColor(const gfxRGBA& aColor, const gfxRGBA& aBackgroundColor, BorderColorStyle aBorderColorStyle) |
|
632 { |
|
633 nscolor colors[2]; |
|
634 int k = 0; |
|
635 |
|
636 switch (aBorderColorStyle) { |
|
637 case BorderColorStyleNone: |
|
638 return gfxRGBA(0.0, 0.0, 0.0, 0.0); |
|
639 |
|
640 case BorderColorStyleLight: |
|
641 k = 1; |
|
642 /* fall through */ |
|
643 case BorderColorStyleDark: |
|
644 NS_GetSpecial3DColors(colors, aBackgroundColor.Packed(), aColor.Packed()); |
|
645 return gfxRGBA(colors[k]); |
|
646 |
|
647 case BorderColorStyleSolid: |
|
648 default: |
|
649 return aColor; |
|
650 } |
|
651 } |
|
652 |
|
653 gfxRGBA |
|
654 ComputeColorForLine(uint32_t aLineIndex, |
|
655 const BorderColorStyle* aBorderColorStyle, |
|
656 uint32_t aBorderColorStyleCount, |
|
657 nscolor aBorderColor, |
|
658 nscolor aBackgroundColor) |
|
659 { |
|
660 NS_ASSERTION(aLineIndex < aBorderColorStyleCount, "Invalid lineIndex given"); |
|
661 |
|
662 return MakeBorderColor(gfxRGBA(aBorderColor), gfxRGBA(aBackgroundColor), aBorderColorStyle[aLineIndex]); |
|
663 } |
|
664 |
|
665 gfxRGBA |
|
666 ComputeCompositeColorForLine(uint32_t aLineIndex, |
|
667 const nsBorderColors* aBorderColors) |
|
668 { |
|
669 while (aLineIndex-- && aBorderColors->mNext) |
|
670 aBorderColors = aBorderColors->mNext; |
|
671 |
|
672 return gfxRGBA(aBorderColors->mColor); |
|
673 } |
|
674 |
|
675 void |
|
676 nsCSSBorderRenderer::DrawBorderSidesCompositeColors(int aSides, const nsBorderColors *aCompositeColors) |
|
677 { |
|
678 gfxCornerSizes radii = mBorderRadii; |
|
679 |
|
680 // the generic composite colors path; each border is 1px in size |
|
681 gfxRect soRect = mOuterRect; |
|
682 gfxFloat maxBorderWidth = 0; |
|
683 NS_FOR_CSS_SIDES (i) { |
|
684 maxBorderWidth = std::max(maxBorderWidth, mBorderWidths[i]); |
|
685 } |
|
686 |
|
687 gfxFloat fakeBorderSizes[4]; |
|
688 |
|
689 gfxPoint itl = mInnerRect.TopLeft(); |
|
690 gfxPoint ibr = mInnerRect.BottomRight(); |
|
691 |
|
692 for (uint32_t i = 0; i < uint32_t(maxBorderWidth); i++) { |
|
693 gfxRGBA lineColor = ComputeCompositeColorForLine(i, aCompositeColors); |
|
694 |
|
695 gfxRect siRect = soRect; |
|
696 siRect.Deflate(1.0); |
|
697 |
|
698 // now cap the rects to the real mInnerRect |
|
699 gfxPoint tl = siRect.TopLeft(); |
|
700 gfxPoint br = siRect.BottomRight(); |
|
701 |
|
702 tl.x = std::min(tl.x, itl.x); |
|
703 tl.y = std::min(tl.y, itl.y); |
|
704 |
|
705 br.x = std::max(br.x, ibr.x); |
|
706 br.y = std::max(br.y, ibr.y); |
|
707 |
|
708 siRect = gfxRect(tl.x, tl.y, br.x - tl.x , br.y - tl.y); |
|
709 |
|
710 fakeBorderSizes[NS_SIDE_TOP] = siRect.TopLeft().y - soRect.TopLeft().y; |
|
711 fakeBorderSizes[NS_SIDE_RIGHT] = soRect.TopRight().x - siRect.TopRight().x; |
|
712 fakeBorderSizes[NS_SIDE_BOTTOM] = soRect.BottomRight().y - siRect.BottomRight().y; |
|
713 fakeBorderSizes[NS_SIDE_LEFT] = siRect.BottomLeft().x - soRect.BottomLeft().x; |
|
714 |
|
715 FillSolidBorder(soRect, siRect, radii, fakeBorderSizes, aSides, lineColor); |
|
716 |
|
717 soRect = siRect; |
|
718 |
|
719 ComputeInnerRadii(radii, fakeBorderSizes, &radii); |
|
720 } |
|
721 } |
|
722 |
|
723 void |
|
724 nsCSSBorderRenderer::DrawBorderSides(int aSides) |
|
725 { |
|
726 if (aSides == 0 || (aSides & ~SIDE_BITS_ALL) != 0) { |
|
727 NS_WARNING("DrawBorderSides: invalid sides!"); |
|
728 return; |
|
729 } |
|
730 |
|
731 uint8_t borderRenderStyle = NS_STYLE_BORDER_STYLE_NONE; |
|
732 nscolor borderRenderColor; |
|
733 const nsBorderColors *compositeColors = nullptr; |
|
734 |
|
735 uint32_t borderColorStyleCount = 0; |
|
736 BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3]; |
|
737 BorderColorStyle *borderColorStyle = nullptr; |
|
738 |
|
739 NS_FOR_CSS_SIDES (i) { |
|
740 if ((aSides & (1 << i)) == 0) |
|
741 continue; |
|
742 borderRenderStyle = mBorderStyles[i]; |
|
743 borderRenderColor = mBorderColors[i]; |
|
744 compositeColors = mCompositeColors[i]; |
|
745 break; |
|
746 } |
|
747 |
|
748 if (borderRenderStyle == NS_STYLE_BORDER_STYLE_NONE || |
|
749 borderRenderStyle == NS_STYLE_BORDER_STYLE_HIDDEN) |
|
750 return; |
|
751 |
|
752 // -moz-border-colors is a hack; if we have it for a border, then |
|
753 // it's always drawn solid, and each color is given 1px. The last |
|
754 // color is used for the remainder of the border's size. Just |
|
755 // hand off to another function to do all that. |
|
756 if (compositeColors) { |
|
757 DrawBorderSidesCompositeColors(aSides, compositeColors); |
|
758 return; |
|
759 } |
|
760 |
|
761 // We're not doing compositeColors, so we can calculate the |
|
762 // borderColorStyle based on the specified style. The |
|
763 // borderColorStyle array goes from the outer to the inner style. |
|
764 // |
|
765 // If the border width is 1, we need to change the borderRenderStyle |
|
766 // a bit to make sure that we get the right colors -- e.g. 'ridge' |
|
767 // with a 1px border needs to look like solid, not like 'outset'. |
|
768 if (mOneUnitBorder && |
|
769 (borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE || |
|
770 borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE || |
|
771 borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE)) |
|
772 borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID; |
|
773 |
|
774 switch (borderRenderStyle) { |
|
775 case NS_STYLE_BORDER_STYLE_SOLID: |
|
776 case NS_STYLE_BORDER_STYLE_DASHED: |
|
777 case NS_STYLE_BORDER_STYLE_DOTTED: |
|
778 borderColorStyleTopLeft[0] = BorderColorStyleSolid; |
|
779 |
|
780 borderColorStyleBottomRight[0] = BorderColorStyleSolid; |
|
781 |
|
782 borderColorStyleCount = 1; |
|
783 break; |
|
784 |
|
785 case NS_STYLE_BORDER_STYLE_GROOVE: |
|
786 borderColorStyleTopLeft[0] = BorderColorStyleDark; |
|
787 borderColorStyleTopLeft[1] = BorderColorStyleLight; |
|
788 |
|
789 borderColorStyleBottomRight[0] = BorderColorStyleLight; |
|
790 borderColorStyleBottomRight[1] = BorderColorStyleDark; |
|
791 |
|
792 borderColorStyleCount = 2; |
|
793 break; |
|
794 |
|
795 case NS_STYLE_BORDER_STYLE_RIDGE: |
|
796 borderColorStyleTopLeft[0] = BorderColorStyleLight; |
|
797 borderColorStyleTopLeft[1] = BorderColorStyleDark; |
|
798 |
|
799 borderColorStyleBottomRight[0] = BorderColorStyleDark; |
|
800 borderColorStyleBottomRight[1] = BorderColorStyleLight; |
|
801 |
|
802 borderColorStyleCount = 2; |
|
803 break; |
|
804 |
|
805 case NS_STYLE_BORDER_STYLE_DOUBLE: |
|
806 borderColorStyleTopLeft[0] = BorderColorStyleSolid; |
|
807 borderColorStyleTopLeft[1] = BorderColorStyleNone; |
|
808 borderColorStyleTopLeft[2] = BorderColorStyleSolid; |
|
809 |
|
810 borderColorStyleBottomRight[0] = BorderColorStyleSolid; |
|
811 borderColorStyleBottomRight[1] = BorderColorStyleNone; |
|
812 borderColorStyleBottomRight[2] = BorderColorStyleSolid; |
|
813 |
|
814 borderColorStyleCount = 3; |
|
815 break; |
|
816 |
|
817 case NS_STYLE_BORDER_STYLE_INSET: |
|
818 borderColorStyleTopLeft[0] = BorderColorStyleDark; |
|
819 borderColorStyleBottomRight[0] = BorderColorStyleLight; |
|
820 |
|
821 borderColorStyleCount = 1; |
|
822 break; |
|
823 |
|
824 case NS_STYLE_BORDER_STYLE_OUTSET: |
|
825 borderColorStyleTopLeft[0] = BorderColorStyleLight; |
|
826 borderColorStyleBottomRight[0] = BorderColorStyleDark; |
|
827 |
|
828 borderColorStyleCount = 1; |
|
829 break; |
|
830 |
|
831 default: |
|
832 NS_NOTREACHED("Unhandled border style!!"); |
|
833 break; |
|
834 } |
|
835 |
|
836 // The only way to get to here is by having a |
|
837 // borderColorStyleCount < 1 or > 3; this should never happen, |
|
838 // since -moz-border-colors doesn't get handled here. |
|
839 NS_ASSERTION(borderColorStyleCount > 0 && borderColorStyleCount < 4, |
|
840 "Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?"); |
|
841 |
|
842 // The caller should never give us anything with a mix |
|
843 // of TL/BR if the border style would require a |
|
844 // TL/BR split. |
|
845 if (aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) |
|
846 borderColorStyle = borderColorStyleBottomRight; |
|
847 else |
|
848 borderColorStyle = borderColorStyleTopLeft; |
|
849 |
|
850 // Distribute the border across the available space. |
|
851 gfxFloat borderWidths[3][4]; |
|
852 |
|
853 if (borderColorStyleCount == 1) { |
|
854 NS_FOR_CSS_SIDES (i) { |
|
855 borderWidths[0][i] = mBorderWidths[i]; |
|
856 } |
|
857 } else if (borderColorStyleCount == 2) { |
|
858 // with 2 color styles, any extra pixel goes to the outside |
|
859 NS_FOR_CSS_SIDES (i) { |
|
860 borderWidths[0][i] = int32_t(mBorderWidths[i]) / 2 + int32_t(mBorderWidths[i]) % 2; |
|
861 borderWidths[1][i] = int32_t(mBorderWidths[i]) / 2; |
|
862 } |
|
863 } else if (borderColorStyleCount == 3) { |
|
864 // with 3 color styles, any extra pixel (or lack of extra pixel) |
|
865 // goes to the middle |
|
866 NS_FOR_CSS_SIDES (i) { |
|
867 if (mBorderWidths[i] == 1.0) { |
|
868 borderWidths[0][i] = 1.0; |
|
869 borderWidths[1][i] = borderWidths[2][i] = 0.0; |
|
870 } else { |
|
871 int32_t rest = int32_t(mBorderWidths[i]) % 3; |
|
872 borderWidths[0][i] = borderWidths[2][i] = borderWidths[1][i] = (int32_t(mBorderWidths[i]) - rest) / 3; |
|
873 |
|
874 if (rest == 1) { |
|
875 borderWidths[1][i] += 1.0; |
|
876 } else if (rest == 2) { |
|
877 borderWidths[0][i] += 1.0; |
|
878 borderWidths[2][i] += 1.0; |
|
879 } |
|
880 } |
|
881 } |
|
882 } |
|
883 |
|
884 // make a copy that we can modify |
|
885 gfxCornerSizes radii = mBorderRadii; |
|
886 |
|
887 gfxRect soRect(mOuterRect); |
|
888 gfxRect siRect(mOuterRect); |
|
889 |
|
890 for (unsigned int i = 0; i < borderColorStyleCount; i++) { |
|
891 // walk siRect inwards at the start of the loop to get the |
|
892 // correct inner rect. |
|
893 siRect.Deflate(gfxMargin(borderWidths[i][0], borderWidths[i][1], |
|
894 borderWidths[i][2], borderWidths[i][3])); |
|
895 |
|
896 if (borderColorStyle[i] != BorderColorStyleNone) { |
|
897 gfxRGBA color = ComputeColorForLine(i, |
|
898 borderColorStyle, borderColorStyleCount, |
|
899 borderRenderColor, mBackgroundColor); |
|
900 |
|
901 FillSolidBorder(soRect, siRect, radii, borderWidths[i], aSides, color); |
|
902 } |
|
903 |
|
904 ComputeInnerRadii(radii, borderWidths[i], &radii); |
|
905 |
|
906 // And now soRect is the same as siRect, for the next line in. |
|
907 soRect = siRect; |
|
908 } |
|
909 } |
|
910 |
|
911 void |
|
912 nsCSSBorderRenderer::DrawDashedSide(mozilla::css::Side aSide) |
|
913 { |
|
914 gfxFloat dashWidth; |
|
915 gfxFloat dash[2]; |
|
916 |
|
917 uint8_t style = mBorderStyles[aSide]; |
|
918 gfxFloat borderWidth = mBorderWidths[aSide]; |
|
919 nscolor borderColor = mBorderColors[aSide]; |
|
920 |
|
921 if (borderWidth == 0.0) |
|
922 return; |
|
923 |
|
924 if (style == NS_STYLE_BORDER_STYLE_NONE || |
|
925 style == NS_STYLE_BORDER_STYLE_HIDDEN) |
|
926 return; |
|
927 |
|
928 if (style == NS_STYLE_BORDER_STYLE_DASHED) { |
|
929 dashWidth = gfxFloat(borderWidth * DOT_LENGTH * DASH_LENGTH); |
|
930 |
|
931 dash[0] = dashWidth; |
|
932 dash[1] = dashWidth; |
|
933 |
|
934 mContext->SetLineCap(gfxContext::LINE_CAP_BUTT); |
|
935 } else if (style == NS_STYLE_BORDER_STYLE_DOTTED) { |
|
936 dashWidth = gfxFloat(borderWidth * DOT_LENGTH); |
|
937 |
|
938 if (borderWidth > 2.0) { |
|
939 dash[0] = 0.0; |
|
940 dash[1] = dashWidth * 2.0; |
|
941 |
|
942 mContext->SetLineCap(gfxContext::LINE_CAP_ROUND); |
|
943 } else { |
|
944 dash[0] = dashWidth; |
|
945 dash[1] = dashWidth; |
|
946 } |
|
947 } else { |
|
948 SF("DrawDashedSide: style: %d!!\n", style); |
|
949 NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice"); |
|
950 return; |
|
951 } |
|
952 |
|
953 SF("dash: %f %f\n", dash[0], dash[1]); |
|
954 |
|
955 mContext->SetDash(dash, 2, 0.0); |
|
956 |
|
957 gfxPoint start = mOuterRect.CCWCorner(aSide); |
|
958 gfxPoint end = mOuterRect.CWCorner(aSide); |
|
959 |
|
960 if (aSide == NS_SIDE_TOP) { |
|
961 start.x += mBorderCornerDimensions[C_TL].width; |
|
962 end.x -= mBorderCornerDimensions[C_TR].width; |
|
963 |
|
964 start.y += borderWidth / 2.0; |
|
965 end.y += borderWidth / 2.0; |
|
966 } else if (aSide == NS_SIDE_RIGHT) { |
|
967 start.x -= borderWidth / 2.0; |
|
968 end.x -= borderWidth / 2.0; |
|
969 |
|
970 start.y += mBorderCornerDimensions[C_TR].height; |
|
971 end.y -= mBorderCornerDimensions[C_BR].height; |
|
972 } else if (aSide == NS_SIDE_BOTTOM) { |
|
973 start.x -= mBorderCornerDimensions[C_BR].width; |
|
974 end.x += mBorderCornerDimensions[C_BL].width; |
|
975 |
|
976 start.y -= borderWidth / 2.0; |
|
977 end.y -= borderWidth / 2.0; |
|
978 } else if (aSide == NS_SIDE_LEFT) { |
|
979 start.x += borderWidth / 2.0; |
|
980 end.x += borderWidth / 2.0; |
|
981 |
|
982 start.y -= mBorderCornerDimensions[C_BL].height; |
|
983 end.y += mBorderCornerDimensions[C_TL].height; |
|
984 } |
|
985 |
|
986 mContext->NewPath(); |
|
987 mContext->MoveTo(start); |
|
988 mContext->LineTo(end); |
|
989 mContext->SetLineWidth(borderWidth); |
|
990 mContext->SetColor(gfxRGBA(borderColor)); |
|
991 //mContext->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0)); |
|
992 mContext->Stroke(); |
|
993 } |
|
994 |
|
995 void |
|
996 nsCSSBorderRenderer::SetupStrokeStyle(mozilla::css::Side aSide) |
|
997 { |
|
998 mContext->SetColor(gfxRGBA(mBorderColors[aSide])); |
|
999 mContext->SetLineWidth(mBorderWidths[aSide]); |
|
1000 } |
|
1001 |
|
1002 bool |
|
1003 nsCSSBorderRenderer::AllBordersSameWidth() |
|
1004 { |
|
1005 if (mBorderWidths[0] == mBorderWidths[1] && |
|
1006 mBorderWidths[0] == mBorderWidths[2] && |
|
1007 mBorderWidths[0] == mBorderWidths[3]) |
|
1008 { |
|
1009 return true; |
|
1010 } |
|
1011 |
|
1012 return false; |
|
1013 } |
|
1014 |
|
1015 bool |
|
1016 nsCSSBorderRenderer::AllBordersSolid(bool *aHasCompositeColors) |
|
1017 { |
|
1018 *aHasCompositeColors = false; |
|
1019 NS_FOR_CSS_SIDES(i) { |
|
1020 if (mCompositeColors[i] != nullptr) { |
|
1021 *aHasCompositeColors = true; |
|
1022 } |
|
1023 if (mBorderStyles[i] == NS_STYLE_BORDER_STYLE_SOLID || |
|
1024 mBorderStyles[i] == NS_STYLE_BORDER_STYLE_NONE || |
|
1025 mBorderStyles[i] == NS_STYLE_BORDER_STYLE_HIDDEN) |
|
1026 { |
|
1027 continue; |
|
1028 } |
|
1029 return false; |
|
1030 } |
|
1031 |
|
1032 return true; |
|
1033 } |
|
1034 |
|
1035 bool IsVisible(int aStyle) |
|
1036 { |
|
1037 if (aStyle != NS_STYLE_BORDER_STYLE_NONE && |
|
1038 aStyle != NS_STYLE_BORDER_STYLE_HIDDEN) { |
|
1039 return true; |
|
1040 } |
|
1041 return false; |
|
1042 } |
|
1043 |
|
1044 already_AddRefed<gfxPattern> |
|
1045 nsCSSBorderRenderer::CreateCornerGradient(mozilla::css::Corner aCorner, |
|
1046 const gfxRGBA &aFirstColor, |
|
1047 const gfxRGBA &aSecondColor) |
|
1048 { |
|
1049 typedef struct { gfxFloat a, b; } twoFloats; |
|
1050 |
|
1051 const twoFloats gradientCoeff[4] = { { -1, +1 }, |
|
1052 { -1, -1 }, |
|
1053 { +1, -1 }, |
|
1054 { +1, +1 } }; |
|
1055 |
|
1056 // Sides which form the 'width' and 'height' for the calculation of the angle |
|
1057 // for our gradient. |
|
1058 const int cornerWidth[4] = { 3, 1, 1, 3 }; |
|
1059 const int cornerHeight[4] = { 0, 0, 2, 2 }; |
|
1060 |
|
1061 gfxPoint cornerOrigin = mOuterRect.AtCorner(aCorner); |
|
1062 |
|
1063 gfxPoint pat1, pat2; |
|
1064 pat1.x = cornerOrigin.x + |
|
1065 mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; |
|
1066 pat1.y = cornerOrigin.y + |
|
1067 mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; |
|
1068 pat2.x = cornerOrigin.x - |
|
1069 mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; |
|
1070 pat2.y = cornerOrigin.y - |
|
1071 mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; |
|
1072 |
|
1073 float gradientOffset; |
|
1074 |
|
1075 if (mContext->IsCairo() && |
|
1076 (mContext->OriginalSurface()->GetType() == gfxSurfaceType::D2D || |
|
1077 mContext->OriginalSurface()->GetType() == gfxSurfaceType::Quartz)) |
|
1078 { |
|
1079 // On quarz this doesn't do exactly the right thing, but it does do what |
|
1080 // most other browsers do and doing the 'right' thing seems to be |
|
1081 // hard with the quartz cairo backend. |
|
1082 gradientOffset = 0; |
|
1083 } else { |
|
1084 // When cairo/Azure does the gradient drawing this gives us pretty nice behavior! |
|
1085 gradientOffset = 0.25 / sqrt(pow(mBorderWidths[cornerHeight[aCorner]], 2) + |
|
1086 pow(mBorderWidths[cornerHeight[aCorner]], 2)); |
|
1087 } |
|
1088 |
|
1089 nsRefPtr<gfxPattern> pattern = new gfxPattern(pat1.x, pat1.y, pat2.x, pat2.y); |
|
1090 pattern->AddColorStop(0.5 - gradientOffset, gfxRGBA(aFirstColor)); |
|
1091 pattern->AddColorStop(0.5 + gradientOffset, gfxRGBA(aSecondColor)); |
|
1092 |
|
1093 return pattern.forget(); |
|
1094 } |
|
1095 |
|
1096 TemporaryRef<GradientStops> |
|
1097 nsCSSBorderRenderer::CreateCornerGradient(mozilla::css::Corner aCorner, |
|
1098 const gfxRGBA &aFirstColor, |
|
1099 const gfxRGBA &aSecondColor, |
|
1100 DrawTarget *aDT, |
|
1101 Point &aPoint1, |
|
1102 Point &aPoint2) |
|
1103 { |
|
1104 typedef struct { gfxFloat a, b; } twoFloats; |
|
1105 |
|
1106 const twoFloats gradientCoeff[4] = { { -1, +1 }, |
|
1107 { -1, -1 }, |
|
1108 { +1, -1 }, |
|
1109 { +1, +1 } }; |
|
1110 |
|
1111 // Sides which form the 'width' and 'height' for the calculation of the angle |
|
1112 // for our gradient. |
|
1113 const int cornerWidth[4] = { 3, 1, 1, 3 }; |
|
1114 const int cornerHeight[4] = { 0, 0, 2, 2 }; |
|
1115 |
|
1116 gfxPoint cornerOrigin = mOuterRect.AtCorner(aCorner); |
|
1117 |
|
1118 gfxPoint pat1, pat2; |
|
1119 pat1.x = cornerOrigin.x + |
|
1120 mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; |
|
1121 pat1.y = cornerOrigin.y + |
|
1122 mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; |
|
1123 pat2.x = cornerOrigin.x - |
|
1124 mBorderWidths[cornerHeight[aCorner]] * gradientCoeff[aCorner].a; |
|
1125 pat2.y = cornerOrigin.y - |
|
1126 mBorderWidths[cornerWidth[aCorner]] * gradientCoeff[aCorner].b; |
|
1127 |
|
1128 aPoint1 = Point(pat1.x, pat1.y); |
|
1129 aPoint2 = Point(pat2.x, pat2.y); |
|
1130 |
|
1131 Color firstColor = ToColor(aFirstColor); |
|
1132 Color secondColor = ToColor(aSecondColor); |
|
1133 |
|
1134 nsTArray<gfx::GradientStop> rawStops(2); |
|
1135 rawStops.SetLength(2); |
|
1136 // This is only guaranteed to give correct (and in some cases more correct) |
|
1137 // rendering with the Direct2D Azure and Quartz Cairo backends. For other |
|
1138 // cairo backends it could create un-antialiased border corner transitions |
|
1139 // since that at least used to be pixman's behaviour for hard stops. |
|
1140 rawStops[0].color = firstColor; |
|
1141 rawStops[0].offset = 0.5; |
|
1142 rawStops[1].color = secondColor; |
|
1143 rawStops[1].offset = 0.5; |
|
1144 RefPtr<GradientStops> gs = |
|
1145 gfxGradientCache::GetGradientStops(aDT, rawStops, ExtendMode::CLAMP); |
|
1146 if (!gs) { |
|
1147 // Having two corners, both with reversed color stops is pretty common |
|
1148 // for certain border types. Let's optimize it! |
|
1149 rawStops[0].color = secondColor; |
|
1150 rawStops[1].color = firstColor; |
|
1151 Point tmp = aPoint1; |
|
1152 aPoint1 = aPoint2; |
|
1153 aPoint2 = tmp; |
|
1154 gs = gfxGradientCache::GetOrCreateGradientStops(aDT, rawStops, ExtendMode::CLAMP); |
|
1155 } |
|
1156 return gs; |
|
1157 } |
|
1158 |
|
1159 typedef struct { gfxFloat a, b; } twoFloats; |
|
1160 |
|
1161 void |
|
1162 nsCSSBorderRenderer::DrawSingleWidthSolidBorder() |
|
1163 { |
|
1164 // Easy enough to deal with. |
|
1165 mContext->SetLineWidth(1); |
|
1166 gfxRect rect = mOuterRect; |
|
1167 rect.Deflate(0.5); |
|
1168 |
|
1169 const twoFloats cornerAdjusts[4] = { { +0.5, 0 }, |
|
1170 { 0, +0.5 }, |
|
1171 { -0.5, 0 }, |
|
1172 { 0, -0.5 } }; |
|
1173 |
|
1174 |
|
1175 NS_FOR_CSS_SIDES(side) { |
|
1176 gfxPoint firstCorner = rect.CCWCorner(side); |
|
1177 firstCorner.x += cornerAdjusts[side].a; |
|
1178 firstCorner.y += cornerAdjusts[side].b; |
|
1179 gfxPoint secondCorner = rect.CWCorner(side); |
|
1180 secondCorner.x += cornerAdjusts[side].a; |
|
1181 secondCorner.y += cornerAdjusts[side].b; |
|
1182 |
|
1183 mContext->SetColor(gfxRGBA(mBorderColors[side])); |
|
1184 mContext->NewPath(); |
|
1185 mContext->MoveTo(firstCorner); |
|
1186 mContext->LineTo(secondCorner); |
|
1187 mContext->Stroke(); |
|
1188 } |
|
1189 } |
|
1190 |
|
1191 void |
|
1192 nsCSSBorderRenderer::DrawNoCompositeColorSolidBorder() |
|
1193 { |
|
1194 const gfxFloat alpha = 0.55191497064665766025; |
|
1195 |
|
1196 const twoFloats cornerMults[4] = { { -1, 0 }, |
|
1197 { 0, -1 }, |
|
1198 { +1, 0 }, |
|
1199 { 0, +1 } }; |
|
1200 |
|
1201 const twoFloats centerAdjusts[4] = { { 0, +0.5 }, |
|
1202 { -0.5, 0 }, |
|
1203 { 0, -0.5 }, |
|
1204 { +0.5, 0 } }; |
|
1205 |
|
1206 gfxPoint pc, pci, p0, p1, p2, p3, pd, p3i; |
|
1207 |
|
1208 gfxCornerSizes innerRadii; |
|
1209 ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii); |
|
1210 |
|
1211 gfxRect strokeRect = mOuterRect; |
|
1212 strokeRect.Deflate(gfxMargin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0, |
|
1213 mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0)); |
|
1214 |
|
1215 NS_FOR_CSS_CORNERS(i) { |
|
1216 // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) |
|
1217 mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4); |
|
1218 mozilla::css::Corner prevCorner = mozilla::css::Corner(i); |
|
1219 |
|
1220 // i+2 and i+3 respectively. These are used to index into the corner |
|
1221 // multiplier table, and were deduced by calculating out the long form |
|
1222 // of each corner and finding a pattern in the signs and values. |
|
1223 int i1 = (i+1) % 4; |
|
1224 int i2 = (i+2) % 4; |
|
1225 int i3 = (i+3) % 4; |
|
1226 |
|
1227 pc = mOuterRect.AtCorner(c); |
|
1228 pci = mInnerRect.AtCorner(c); |
|
1229 mContext->SetLineWidth(mBorderWidths[i]); |
|
1230 |
|
1231 nscolor firstColor, secondColor; |
|
1232 if (IsVisible(mBorderStyles[i]) && IsVisible(mBorderStyles[i1])) { |
|
1233 firstColor = mBorderColors[i]; |
|
1234 secondColor = mBorderColors[i1]; |
|
1235 } else if (IsVisible(mBorderStyles[i])) { |
|
1236 firstColor = mBorderColors[i]; |
|
1237 secondColor = mBorderColors[i]; |
|
1238 } else { |
|
1239 firstColor = mBorderColors[i1]; |
|
1240 secondColor = mBorderColors[i1]; |
|
1241 } |
|
1242 |
|
1243 mContext->NewPath(); |
|
1244 |
|
1245 gfxPoint strokeStart, strokeEnd; |
|
1246 |
|
1247 strokeStart.x = mOuterRect.AtCorner(prevCorner).x + |
|
1248 mBorderCornerDimensions[prevCorner].width * cornerMults[i2].a; |
|
1249 strokeStart.y = mOuterRect.AtCorner(prevCorner).y + |
|
1250 mBorderCornerDimensions[prevCorner].height * cornerMults[i2].b; |
|
1251 |
|
1252 strokeEnd.x = pc.x + mBorderCornerDimensions[c].width * cornerMults[i].a; |
|
1253 strokeEnd.y = pc.y + mBorderCornerDimensions[c].height * cornerMults[i].b; |
|
1254 |
|
1255 strokeStart.x += centerAdjusts[i].a * mBorderWidths[i]; |
|
1256 strokeStart.y += centerAdjusts[i].b * mBorderWidths[i]; |
|
1257 strokeEnd.x += centerAdjusts[i].a * mBorderWidths[i]; |
|
1258 strokeEnd.y += centerAdjusts[i].b * mBorderWidths[i]; |
|
1259 |
|
1260 mContext->MoveTo(strokeStart); |
|
1261 mContext->LineTo(strokeEnd); |
|
1262 mContext->SetColor(gfxRGBA(mBorderColors[i])); |
|
1263 mContext->Stroke(); |
|
1264 |
|
1265 if (firstColor != secondColor) { |
|
1266 nsRefPtr<gfxPattern> pattern = |
|
1267 CreateCornerGradient(c, firstColor, secondColor); |
|
1268 mContext->SetPattern(pattern); |
|
1269 } else { |
|
1270 mContext->SetColor(firstColor); |
|
1271 } |
|
1272 |
|
1273 if (mBorderRadii[c].width > 0 && mBorderRadii[c].height > 0) { |
|
1274 p0.x = pc.x + cornerMults[i].a * mBorderRadii[c].width; |
|
1275 p0.y = pc.y + cornerMults[i].b * mBorderRadii[c].height; |
|
1276 |
|
1277 p3.x = pc.x + cornerMults[i3].a * mBorderRadii[c].width; |
|
1278 p3.y = pc.y + cornerMults[i3].b * mBorderRadii[c].height; |
|
1279 |
|
1280 p1.x = p0.x + alpha * cornerMults[i2].a * mBorderRadii[c].width; |
|
1281 p1.y = p0.y + alpha * cornerMults[i2].b * mBorderRadii[c].height; |
|
1282 |
|
1283 p2.x = p3.x - alpha * cornerMults[i3].a * mBorderRadii[c].width; |
|
1284 p2.y = p3.y - alpha * cornerMults[i3].b * mBorderRadii[c].height; |
|
1285 |
|
1286 mContext->NewPath(); |
|
1287 |
|
1288 gfxPoint cornerStart; |
|
1289 cornerStart.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; |
|
1290 cornerStart.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; |
|
1291 |
|
1292 mContext->MoveTo(cornerStart); |
|
1293 mContext->LineTo(p0); |
|
1294 |
|
1295 mContext->CurveTo(p1, p2, p3); |
|
1296 |
|
1297 gfxPoint outerCornerEnd; |
|
1298 outerCornerEnd.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; |
|
1299 outerCornerEnd.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; |
|
1300 |
|
1301 mContext->LineTo(outerCornerEnd); |
|
1302 |
|
1303 p0.x = pci.x + cornerMults[i].a * innerRadii[c].width; |
|
1304 p0.y = pci.y + cornerMults[i].b * innerRadii[c].height; |
|
1305 |
|
1306 p3i.x = pci.x + cornerMults[i3].a * innerRadii[c].width; |
|
1307 p3i.y = pci.y + cornerMults[i3].b * innerRadii[c].height; |
|
1308 |
|
1309 p1.x = p0.x + alpha * cornerMults[i2].a * innerRadii[c].width; |
|
1310 p1.y = p0.y + alpha * cornerMults[i2].b * innerRadii[c].height; |
|
1311 |
|
1312 p2.x = p3i.x - alpha * cornerMults[i3].a * innerRadii[c].width; |
|
1313 p2.y = p3i.y - alpha * cornerMults[i3].b * innerRadii[c].height; |
|
1314 mContext->LineTo(p3i); |
|
1315 mContext->CurveTo(p2, p1, p0); |
|
1316 mContext->ClosePath(); |
|
1317 mContext->Fill(); |
|
1318 } else { |
|
1319 gfxPoint c1, c2, c3, c4; |
|
1320 |
|
1321 c1.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; |
|
1322 c1.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; |
|
1323 c2 = pc; |
|
1324 c3.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; |
|
1325 c3.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; |
|
1326 |
|
1327 mContext->NewPath(); |
|
1328 mContext->MoveTo(c1); |
|
1329 mContext->LineTo(c2); |
|
1330 mContext->LineTo(c3); |
|
1331 mContext->LineTo(pci); |
|
1332 mContext->ClosePath(); |
|
1333 |
|
1334 mContext->Fill(); |
|
1335 } |
|
1336 } |
|
1337 } |
|
1338 |
|
1339 void |
|
1340 nsCSSBorderRenderer::DrawNoCompositeColorSolidBorderAzure() |
|
1341 { |
|
1342 DrawTarget *dt = mContext->GetDrawTarget(); |
|
1343 |
|
1344 const gfxFloat alpha = 0.55191497064665766025; |
|
1345 |
|
1346 const twoFloats cornerMults[4] = { { -1, 0 }, |
|
1347 { 0, -1 }, |
|
1348 { +1, 0 }, |
|
1349 { 0, +1 } }; |
|
1350 |
|
1351 const twoFloats centerAdjusts[4] = { { 0, +0.5 }, |
|
1352 { -0.5, 0 }, |
|
1353 { 0, -0.5 }, |
|
1354 { +0.5, 0 } }; |
|
1355 |
|
1356 Point pc, pci, p0, p1, p2, p3, pd, p3i; |
|
1357 |
|
1358 gfxCornerSizes innerRadii; |
|
1359 ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii); |
|
1360 |
|
1361 gfxRect strokeRect = mOuterRect; |
|
1362 strokeRect.Deflate(gfxMargin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0, |
|
1363 mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0)); |
|
1364 |
|
1365 ColorPattern colorPat(Color(0, 0, 0, 0)); |
|
1366 LinearGradientPattern gradPat(Point(), Point(), nullptr); |
|
1367 |
|
1368 NS_FOR_CSS_CORNERS(i) { |
|
1369 // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) |
|
1370 mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4); |
|
1371 mozilla::css::Corner prevCorner = mozilla::css::Corner(i); |
|
1372 |
|
1373 // i+2 and i+3 respectively. These are used to index into the corner |
|
1374 // multiplier table, and were deduced by calculating out the long form |
|
1375 // of each corner and finding a pattern in the signs and values. |
|
1376 int i1 = (i+1) % 4; |
|
1377 int i2 = (i+2) % 4; |
|
1378 int i3 = (i+3) % 4; |
|
1379 |
|
1380 pc = ToPoint(mOuterRect.AtCorner(c)); |
|
1381 pci = ToPoint(mInnerRect.AtCorner(c)); |
|
1382 |
|
1383 nscolor firstColor, secondColor; |
|
1384 if (IsVisible(mBorderStyles[i]) && IsVisible(mBorderStyles[i1])) { |
|
1385 firstColor = mBorderColors[i]; |
|
1386 secondColor = mBorderColors[i1]; |
|
1387 } else if (IsVisible(mBorderStyles[i])) { |
|
1388 firstColor = mBorderColors[i]; |
|
1389 secondColor = mBorderColors[i]; |
|
1390 } else { |
|
1391 firstColor = mBorderColors[i1]; |
|
1392 secondColor = mBorderColors[i1]; |
|
1393 } |
|
1394 |
|
1395 RefPtr<PathBuilder> builder = dt->CreatePathBuilder(); |
|
1396 |
|
1397 Point strokeStart, strokeEnd; |
|
1398 |
|
1399 strokeStart.x = mOuterRect.AtCorner(prevCorner).x + |
|
1400 mBorderCornerDimensions[prevCorner].width * cornerMults[i2].a; |
|
1401 strokeStart.y = mOuterRect.AtCorner(prevCorner).y + |
|
1402 mBorderCornerDimensions[prevCorner].height * cornerMults[i2].b; |
|
1403 |
|
1404 strokeEnd.x = pc.x + mBorderCornerDimensions[c].width * cornerMults[i].a; |
|
1405 strokeEnd.y = pc.y + mBorderCornerDimensions[c].height * cornerMults[i].b; |
|
1406 |
|
1407 strokeStart.x += centerAdjusts[i].a * mBorderWidths[i]; |
|
1408 strokeStart.y += centerAdjusts[i].b * mBorderWidths[i]; |
|
1409 strokeEnd.x += centerAdjusts[i].a * mBorderWidths[i]; |
|
1410 strokeEnd.y += centerAdjusts[i].b * mBorderWidths[i]; |
|
1411 |
|
1412 builder->MoveTo(strokeStart); |
|
1413 builder->LineTo(strokeEnd); |
|
1414 RefPtr<Path> path = builder->Finish(); |
|
1415 dt->Stroke(path, ColorPattern(Color::FromABGR(mBorderColors[i])), StrokeOptions(mBorderWidths[i])); |
|
1416 builder = nullptr; |
|
1417 path = nullptr; |
|
1418 |
|
1419 Pattern *pattern; |
|
1420 |
|
1421 if (firstColor != secondColor) { |
|
1422 gradPat.mStops = CreateCornerGradient(c, firstColor, secondColor, dt, gradPat.mBegin, gradPat.mEnd); |
|
1423 pattern = &gradPat; |
|
1424 } else { |
|
1425 colorPat.mColor = Color::FromABGR(firstColor); |
|
1426 pattern = &colorPat; |
|
1427 } |
|
1428 |
|
1429 builder = dt->CreatePathBuilder(); |
|
1430 |
|
1431 if (mBorderRadii[c].width > 0 && mBorderRadii[c].height > 0) { |
|
1432 p0.x = pc.x + cornerMults[i].a * mBorderRadii[c].width; |
|
1433 p0.y = pc.y + cornerMults[i].b * mBorderRadii[c].height; |
|
1434 |
|
1435 p3.x = pc.x + cornerMults[i3].a * mBorderRadii[c].width; |
|
1436 p3.y = pc.y + cornerMults[i3].b * mBorderRadii[c].height; |
|
1437 |
|
1438 p1.x = p0.x + alpha * cornerMults[i2].a * mBorderRadii[c].width; |
|
1439 p1.y = p0.y + alpha * cornerMults[i2].b * mBorderRadii[c].height; |
|
1440 |
|
1441 p2.x = p3.x - alpha * cornerMults[i3].a * mBorderRadii[c].width; |
|
1442 p2.y = p3.y - alpha * cornerMults[i3].b * mBorderRadii[c].height; |
|
1443 |
|
1444 Point cornerStart; |
|
1445 cornerStart.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; |
|
1446 cornerStart.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; |
|
1447 |
|
1448 builder->MoveTo(cornerStart); |
|
1449 builder->LineTo(p0); |
|
1450 |
|
1451 builder->BezierTo(p1, p2, p3); |
|
1452 |
|
1453 Point outerCornerEnd; |
|
1454 outerCornerEnd.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; |
|
1455 outerCornerEnd.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; |
|
1456 |
|
1457 builder->LineTo(outerCornerEnd); |
|
1458 |
|
1459 p0.x = pci.x + cornerMults[i].a * innerRadii[c].width; |
|
1460 p0.y = pci.y + cornerMults[i].b * innerRadii[c].height; |
|
1461 |
|
1462 p3i.x = pci.x + cornerMults[i3].a * innerRadii[c].width; |
|
1463 p3i.y = pci.y + cornerMults[i3].b * innerRadii[c].height; |
|
1464 |
|
1465 p1.x = p0.x + alpha * cornerMults[i2].a * innerRadii[c].width; |
|
1466 p1.y = p0.y + alpha * cornerMults[i2].b * innerRadii[c].height; |
|
1467 |
|
1468 p2.x = p3i.x - alpha * cornerMults[i3].a * innerRadii[c].width; |
|
1469 p2.y = p3i.y - alpha * cornerMults[i3].b * innerRadii[c].height; |
|
1470 builder->LineTo(p3i); |
|
1471 builder->BezierTo(p2, p1, p0); |
|
1472 builder->Close(); |
|
1473 path = builder->Finish(); |
|
1474 dt->Fill(path, *pattern); |
|
1475 } else { |
|
1476 Point c1, c2, c3, c4; |
|
1477 |
|
1478 c1.x = pc.x + cornerMults[i].a * mBorderCornerDimensions[c].width; |
|
1479 c1.y = pc.y + cornerMults[i].b * mBorderCornerDimensions[c].height; |
|
1480 c2 = pc; |
|
1481 c3.x = pc.x + cornerMults[i3].a * mBorderCornerDimensions[c].width; |
|
1482 c3.y = pc.y + cornerMults[i3].b * mBorderCornerDimensions[c].height; |
|
1483 |
|
1484 builder->MoveTo(c1); |
|
1485 builder->LineTo(c2); |
|
1486 builder->LineTo(c3); |
|
1487 builder->LineTo(pci); |
|
1488 builder->Close(); |
|
1489 |
|
1490 path = builder->Finish(); |
|
1491 |
|
1492 dt->Fill(path, *pattern); |
|
1493 } |
|
1494 } |
|
1495 } |
|
1496 |
|
1497 void |
|
1498 nsCSSBorderRenderer::DrawRectangularCompositeColors() |
|
1499 { |
|
1500 nsBorderColors *currentColors[4]; |
|
1501 mContext->SetLineWidth(1); |
|
1502 memcpy(currentColors, mCompositeColors, sizeof(nsBorderColors*) * 4); |
|
1503 gfxRect rect = mOuterRect; |
|
1504 rect.Deflate(0.5); |
|
1505 |
|
1506 const twoFloats cornerAdjusts[4] = { { +0.5, 0 }, |
|
1507 { 0, +0.5 }, |
|
1508 { -0.5, 0 }, |
|
1509 { 0, -0.5 } }; |
|
1510 |
|
1511 for (int i = 0; i < mBorderWidths[0]; i++) { |
|
1512 NS_FOR_CSS_SIDES(side) { |
|
1513 int sideNext = (side + 1) % 4; |
|
1514 |
|
1515 gfxPoint firstCorner = rect.CCWCorner(side); |
|
1516 firstCorner.x += cornerAdjusts[side].a; |
|
1517 firstCorner.y += cornerAdjusts[side].b; |
|
1518 gfxPoint secondCorner = rect.CWCorner(side); |
|
1519 secondCorner.x -= cornerAdjusts[side].a; |
|
1520 secondCorner.y -= cornerAdjusts[side].b; |
|
1521 |
|
1522 gfxRGBA currentColor = |
|
1523 currentColors[side] ? gfxRGBA(currentColors[side]->mColor) |
|
1524 : gfxRGBA(mBorderColors[side]); |
|
1525 |
|
1526 mContext->SetColor(currentColor); |
|
1527 mContext->NewPath(); |
|
1528 mContext->MoveTo(firstCorner); |
|
1529 mContext->LineTo(secondCorner); |
|
1530 mContext->Stroke(); |
|
1531 |
|
1532 mContext->NewPath(); |
|
1533 gfxPoint cornerTopLeft = rect.CWCorner(side); |
|
1534 cornerTopLeft.x -= 0.5; |
|
1535 cornerTopLeft.y -= 0.5; |
|
1536 mContext->Rectangle(gfxRect(cornerTopLeft, gfxSize(1, 1))); |
|
1537 gfxRGBA nextColor = |
|
1538 currentColors[sideNext] ? gfxRGBA(currentColors[sideNext]->mColor) |
|
1539 : gfxRGBA(mBorderColors[sideNext]); |
|
1540 |
|
1541 gfxRGBA cornerColor((currentColor.r + nextColor.r) / 2.0, |
|
1542 (currentColor.g + nextColor.g) / 2.0, |
|
1543 (currentColor.b + nextColor.b) / 2.0, |
|
1544 (currentColor.a + nextColor.a) / 2.0); |
|
1545 mContext->SetColor(cornerColor); |
|
1546 mContext->Fill(); |
|
1547 |
|
1548 if (side != 0) { |
|
1549 // We'll have to keep side 0 for the color averaging on side 3. |
|
1550 if (currentColors[side] && currentColors[side]->mNext) { |
|
1551 currentColors[side] = currentColors[side]->mNext; |
|
1552 } |
|
1553 } |
|
1554 } |
|
1555 // Now advance the color for side 0. |
|
1556 if (currentColors[0] && currentColors[0]->mNext) { |
|
1557 currentColors[0] = currentColors[0]->mNext; |
|
1558 } |
|
1559 rect.Deflate(1); |
|
1560 } |
|
1561 } |
|
1562 |
|
1563 void |
|
1564 nsCSSBorderRenderer::DrawBorders() |
|
1565 { |
|
1566 bool forceSeparateCorners = false; |
|
1567 |
|
1568 // Examine the border style to figure out if we can draw it in one |
|
1569 // go or not. |
|
1570 bool tlBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_TOP | SIDE_BIT_LEFT); |
|
1571 bool brBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT); |
|
1572 bool allBordersSame = AreBorderSideFinalStylesSame(SIDE_BITS_ALL); |
|
1573 if (allBordersSame && |
|
1574 ((mCompositeColors[0] == nullptr && |
|
1575 (mBorderStyles[0] == NS_STYLE_BORDER_STYLE_NONE || |
|
1576 mBorderStyles[0] == NS_STYLE_BORDER_STYLE_HIDDEN || |
|
1577 mBorderColors[0] == NS_RGBA(0,0,0,0))) || |
|
1578 (mCompositeColors[0] && |
|
1579 (mCompositeColors[0]->mColor == NS_RGBA(0,0,0,0) && |
|
1580 !mCompositeColors[0]->mNext)))) |
|
1581 { |
|
1582 // All borders are the same style, and the style is either none or hidden, or the color |
|
1583 // is transparent. |
|
1584 // This also checks if the first composite color is transparent, and there are |
|
1585 // no others. It doesn't check if there are subsequent transparent ones, because |
|
1586 // that would be very silly. |
|
1587 return; |
|
1588 } |
|
1589 |
|
1590 gfxMatrix mat = mContext->CurrentMatrix(); |
|
1591 |
|
1592 // Clamp the CTM to be pixel-aligned; we do this only |
|
1593 // for translation-only matrices now, but we could do it |
|
1594 // if the matrix has just a scale as well. We should not |
|
1595 // do it if there's a rotation. |
|
1596 if (mat.HasNonTranslation()) { |
|
1597 if (!mat.HasNonAxisAlignedTransform()) { |
|
1598 // Scale + transform. Avoid stroke fast-paths so that we have a chance |
|
1599 // of snapping to pixel boundaries. |
|
1600 mAvoidStroke = true; |
|
1601 } |
|
1602 } else { |
|
1603 mat.x0 = floor(mat.x0 + 0.5); |
|
1604 mat.y0 = floor(mat.y0 + 0.5); |
|
1605 mContext->SetMatrix(mat); |
|
1606 |
|
1607 // round mOuterRect and mInnerRect; they're already an integer |
|
1608 // number of pixels apart and should stay that way after |
|
1609 // rounding. We don't do this if there's a scale in the current transform |
|
1610 // since this loses information that might be relevant when we're scaling. |
|
1611 mOuterRect.Round(); |
|
1612 mInnerRect.Round(); |
|
1613 } |
|
1614 |
|
1615 bool allBordersSameWidth = AllBordersSameWidth(); |
|
1616 |
|
1617 if (allBordersSameWidth && mBorderWidths[0] == 0.0) { |
|
1618 // Some of the allBordersSameWidth codepaths depend on the border |
|
1619 // width being greater than zero. |
|
1620 return; |
|
1621 } |
|
1622 |
|
1623 bool allBordersSolid; |
|
1624 |
|
1625 // First there's a couple of 'special cases' that have specifically optimized |
|
1626 // drawing paths, when none of these can be used we move on to the generalized |
|
1627 // border drawing code. |
|
1628 if (allBordersSame && |
|
1629 mCompositeColors[0] == nullptr && |
|
1630 allBordersSameWidth && |
|
1631 mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID && |
|
1632 mNoBorderRadius && |
|
1633 !mAvoidStroke) |
|
1634 { |
|
1635 // Very simple case. |
|
1636 SetupStrokeStyle(NS_SIDE_TOP); |
|
1637 gfxRect rect = mOuterRect; |
|
1638 rect.Deflate(mBorderWidths[0] / 2.0); |
|
1639 mContext->NewPath(); |
|
1640 mContext->Rectangle(rect); |
|
1641 mContext->Stroke(); |
|
1642 return; |
|
1643 } |
|
1644 |
|
1645 if (allBordersSame && |
|
1646 mCompositeColors[0] == nullptr && |
|
1647 allBordersSameWidth && |
|
1648 mBorderStyles[0] == NS_STYLE_BORDER_STYLE_DOTTED && |
|
1649 mBorderWidths[0] < 3 && |
|
1650 mNoBorderRadius && |
|
1651 !mAvoidStroke) |
|
1652 { |
|
1653 // Very simple case. We draw this rectangular dotted borner without |
|
1654 // antialiasing. The dots should be pixel aligned. |
|
1655 SetupStrokeStyle(NS_SIDE_TOP); |
|
1656 |
|
1657 gfxFloat dash = mBorderWidths[0]; |
|
1658 mContext->SetDash(&dash, 1, 0.5); |
|
1659 mContext->SetAntialiasMode(gfxContext::MODE_ALIASED); |
|
1660 gfxRect rect = mOuterRect; |
|
1661 rect.Deflate(mBorderWidths[0] / 2.0); |
|
1662 mContext->NewPath(); |
|
1663 mContext->Rectangle(rect); |
|
1664 mContext->Stroke(); |
|
1665 return; |
|
1666 } |
|
1667 |
|
1668 |
|
1669 if (allBordersSame && |
|
1670 mCompositeColors[0] == nullptr && |
|
1671 mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID && |
|
1672 !mAvoidStroke && |
|
1673 !mNoBorderRadius) |
|
1674 { |
|
1675 // Relatively simple case. |
|
1676 SetupStrokeStyle(NS_SIDE_TOP); |
|
1677 |
|
1678 RoundedRect borderInnerRect(mOuterRect, mBorderRadii); |
|
1679 borderInnerRect.Deflate(mBorderWidths[NS_SIDE_TOP], |
|
1680 mBorderWidths[NS_SIDE_BOTTOM], |
|
1681 mBorderWidths[NS_SIDE_LEFT], |
|
1682 mBorderWidths[NS_SIDE_RIGHT]); |
|
1683 |
|
1684 // Instead of stroking we just use two paths: an inner and an outer. |
|
1685 // This allows us to draw borders that we couldn't when stroking. For example, |
|
1686 // borders with a border width >= the border radius. (i.e. when there are |
|
1687 // square corners on the inside) |
|
1688 // |
|
1689 // Further, this approach can be more efficient because the backend |
|
1690 // doesn't need to compute an offset curve to stroke the path. We know that |
|
1691 // the rounded parts are elipses we can offset exactly and can just compute |
|
1692 // a new cubic approximation. |
|
1693 mContext->NewPath(); |
|
1694 mContext->RoundedRectangle(mOuterRect, mBorderRadii, true); |
|
1695 mContext->RoundedRectangle(borderInnerRect.rect, borderInnerRect.corners, false); |
|
1696 mContext->Fill(); |
|
1697 return; |
|
1698 } |
|
1699 |
|
1700 bool hasCompositeColors; |
|
1701 |
|
1702 allBordersSolid = AllBordersSolid(&hasCompositeColors); |
|
1703 // This leaves the border corners non-interpolated for single width borders. |
|
1704 // Doing this is slightly faster and shouldn't be a problem visually. |
|
1705 if (allBordersSolid && |
|
1706 allBordersSameWidth && |
|
1707 mCompositeColors[0] == nullptr && |
|
1708 mBorderWidths[0] == 1 && |
|
1709 mNoBorderRadius && |
|
1710 !mAvoidStroke) |
|
1711 { |
|
1712 DrawSingleWidthSolidBorder(); |
|
1713 return; |
|
1714 } |
|
1715 |
|
1716 if (allBordersSolid && !hasCompositeColors && |
|
1717 !mAvoidStroke) |
|
1718 { |
|
1719 if (mContext->IsCairo()) { |
|
1720 DrawNoCompositeColorSolidBorder(); |
|
1721 } else { |
|
1722 DrawNoCompositeColorSolidBorderAzure(); |
|
1723 } |
|
1724 return; |
|
1725 } |
|
1726 |
|
1727 if (allBordersSolid && |
|
1728 allBordersSameWidth && |
|
1729 mNoBorderRadius && |
|
1730 !mAvoidStroke) |
|
1731 { |
|
1732 // Easy enough to deal with. |
|
1733 DrawRectangularCompositeColors(); |
|
1734 return; |
|
1735 } |
|
1736 |
|
1737 // If we have composite colors -and- border radius, |
|
1738 // then use separate corners so we get OPERATOR_ADD for the corners. |
|
1739 // Otherwise, we'll get artifacts as we draw stacked 1px-wide curves. |
|
1740 if (allBordersSame && mCompositeColors[0] != nullptr && !mNoBorderRadius) |
|
1741 forceSeparateCorners = true; |
|
1742 |
|
1743 S(" mOuterRect: "), S(mOuterRect), SN(); |
|
1744 S(" mInnerRect: "), S(mInnerRect), SN(); |
|
1745 SF(" mBorderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", mBorderColors[0], mBorderColors[1], mBorderColors[2], mBorderColors[3]); |
|
1746 |
|
1747 // if conditioning the outside rect failed, then bail -- the outside |
|
1748 // rect is supposed to enclose the entire border |
|
1749 mOuterRect.Condition(); |
|
1750 if (mOuterRect.IsEmpty()) |
|
1751 return; |
|
1752 |
|
1753 mInnerRect.Condition(); |
|
1754 int dashedSides = 0; |
|
1755 |
|
1756 NS_FOR_CSS_SIDES(i) { |
|
1757 uint8_t style = mBorderStyles[i]; |
|
1758 if (style == NS_STYLE_BORDER_STYLE_DASHED || |
|
1759 style == NS_STYLE_BORDER_STYLE_DOTTED) |
|
1760 { |
|
1761 // pretend that all borders aren't the same; we need to draw |
|
1762 // things separately for dashed/dotting |
|
1763 allBordersSame = false; |
|
1764 dashedSides |= (1 << i); |
|
1765 } |
|
1766 } |
|
1767 |
|
1768 SF(" allBordersSame: %d dashedSides: 0x%02x\n", allBordersSame, dashedSides); |
|
1769 |
|
1770 if (allBordersSame && !forceSeparateCorners) { |
|
1771 /* Draw everything in one go */ |
|
1772 DrawBorderSides(SIDE_BITS_ALL); |
|
1773 SN("---------------- (1)"); |
|
1774 } else { |
|
1775 PROFILER_LABEL("nsCSSBorderRenderer", "DrawBorders::multipass"); |
|
1776 /* We have more than one pass to go. Draw the corners separately from the sides. */ |
|
1777 |
|
1778 /* |
|
1779 * If we have a 1px-wide border, the corners are going to be |
|
1780 * negligible, so don't bother doing anything fancy. Just extend |
|
1781 * the top and bottom borders to the right 1px and the left border |
|
1782 * to the bottom 1px. We do this by twiddling the corner dimensions, |
|
1783 * which causes the right to happen later on. Only do this if we have |
|
1784 * a 1.0 unit border all around and no border radius. |
|
1785 */ |
|
1786 |
|
1787 NS_FOR_CSS_CORNERS(corner) { |
|
1788 const mozilla::css::Side sides[2] = { mozilla::css::Side(corner), PREV_SIDE(corner) }; |
|
1789 |
|
1790 if (!IsZeroSize(mBorderRadii[corner])) |
|
1791 continue; |
|
1792 |
|
1793 if (mBorderWidths[sides[0]] == 1.0 && mBorderWidths[sides[1]] == 1.0) { |
|
1794 if (corner == NS_CORNER_TOP_LEFT || corner == NS_CORNER_TOP_RIGHT) |
|
1795 mBorderCornerDimensions[corner].width = 0.0; |
|
1796 else |
|
1797 mBorderCornerDimensions[corner].height = 0.0; |
|
1798 } |
|
1799 } |
|
1800 |
|
1801 // First, the corners |
|
1802 NS_FOR_CSS_CORNERS(corner) { |
|
1803 // if there's no corner, don't do all this work for it |
|
1804 if (IsZeroSize(mBorderCornerDimensions[corner])) |
|
1805 continue; |
|
1806 |
|
1807 const int sides[2] = { corner, PREV_SIDE(corner) }; |
|
1808 int sideBits = (1 << sides[0]) | (1 << sides[1]); |
|
1809 |
|
1810 bool simpleCornerStyle = mCompositeColors[sides[0]] == nullptr && |
|
1811 mCompositeColors[sides[1]] == nullptr && |
|
1812 AreBorderSideFinalStylesSame(sideBits); |
|
1813 |
|
1814 // If we don't have anything complex going on in this corner, |
|
1815 // then we can just fill the corner with a solid color, and avoid |
|
1816 // the potentially expensive clip. |
|
1817 if (simpleCornerStyle && |
|
1818 IsZeroSize(mBorderRadii[corner]) && |
|
1819 IsSolidCornerStyle(mBorderStyles[sides[0]], corner)) |
|
1820 { |
|
1821 mContext->NewPath(); |
|
1822 DoCornerSubPath(corner); |
|
1823 mContext->SetColor(MakeBorderColor(mBorderColors[sides[0]], |
|
1824 mBackgroundColor, |
|
1825 BorderColorStyleForSolidCorner(mBorderStyles[sides[0]], corner))); |
|
1826 mContext->Fill(); |
|
1827 continue; |
|
1828 } |
|
1829 |
|
1830 mContext->Save(); |
|
1831 |
|
1832 // clip to the corner |
|
1833 mContext->NewPath(); |
|
1834 DoCornerSubPath(corner); |
|
1835 mContext->Clip(); |
|
1836 |
|
1837 if (simpleCornerStyle) { |
|
1838 // we don't need a group for this corner, the sides are the same, |
|
1839 // but we weren't able to render just a solid block for the corner. |
|
1840 DrawBorderSides(sideBits); |
|
1841 } else { |
|
1842 // Sides are different. We could draw using OPERATOR_ADD to |
|
1843 // get correct color blending behaviour at the seam. We'd need |
|
1844 // to do it in an offscreen surface to ensure that we're |
|
1845 // always compositing on transparent black. If the colors |
|
1846 // don't have transparency and the current destination surface |
|
1847 // has an alpha channel, we could just clear the region and |
|
1848 // avoid the temporary, but that situation doesn't happen all |
|
1849 // that often in practice (we double buffer to no-alpha |
|
1850 // surfaces). We choose just to seam though, as the performance |
|
1851 // advantages outway the modest easthetic improvement. |
|
1852 |
|
1853 for (int cornerSide = 0; cornerSide < 2; cornerSide++) { |
|
1854 mozilla::css::Side side = mozilla::css::Side(sides[cornerSide]); |
|
1855 uint8_t style = mBorderStyles[side]; |
|
1856 |
|
1857 SF("corner: %d cornerSide: %d side: %d style: %d\n", corner, cornerSide, side, style); |
|
1858 |
|
1859 mContext->Save(); |
|
1860 |
|
1861 mContext->NewPath(); |
|
1862 DoSideClipSubPath(side); |
|
1863 mContext->Clip(); |
|
1864 |
|
1865 DrawBorderSides(1 << side); |
|
1866 |
|
1867 mContext->Restore(); |
|
1868 } |
|
1869 } |
|
1870 |
|
1871 mContext->Restore(); |
|
1872 |
|
1873 SN(); |
|
1874 } |
|
1875 |
|
1876 // in the case of a single-unit border, we already munged the |
|
1877 // corners up above; so we can just draw the top left and bottom |
|
1878 // right sides separately, if they're the same. |
|
1879 // |
|
1880 // We need to check for mNoBorderRadius, because when there is |
|
1881 // one, FillSolidBorder always draws the full rounded rectangle |
|
1882 // and expects there to be a clip in place. |
|
1883 int alreadyDrawnSides = 0; |
|
1884 if (mOneUnitBorder && |
|
1885 mNoBorderRadius && |
|
1886 (dashedSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0) |
|
1887 { |
|
1888 if (tlBordersSame) { |
|
1889 DrawBorderSides(SIDE_BIT_TOP | SIDE_BIT_LEFT); |
|
1890 alreadyDrawnSides |= (SIDE_BIT_TOP | SIDE_BIT_LEFT); |
|
1891 } |
|
1892 |
|
1893 if (brBordersSame && (dashedSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0) { |
|
1894 DrawBorderSides(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT); |
|
1895 alreadyDrawnSides |= (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT); |
|
1896 } |
|
1897 } |
|
1898 |
|
1899 // We're done with the corners, now draw the sides. |
|
1900 NS_FOR_CSS_SIDES (side) { |
|
1901 // if we drew it above, skip it |
|
1902 if (alreadyDrawnSides & (1 << side)) |
|
1903 continue; |
|
1904 |
|
1905 // If there's no border on this side, skip it |
|
1906 if (mBorderWidths[side] == 0.0 || |
|
1907 mBorderStyles[side] == NS_STYLE_BORDER_STYLE_HIDDEN || |
|
1908 mBorderStyles[side] == NS_STYLE_BORDER_STYLE_NONE) |
|
1909 continue; |
|
1910 |
|
1911 |
|
1912 if (dashedSides & (1 << side)) { |
|
1913 // Dashed sides will always draw just the part ignoring the |
|
1914 // corners for the side, so no need to clip. |
|
1915 DrawDashedSide (side); |
|
1916 |
|
1917 SN("---------------- (d)"); |
|
1918 continue; |
|
1919 } |
|
1920 |
|
1921 // Undashed sides will currently draw the entire side, |
|
1922 // including parts that would normally be covered by a corner, |
|
1923 // so we need to clip. |
|
1924 // |
|
1925 // XXX Optimization -- it would be good to make this work like |
|
1926 // DrawDashedSide, and have a DrawOneSide function that just |
|
1927 // draws one side and not the corners, because then we can |
|
1928 // avoid the potentially expensive clip. |
|
1929 mContext->Save(); |
|
1930 mContext->NewPath(); |
|
1931 DoSideClipWithoutCornersSubPath(side); |
|
1932 mContext->Clip(); |
|
1933 |
|
1934 DrawBorderSides(1 << side); |
|
1935 |
|
1936 mContext->Restore(); |
|
1937 |
|
1938 SN("---------------- (*)"); |
|
1939 } |
|
1940 } |
|
1941 } |