|
1 /* Copyright (C) 2007-2008 Jean-Marc Valin |
|
2 Copyright (C) 2008 Thorvald Natvig |
|
3 |
|
4 File: resample.c |
|
5 Arbitrary resampling code |
|
6 |
|
7 Redistribution and use in source and binary forms, with or without |
|
8 modification, are permitted provided that the following conditions are |
|
9 met: |
|
10 |
|
11 1. Redistributions of source code must retain the above copyright notice, |
|
12 this list of conditions and the following disclaimer. |
|
13 |
|
14 2. Redistributions in binary form must reproduce the above copyright |
|
15 notice, this list of conditions and the following disclaimer in the |
|
16 documentation and/or other materials provided with the distribution. |
|
17 |
|
18 3. The name of the author may not be used to endorse or promote products |
|
19 derived from this software without specific prior written permission. |
|
20 |
|
21 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
22 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
23 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
24 DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, |
|
25 INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
26 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
27 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
28 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
29 STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
30 ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
31 POSSIBILITY OF SUCH DAMAGE. |
|
32 */ |
|
33 |
|
34 /* |
|
35 The design goals of this code are: |
|
36 - Very fast algorithm |
|
37 - SIMD-friendly algorithm |
|
38 - Low memory requirement |
|
39 - Good *perceptual* quality (and not best SNR) |
|
40 |
|
41 Warning: This resampler is relatively new. Although I think I got rid of |
|
42 all the major bugs and I don't expect the API to change anymore, there |
|
43 may be something I've missed. So use with caution. |
|
44 |
|
45 This algorithm is based on this original resampling algorithm: |
|
46 Smith, Julius O. Digital Audio Resampling Home Page |
|
47 Center for Computer Research in Music and Acoustics (CCRMA), |
|
48 Stanford University, 2007. |
|
49 Web published at http://www-ccrma.stanford.edu/~jos/resample/. |
|
50 |
|
51 There is one main difference, though. This resampler uses cubic |
|
52 interpolation instead of linear interpolation in the above paper. This |
|
53 makes the table much smaller and makes it possible to compute that table |
|
54 on a per-stream basis. In turn, being able to tweak the table for each |
|
55 stream makes it possible to both reduce complexity on simple ratios |
|
56 (e.g. 2/3), and get rid of the rounding operations in the inner loop. |
|
57 The latter both reduces CPU time and makes the algorithm more SIMD-friendly. |
|
58 */ |
|
59 |
|
60 #ifdef HAVE_CONFIG_H |
|
61 # include "config.h" |
|
62 #endif |
|
63 |
|
64 #define RESAMPLE_HUGEMEM 1 |
|
65 |
|
66 #ifdef OUTSIDE_SPEEX |
|
67 #include <stdlib.h> |
|
68 static void *speex_alloc (int size) {return calloc(size,1);} |
|
69 static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);} |
|
70 static void speex_free (void *ptr) {free(ptr);} |
|
71 #include "speex_resampler.h" |
|
72 #include "arch.h" |
|
73 #else /* OUTSIDE_SPEEX */ |
|
74 |
|
75 #include "../include/speex/speex_resampler.h" |
|
76 #include "arch.h" |
|
77 #include "os_support.h" |
|
78 #endif /* OUTSIDE_SPEEX */ |
|
79 |
|
80 #include "stack_alloc.h" |
|
81 #include <math.h> |
|
82 |
|
83 #ifndef M_PI |
|
84 #define M_PI 3.14159263 |
|
85 #endif |
|
86 |
|
87 #ifdef FIXED_POINT |
|
88 #define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x))) |
|
89 #else |
|
90 #define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x)))) |
|
91 #endif |
|
92 |
|
93 #define IMAX(a,b) ((a) > (b) ? (a) : (b)) |
|
94 #define IMIN(a,b) ((a) < (b) ? (a) : (b)) |
|
95 |
|
96 #ifndef NULL |
|
97 #define NULL 0 |
|
98 #endif |
|
99 |
|
100 #include "sse_detect.h" |
|
101 |
|
102 /* We compile SSE code on x86 all the time, but we only use it if we find at |
|
103 * runtime that the CPU supports it. */ |
|
104 #if defined(FLOATING_POINT) && defined(__SSE__) |
|
105 #if defined(_MSC_VER) |
|
106 #define inline __inline |
|
107 #endif |
|
108 # include "resample_sse.h" |
|
109 #ifdef _MSC_VER |
|
110 #undef inline |
|
111 #endif |
|
112 #endif |
|
113 |
|
114 /* Numer of elements to allocate on the stack */ |
|
115 #ifdef VAR_ARRAYS |
|
116 #define FIXED_STACK_ALLOC 8192 |
|
117 #else |
|
118 #define FIXED_STACK_ALLOC 1024 |
|
119 #endif |
|
120 |
|
121 typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); |
|
122 |
|
123 struct SpeexResamplerState_ { |
|
124 spx_uint32_t in_rate; |
|
125 spx_uint32_t out_rate; |
|
126 spx_uint32_t num_rate; |
|
127 spx_uint32_t den_rate; |
|
128 |
|
129 int quality; |
|
130 spx_uint32_t nb_channels; |
|
131 spx_uint32_t filt_len; |
|
132 spx_uint32_t mem_alloc_size; |
|
133 spx_uint32_t buffer_size; |
|
134 int int_advance; |
|
135 int frac_advance; |
|
136 float cutoff; |
|
137 spx_uint32_t oversample; |
|
138 int initialised; |
|
139 int started; |
|
140 |
|
141 /* These are per-channel */ |
|
142 spx_int32_t *last_sample; |
|
143 spx_uint32_t *samp_frac_num; |
|
144 spx_uint32_t *magic_samples; |
|
145 |
|
146 spx_word16_t *mem; |
|
147 spx_word16_t *sinc_table; |
|
148 spx_uint32_t sinc_table_length; |
|
149 resampler_basic_func resampler_ptr; |
|
150 |
|
151 int in_stride; |
|
152 int out_stride; |
|
153 } ; |
|
154 |
|
155 static double kaiser12_table[68] = { |
|
156 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076, |
|
157 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014, |
|
158 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601, |
|
159 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014, |
|
160 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490, |
|
161 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546, |
|
162 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178, |
|
163 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947, |
|
164 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058, |
|
165 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438, |
|
166 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734, |
|
167 0.00001000, 0.00000000}; |
|
168 /* |
|
169 static double kaiser12_table[36] = { |
|
170 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741, |
|
171 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762, |
|
172 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274, |
|
173 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466, |
|
174 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291, |
|
175 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000}; |
|
176 */ |
|
177 static double kaiser10_table[36] = { |
|
178 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446, |
|
179 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347, |
|
180 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962, |
|
181 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451, |
|
182 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739, |
|
183 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000}; |
|
184 |
|
185 static double kaiser8_table[36] = { |
|
186 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200, |
|
187 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126, |
|
188 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272, |
|
189 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758, |
|
190 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490, |
|
191 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000}; |
|
192 |
|
193 static double kaiser6_table[36] = { |
|
194 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003, |
|
195 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565, |
|
196 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561, |
|
197 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058, |
|
198 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600, |
|
199 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000}; |
|
200 |
|
201 struct FuncDef { |
|
202 double *table; |
|
203 int oversample; |
|
204 }; |
|
205 |
|
206 static struct FuncDef _KAISER12 = {kaiser12_table, 64}; |
|
207 #define KAISER12 (&_KAISER12) |
|
208 /*static struct FuncDef _KAISER12 = {kaiser12_table, 32}; |
|
209 #define KAISER12 (&_KAISER12)*/ |
|
210 static struct FuncDef _KAISER10 = {kaiser10_table, 32}; |
|
211 #define KAISER10 (&_KAISER10) |
|
212 static struct FuncDef _KAISER8 = {kaiser8_table, 32}; |
|
213 #define KAISER8 (&_KAISER8) |
|
214 static struct FuncDef _KAISER6 = {kaiser6_table, 32}; |
|
215 #define KAISER6 (&_KAISER6) |
|
216 |
|
217 struct QualityMapping { |
|
218 int base_length; |
|
219 int oversample; |
|
220 float downsample_bandwidth; |
|
221 float upsample_bandwidth; |
|
222 struct FuncDef *window_func; |
|
223 }; |
|
224 |
|
225 |
|
226 /* This table maps conversion quality to internal parameters. There are two |
|
227 reasons that explain why the up-sampling bandwidth is larger than the |
|
228 down-sampling bandwidth: |
|
229 1) When up-sampling, we can assume that the spectrum is already attenuated |
|
230 close to the Nyquist rate (from an A/D or a previous resampling filter) |
|
231 2) Any aliasing that occurs very close to the Nyquist rate will be masked |
|
232 by the sinusoids/noise just below the Nyquist rate (guaranteed only for |
|
233 up-sampling). |
|
234 */ |
|
235 static const struct QualityMapping quality_map[11] = { |
|
236 { 8, 4, 0.830f, 0.860f, KAISER6 }, /* Q0 */ |
|
237 { 16, 4, 0.850f, 0.880f, KAISER6 }, /* Q1 */ |
|
238 { 32, 4, 0.882f, 0.910f, KAISER6 }, /* Q2 */ /* 82.3% cutoff ( ~60 dB stop) 6 */ |
|
239 { 48, 8, 0.895f, 0.917f, KAISER8 }, /* Q3 */ /* 84.9% cutoff ( ~80 dB stop) 8 */ |
|
240 { 64, 8, 0.921f, 0.940f, KAISER8 }, /* Q4 */ /* 88.7% cutoff ( ~80 dB stop) 8 */ |
|
241 { 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */ /* 89.1% cutoff (~100 dB stop) 10 */ |
|
242 { 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */ /* 91.5% cutoff (~100 dB stop) 10 */ |
|
243 {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */ /* 93.1% cutoff (~100 dB stop) 10 */ |
|
244 {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */ /* 94.5% cutoff (~100 dB stop) 10 */ |
|
245 {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */ /* 95.5% cutoff (~100 dB stop) 10 */ |
|
246 {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */ |
|
247 }; |
|
248 /*8,24,40,56,80,104,128,160,200,256,320*/ |
|
249 static double compute_func(float x, struct FuncDef *func) |
|
250 { |
|
251 float y, frac; |
|
252 double interp[4]; |
|
253 int ind; |
|
254 y = x*func->oversample; |
|
255 ind = (int)floor(y); |
|
256 frac = (y-ind); |
|
257 /* CSE with handle the repeated powers */ |
|
258 interp[3] = -0.1666666667*frac + 0.1666666667*(frac*frac*frac); |
|
259 interp[2] = frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac); |
|
260 /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/ |
|
261 interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac); |
|
262 /* Just to make sure we don't have rounding problems */ |
|
263 interp[1] = 1.f-interp[3]-interp[2]-interp[0]; |
|
264 |
|
265 /*sum = frac*accum[1] + (1-frac)*accum[2];*/ |
|
266 return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3]; |
|
267 } |
|
268 |
|
269 #if 0 |
|
270 #include <stdio.h> |
|
271 int main(int argc, char **argv) |
|
272 { |
|
273 int i; |
|
274 for (i=0;i<256;i++) |
|
275 { |
|
276 printf ("%f\n", compute_func(i/256., KAISER12)); |
|
277 } |
|
278 return 0; |
|
279 } |
|
280 #endif |
|
281 |
|
282 #ifdef FIXED_POINT |
|
283 /* The slow way of computing a sinc for the table. Should improve that some day */ |
|
284 static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func) |
|
285 { |
|
286 /*fprintf (stderr, "%f ", x);*/ |
|
287 float xx = x * cutoff; |
|
288 if (fabs(x)<1e-6f) |
|
289 return WORD2INT(32768.*cutoff); |
|
290 else if (fabs(x) > .5f*N) |
|
291 return 0; |
|
292 /*FIXME: Can it really be any slower than this? */ |
|
293 return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func)); |
|
294 } |
|
295 #else |
|
296 /* The slow way of computing a sinc for the table. Should improve that some day */ |
|
297 static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *window_func) |
|
298 { |
|
299 /*fprintf (stderr, "%f ", x);*/ |
|
300 float xx = x * cutoff; |
|
301 if (fabs(x)<1e-6) |
|
302 return cutoff; |
|
303 else if (fabs(x) > .5*N) |
|
304 return 0; |
|
305 /*FIXME: Can it really be any slower than this? */ |
|
306 return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func); |
|
307 } |
|
308 #endif |
|
309 |
|
310 #ifdef FIXED_POINT |
|
311 static void cubic_coef(spx_word16_t x, spx_word16_t interp[4]) |
|
312 { |
|
313 /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation |
|
314 but I know it's MMSE-optimal on a sinc */ |
|
315 spx_word16_t x2, x3; |
|
316 x2 = MULT16_16_P15(x, x); |
|
317 x3 = MULT16_16_P15(x, x2); |
|
318 interp[0] = PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(QCONST16(0.16667f, 15),x3),15); |
|
319 interp[1] = EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32(x3)),1)); |
|
320 interp[3] = PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(QCONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15); |
|
321 /* Just to make sure we don't have rounding problems */ |
|
322 interp[2] = Q15_ONE-interp[0]-interp[1]-interp[3]; |
|
323 if (interp[2]<32767) |
|
324 interp[2]+=1; |
|
325 } |
|
326 #else |
|
327 static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4]) |
|
328 { |
|
329 /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation |
|
330 but I know it's MMSE-optimal on a sinc */ |
|
331 interp[0] = -0.16667f*frac + 0.16667f*frac*frac*frac; |
|
332 interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac; |
|
333 /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/ |
|
334 interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac; |
|
335 /* Just to make sure we don't have rounding problems */ |
|
336 interp[2] = 1.-interp[0]-interp[1]-interp[3]; |
|
337 } |
|
338 #endif |
|
339 |
|
340 static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) |
|
341 { |
|
342 const int N = st->filt_len; |
|
343 int out_sample = 0; |
|
344 int last_sample = st->last_sample[channel_index]; |
|
345 spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; |
|
346 const spx_word16_t *sinc_table = st->sinc_table; |
|
347 const int out_stride = st->out_stride; |
|
348 const int int_advance = st->int_advance; |
|
349 const int frac_advance = st->frac_advance; |
|
350 const spx_uint32_t den_rate = st->den_rate; |
|
351 spx_word32_t sum; |
|
352 |
|
353 while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) |
|
354 { |
|
355 const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; |
|
356 const spx_word16_t *iptr = & in[last_sample]; |
|
357 |
|
358 #ifdef OVERRIDE_INNER_PRODUCT_SINGLE |
|
359 if (moz_has_sse()) { |
|
360 sum = inner_product_single(sinct, iptr, N); |
|
361 } else { |
|
362 #endif |
|
363 int j; |
|
364 sum = 0; |
|
365 for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]); |
|
366 |
|
367 /* This code is slower on most DSPs which have only 2 accumulators. |
|
368 Plus this this forces truncation to 32 bits and you lose the HW guard bits. |
|
369 I think we can trust the compiler and let it vectorize and/or unroll itself. |
|
370 spx_word32_t accum[4] = {0,0,0,0}; |
|
371 for(j=0;j<N;j+=4) { |
|
372 accum[0] += MULT16_16(sinct[j], iptr[j]); |
|
373 accum[1] += MULT16_16(sinct[j+1], iptr[j+1]); |
|
374 accum[2] += MULT16_16(sinct[j+2], iptr[j+2]); |
|
375 accum[3] += MULT16_16(sinct[j+3], iptr[j+3]); |
|
376 } |
|
377 sum = accum[0] + accum[1] + accum[2] + accum[3]; |
|
378 */ |
|
379 #ifdef OVERRIDE_INNER_PRODUCT_SINGLE |
|
380 } |
|
381 #endif |
|
382 |
|
383 out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 15), 32767); |
|
384 last_sample += int_advance; |
|
385 samp_frac_num += frac_advance; |
|
386 if (samp_frac_num >= den_rate) |
|
387 { |
|
388 samp_frac_num -= den_rate; |
|
389 last_sample++; |
|
390 } |
|
391 } |
|
392 |
|
393 st->last_sample[channel_index] = last_sample; |
|
394 st->samp_frac_num[channel_index] = samp_frac_num; |
|
395 return out_sample; |
|
396 } |
|
397 |
|
398 #ifdef FIXED_POINT |
|
399 #else |
|
400 /* This is the same as the previous function, except with a double-precision accumulator */ |
|
401 static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) |
|
402 { |
|
403 const int N = st->filt_len; |
|
404 int out_sample = 0; |
|
405 int last_sample = st->last_sample[channel_index]; |
|
406 spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; |
|
407 const spx_word16_t *sinc_table = st->sinc_table; |
|
408 const int out_stride = st->out_stride; |
|
409 const int int_advance = st->int_advance; |
|
410 const int frac_advance = st->frac_advance; |
|
411 const spx_uint32_t den_rate = st->den_rate; |
|
412 double sum; |
|
413 |
|
414 while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) |
|
415 { |
|
416 const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; |
|
417 const spx_word16_t *iptr = & in[last_sample]; |
|
418 |
|
419 #ifdef OVERRIDE_INNER_PRODUCT_DOUBLE |
|
420 if(moz_has_sse2()) { |
|
421 sum = inner_product_double(sinct, iptr, N); |
|
422 } else { |
|
423 #endif |
|
424 int j; |
|
425 double accum[4] = {0,0,0,0}; |
|
426 |
|
427 for(j=0;j<N;j+=4) { |
|
428 accum[0] += sinct[j]*iptr[j]; |
|
429 accum[1] += sinct[j+1]*iptr[j+1]; |
|
430 accum[2] += sinct[j+2]*iptr[j+2]; |
|
431 accum[3] += sinct[j+3]*iptr[j+3]; |
|
432 } |
|
433 sum = accum[0] + accum[1] + accum[2] + accum[3]; |
|
434 #ifdef OVERRIDE_INNER_PRODUCT_DOUBLE |
|
435 } |
|
436 #endif |
|
437 |
|
438 out[out_stride * out_sample++] = PSHR32(sum, 15); |
|
439 last_sample += int_advance; |
|
440 samp_frac_num += frac_advance; |
|
441 if (samp_frac_num >= den_rate) |
|
442 { |
|
443 samp_frac_num -= den_rate; |
|
444 last_sample++; |
|
445 } |
|
446 } |
|
447 |
|
448 st->last_sample[channel_index] = last_sample; |
|
449 st->samp_frac_num[channel_index] = samp_frac_num; |
|
450 return out_sample; |
|
451 } |
|
452 #endif |
|
453 |
|
454 static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) |
|
455 { |
|
456 const int N = st->filt_len; |
|
457 int out_sample = 0; |
|
458 int last_sample = st->last_sample[channel_index]; |
|
459 spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; |
|
460 const int out_stride = st->out_stride; |
|
461 const int int_advance = st->int_advance; |
|
462 const int frac_advance = st->frac_advance; |
|
463 const spx_uint32_t den_rate = st->den_rate; |
|
464 spx_word32_t sum; |
|
465 |
|
466 while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) |
|
467 { |
|
468 const spx_word16_t *iptr = & in[last_sample]; |
|
469 |
|
470 const int offset = samp_frac_num*st->oversample/st->den_rate; |
|
471 #ifdef FIXED_POINT |
|
472 const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); |
|
473 #else |
|
474 const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; |
|
475 #endif |
|
476 spx_word16_t interp[4]; |
|
477 |
|
478 |
|
479 #ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE |
|
480 if (moz_has_sse()) { |
|
481 cubic_coef(frac, interp); |
|
482 sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); |
|
483 } else { |
|
484 #endif |
|
485 int j; |
|
486 spx_word32_t accum[4] = {0,0,0,0}; |
|
487 |
|
488 for(j=0;j<N;j++) { |
|
489 const spx_word16_t curr_in=iptr[j]; |
|
490 accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]); |
|
491 accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); |
|
492 accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); |
|
493 accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); |
|
494 } |
|
495 cubic_coef(frac, interp); |
|
496 sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1)); |
|
497 #ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE |
|
498 } |
|
499 #endif |
|
500 |
|
501 out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 14), 32767); |
|
502 last_sample += int_advance; |
|
503 samp_frac_num += frac_advance; |
|
504 if (samp_frac_num >= den_rate) |
|
505 { |
|
506 samp_frac_num -= den_rate; |
|
507 last_sample++; |
|
508 } |
|
509 } |
|
510 |
|
511 st->last_sample[channel_index] = last_sample; |
|
512 st->samp_frac_num[channel_index] = samp_frac_num; |
|
513 return out_sample; |
|
514 } |
|
515 |
|
516 #ifdef FIXED_POINT |
|
517 #else |
|
518 /* This is the same as the previous function, except with a double-precision accumulator */ |
|
519 static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) |
|
520 { |
|
521 const int N = st->filt_len; |
|
522 int out_sample = 0; |
|
523 int last_sample = st->last_sample[channel_index]; |
|
524 spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; |
|
525 const int out_stride = st->out_stride; |
|
526 const int int_advance = st->int_advance; |
|
527 const int frac_advance = st->frac_advance; |
|
528 const spx_uint32_t den_rate = st->den_rate; |
|
529 spx_word32_t sum; |
|
530 |
|
531 while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) |
|
532 { |
|
533 const spx_word16_t *iptr = & in[last_sample]; |
|
534 |
|
535 const int offset = samp_frac_num*st->oversample/st->den_rate; |
|
536 #ifdef FIXED_POINT |
|
537 const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); |
|
538 #else |
|
539 const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; |
|
540 #endif |
|
541 spx_word16_t interp[4]; |
|
542 |
|
543 |
|
544 #ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE |
|
545 if (moz_has_sse2()) { |
|
546 cubic_coef(frac, interp); |
|
547 sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); |
|
548 } else { |
|
549 #endif |
|
550 int j; |
|
551 double accum[4] = {0,0,0,0}; |
|
552 |
|
553 for(j=0;j<N;j++) { |
|
554 const double curr_in=iptr[j]; |
|
555 accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]); |
|
556 accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); |
|
557 accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); |
|
558 accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); |
|
559 } |
|
560 |
|
561 cubic_coef(frac, interp); |
|
562 sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]); |
|
563 #ifdef OVERRIDE_INNER_PRODUCT_DOUBLE |
|
564 } |
|
565 #endif |
|
566 out[out_stride * out_sample++] = PSHR32(sum,15); |
|
567 last_sample += int_advance; |
|
568 samp_frac_num += frac_advance; |
|
569 if (samp_frac_num >= den_rate) |
|
570 { |
|
571 samp_frac_num -= den_rate; |
|
572 last_sample++; |
|
573 } |
|
574 } |
|
575 |
|
576 st->last_sample[channel_index] = last_sample; |
|
577 st->samp_frac_num[channel_index] = samp_frac_num; |
|
578 return out_sample; |
|
579 } |
|
580 #endif |
|
581 |
|
582 /* This resampler is used to produce zero output in situations where memory |
|
583 for the filter could not be allocated. The expected numbers of input and |
|
584 output samples are still processed so that callers failing to check error |
|
585 codes are not surprised, possibly getting into infinite loops. */ |
|
586 static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) |
|
587 { |
|
588 int out_sample = 0; |
|
589 int last_sample = st->last_sample[channel_index]; |
|
590 spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; |
|
591 const int out_stride = st->out_stride; |
|
592 const int int_advance = st->int_advance; |
|
593 const int frac_advance = st->frac_advance; |
|
594 const spx_uint32_t den_rate = st->den_rate; |
|
595 |
|
596 while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) |
|
597 { |
|
598 out[out_stride * out_sample++] = 0; |
|
599 last_sample += int_advance; |
|
600 samp_frac_num += frac_advance; |
|
601 if (samp_frac_num >= den_rate) |
|
602 { |
|
603 samp_frac_num -= den_rate; |
|
604 last_sample++; |
|
605 } |
|
606 } |
|
607 |
|
608 st->last_sample[channel_index] = last_sample; |
|
609 st->samp_frac_num[channel_index] = samp_frac_num; |
|
610 return out_sample; |
|
611 } |
|
612 |
|
613 static int update_filter(SpeexResamplerState *st) |
|
614 { |
|
615 spx_uint32_t old_length = st->filt_len; |
|
616 spx_uint32_t old_alloc_size = st->mem_alloc_size; |
|
617 int use_direct; |
|
618 spx_uint32_t min_sinc_table_length; |
|
619 spx_uint32_t min_alloc_size; |
|
620 |
|
621 st->int_advance = st->num_rate/st->den_rate; |
|
622 st->frac_advance = st->num_rate%st->den_rate; |
|
623 st->oversample = quality_map[st->quality].oversample; |
|
624 st->filt_len = quality_map[st->quality].base_length; |
|
625 |
|
626 if (st->num_rate > st->den_rate) |
|
627 { |
|
628 /* down-sampling */ |
|
629 st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate; |
|
630 /* FIXME: divide the numerator and denominator by a certain amount if they're too large */ |
|
631 st->filt_len = st->filt_len*st->num_rate / st->den_rate; |
|
632 /* Round up to make sure we have a multiple of 8 */ |
|
633 st->filt_len = ((st->filt_len-1)&(~0x7))+8; |
|
634 if (2*st->den_rate < st->num_rate) |
|
635 st->oversample >>= 1; |
|
636 if (4*st->den_rate < st->num_rate) |
|
637 st->oversample >>= 1; |
|
638 if (8*st->den_rate < st->num_rate) |
|
639 st->oversample >>= 1; |
|
640 if (16*st->den_rate < st->num_rate) |
|
641 st->oversample >>= 1; |
|
642 if (st->oversample < 1) |
|
643 st->oversample = 1; |
|
644 } else { |
|
645 /* up-sampling */ |
|
646 st->cutoff = quality_map[st->quality].upsample_bandwidth; |
|
647 } |
|
648 |
|
649 #ifdef RESAMPLE_HUGEMEM |
|
650 use_direct = st->den_rate <= 16*(st->oversample+8); |
|
651 #else |
|
652 /* Choose the resampling type that requires the least amount of memory */ |
|
653 use_direct = st->filt_len*st->den_rate <= st->filt_len*st->oversample+8; |
|
654 #endif |
|
655 if (use_direct) |
|
656 { |
|
657 min_sinc_table_length = st->filt_len*st->den_rate; |
|
658 } else { |
|
659 min_sinc_table_length = st->filt_len*st->oversample+8; |
|
660 } |
|
661 if (st->sinc_table_length < min_sinc_table_length) |
|
662 { |
|
663 spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t)); |
|
664 if (!sinc_table) |
|
665 goto fail; |
|
666 |
|
667 st->sinc_table = sinc_table; |
|
668 st->sinc_table_length = min_sinc_table_length; |
|
669 } |
|
670 if (use_direct) |
|
671 { |
|
672 spx_uint32_t i; |
|
673 for (i=0;i<st->den_rate;i++) |
|
674 { |
|
675 spx_int32_t j; |
|
676 for (j=0;j<st->filt_len;j++) |
|
677 { |
|
678 st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-(spx_int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_map[st->quality].window_func); |
|
679 } |
|
680 } |
|
681 #ifdef FIXED_POINT |
|
682 st->resampler_ptr = resampler_basic_direct_single; |
|
683 #else |
|
684 if (st->quality>8) |
|
685 st->resampler_ptr = resampler_basic_direct_double; |
|
686 else |
|
687 st->resampler_ptr = resampler_basic_direct_single; |
|
688 #endif |
|
689 /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/ |
|
690 } else { |
|
691 spx_int32_t i; |
|
692 for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++) |
|
693 st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func); |
|
694 #ifdef FIXED_POINT |
|
695 st->resampler_ptr = resampler_basic_interpolate_single; |
|
696 #else |
|
697 if (st->quality>8) |
|
698 st->resampler_ptr = resampler_basic_interpolate_double; |
|
699 else |
|
700 st->resampler_ptr = resampler_basic_interpolate_single; |
|
701 #endif |
|
702 /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/ |
|
703 } |
|
704 |
|
705 |
|
706 /* Here's the place where we update the filter memory to take into account |
|
707 the change in filter length. It's probably the messiest part of the code |
|
708 due to handling of lots of corner cases. */ |
|
709 min_alloc_size = st->filt_len-1 + st->buffer_size; |
|
710 if (min_alloc_size > st->mem_alloc_size) |
|
711 { |
|
712 spx_word16_t *mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(spx_word16_t)); |
|
713 if (!mem) |
|
714 goto fail; |
|
715 |
|
716 st->mem = mem; |
|
717 st->mem_alloc_size = min_alloc_size; |
|
718 } |
|
719 if (!st->started) |
|
720 { |
|
721 spx_uint32_t i; |
|
722 for (i=0;i<st->nb_channels*st->mem_alloc_size;i++) |
|
723 st->mem[i] = 0; |
|
724 /*speex_warning("reinit filter");*/ |
|
725 } else if (st->filt_len > old_length) |
|
726 { |
|
727 spx_uint32_t i; |
|
728 /* Increase the filter length */ |
|
729 /*speex_warning("increase filter size");*/ |
|
730 for (i=st->nb_channels;i--;) |
|
731 { |
|
732 spx_uint32_t j; |
|
733 spx_uint32_t olen = old_length; |
|
734 /*if (st->magic_samples[i])*/ |
|
735 { |
|
736 /* Try and remove the magic samples as if nothing had happened */ |
|
737 |
|
738 /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */ |
|
739 olen = old_length + 2*st->magic_samples[i]; |
|
740 for (j=old_length-1+st->magic_samples[i];j--;) |
|
741 st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j]; |
|
742 for (j=0;j<st->magic_samples[i];j++) |
|
743 st->mem[i*st->mem_alloc_size+j] = 0; |
|
744 st->magic_samples[i] = 0; |
|
745 } |
|
746 if (st->filt_len > olen) |
|
747 { |
|
748 /* If the new filter length is still bigger than the "augmented" length */ |
|
749 /* Copy data going backward */ |
|
750 for (j=0;j<olen-1;j++) |
|
751 st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = st->mem[i*st->mem_alloc_size+(olen-2-j)]; |
|
752 /* Then put zeros for lack of anything better */ |
|
753 for (;j<st->filt_len-1;j++) |
|
754 st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = 0; |
|
755 /* Adjust last_sample */ |
|
756 st->last_sample[i] += (st->filt_len - olen)/2; |
|
757 } else { |
|
758 /* Put back some of the magic! */ |
|
759 st->magic_samples[i] = (olen - st->filt_len)/2; |
|
760 for (j=0;j<st->filt_len-1+st->magic_samples[i];j++) |
|
761 st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]]; |
|
762 } |
|
763 } |
|
764 } else if (st->filt_len < old_length) |
|
765 { |
|
766 spx_uint32_t i; |
|
767 /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic" |
|
768 samples so they can be used directly as input the next time(s) */ |
|
769 for (i=0;i<st->nb_channels;i++) |
|
770 { |
|
771 spx_uint32_t j; |
|
772 spx_uint32_t old_magic = st->magic_samples[i]; |
|
773 st->magic_samples[i] = (old_length - st->filt_len)/2; |
|
774 /* We must copy some of the memory that's no longer used */ |
|
775 /* Copy data going backward */ |
|
776 for (j=0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++) |
|
777 st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]]; |
|
778 st->magic_samples[i] += old_magic; |
|
779 } |
|
780 } |
|
781 return RESAMPLER_ERR_SUCCESS; |
|
782 |
|
783 fail: |
|
784 st->resampler_ptr = resampler_basic_zero; |
|
785 /* st->mem may still contain consumed input samples for the filter. |
|
786 Restore filt_len so that filt_len - 1 still points to the position after |
|
787 the last of these samples. */ |
|
788 st->filt_len = old_length; |
|
789 return RESAMPLER_ERR_ALLOC_FAILED; |
|
790 } |
|
791 |
|
792 SPX_RESAMPLE_EXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) |
|
793 { |
|
794 return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err); |
|
795 } |
|
796 |
|
797 SPX_RESAMPLE_EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) |
|
798 { |
|
799 spx_uint32_t i; |
|
800 SpeexResamplerState *st; |
|
801 int filter_err; |
|
802 |
|
803 if (quality > 10 || quality < 0) |
|
804 { |
|
805 if (err) |
|
806 *err = RESAMPLER_ERR_INVALID_ARG; |
|
807 return NULL; |
|
808 } |
|
809 st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState)); |
|
810 st->initialised = 0; |
|
811 st->started = 0; |
|
812 st->in_rate = 0; |
|
813 st->out_rate = 0; |
|
814 st->num_rate = 0; |
|
815 st->den_rate = 0; |
|
816 st->quality = -1; |
|
817 st->sinc_table_length = 0; |
|
818 st->mem_alloc_size = 0; |
|
819 st->filt_len = 0; |
|
820 st->mem = 0; |
|
821 st->resampler_ptr = 0; |
|
822 |
|
823 st->cutoff = 1.f; |
|
824 st->nb_channels = nb_channels; |
|
825 st->in_stride = 1; |
|
826 st->out_stride = 1; |
|
827 |
|
828 #ifdef FIXED_POINT |
|
829 st->buffer_size = 160; |
|
830 #else |
|
831 st->buffer_size = 160; |
|
832 #endif |
|
833 |
|
834 /* Per channel data */ |
|
835 st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t)); |
|
836 st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t)); |
|
837 st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t)); |
|
838 for (i=0;i<nb_channels;i++) |
|
839 { |
|
840 st->last_sample[i] = 0; |
|
841 st->magic_samples[i] = 0; |
|
842 st->samp_frac_num[i] = 0; |
|
843 } |
|
844 |
|
845 speex_resampler_set_quality(st, quality); |
|
846 speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate); |
|
847 |
|
848 filter_err = update_filter(st); |
|
849 if (filter_err == RESAMPLER_ERR_SUCCESS) |
|
850 { |
|
851 st->initialised = 1; |
|
852 } else { |
|
853 speex_resampler_destroy(st); |
|
854 st = NULL; |
|
855 } |
|
856 if (err) |
|
857 *err = filter_err; |
|
858 |
|
859 return st; |
|
860 } |
|
861 |
|
862 SPX_RESAMPLE_EXPORT void speex_resampler_destroy(SpeexResamplerState *st) |
|
863 { |
|
864 speex_free(st->mem); |
|
865 speex_free(st->sinc_table); |
|
866 speex_free(st->last_sample); |
|
867 speex_free(st->magic_samples); |
|
868 speex_free(st->samp_frac_num); |
|
869 speex_free(st); |
|
870 } |
|
871 |
|
872 static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) |
|
873 { |
|
874 int j=0; |
|
875 const int N = st->filt_len; |
|
876 int out_sample = 0; |
|
877 spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; |
|
878 spx_uint32_t ilen; |
|
879 |
|
880 st->started = 1; |
|
881 |
|
882 /* Call the right resampler through the function ptr */ |
|
883 out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len); |
|
884 |
|
885 if (st->last_sample[channel_index] < (spx_int32_t)*in_len) |
|
886 *in_len = st->last_sample[channel_index]; |
|
887 *out_len = out_sample; |
|
888 st->last_sample[channel_index] -= *in_len; |
|
889 |
|
890 ilen = *in_len; |
|
891 |
|
892 for(j=0;j<N-1;++j) |
|
893 mem[j] = mem[j+ilen]; |
|
894 |
|
895 return RESAMPLER_ERR_SUCCESS; |
|
896 } |
|
897 |
|
898 static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) { |
|
899 spx_uint32_t tmp_in_len = st->magic_samples[channel_index]; |
|
900 spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; |
|
901 const int N = st->filt_len; |
|
902 |
|
903 speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len); |
|
904 |
|
905 st->magic_samples[channel_index] -= tmp_in_len; |
|
906 |
|
907 /* If we couldn't process all "magic" input samples, save the rest for next time */ |
|
908 if (st->magic_samples[channel_index]) |
|
909 { |
|
910 spx_uint32_t i; |
|
911 for (i=0;i<st->magic_samples[channel_index];i++) |
|
912 mem[N-1+i]=mem[N-1+i+tmp_in_len]; |
|
913 } |
|
914 *out += out_len*st->out_stride; |
|
915 return out_len; |
|
916 } |
|
917 |
|
918 #ifdef FIXED_POINT |
|
919 SPX_RESAMPLE_EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) |
|
920 #else |
|
921 SPX_RESAMPLE_EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) |
|
922 #endif |
|
923 { |
|
924 int j; |
|
925 spx_uint32_t ilen = *in_len; |
|
926 spx_uint32_t olen = *out_len; |
|
927 spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; |
|
928 const int filt_offs = st->filt_len - 1; |
|
929 const spx_uint32_t xlen = st->mem_alloc_size - filt_offs; |
|
930 const int istride = st->in_stride; |
|
931 |
|
932 if (st->magic_samples[channel_index]) |
|
933 olen -= speex_resampler_magic(st, channel_index, &out, olen); |
|
934 if (! st->magic_samples[channel_index]) { |
|
935 while (ilen && olen) { |
|
936 spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; |
|
937 spx_uint32_t ochunk = olen; |
|
938 |
|
939 if (in) { |
|
940 for(j=0;j<ichunk;++j) |
|
941 x[j+filt_offs]=in[j*istride]; |
|
942 } else { |
|
943 for(j=0;j<ichunk;++j) |
|
944 x[j+filt_offs]=0; |
|
945 } |
|
946 speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk); |
|
947 ilen -= ichunk; |
|
948 olen -= ochunk; |
|
949 out += ochunk * st->out_stride; |
|
950 if (in) |
|
951 in += ichunk * istride; |
|
952 } |
|
953 } |
|
954 *in_len -= ilen; |
|
955 *out_len -= olen; |
|
956 return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; |
|
957 } |
|
958 |
|
959 #ifdef FIXED_POINT |
|
960 SPX_RESAMPLE_EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) |
|
961 #else |
|
962 SPX_RESAMPLE_EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) |
|
963 #endif |
|
964 { |
|
965 int j; |
|
966 const int istride_save = st->in_stride; |
|
967 const int ostride_save = st->out_stride; |
|
968 spx_uint32_t ilen = *in_len; |
|
969 spx_uint32_t olen = *out_len; |
|
970 spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; |
|
971 const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1); |
|
972 #ifdef VAR_ARRAYS |
|
973 const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC; |
|
974 VARDECL(spx_word16_t *ystack); |
|
975 ALLOC(ystack, ylen, spx_word16_t); |
|
976 #else |
|
977 const unsigned int ylen = FIXED_STACK_ALLOC; |
|
978 spx_word16_t ystack[FIXED_STACK_ALLOC]; |
|
979 #endif |
|
980 |
|
981 st->out_stride = 1; |
|
982 |
|
983 while (ilen && olen) { |
|
984 spx_word16_t *y = ystack; |
|
985 spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; |
|
986 spx_uint32_t ochunk = (olen > ylen) ? ylen : olen; |
|
987 spx_uint32_t omagic = 0; |
|
988 |
|
989 if (st->magic_samples[channel_index]) { |
|
990 omagic = speex_resampler_magic(st, channel_index, &y, ochunk); |
|
991 ochunk -= omagic; |
|
992 olen -= omagic; |
|
993 } |
|
994 if (! st->magic_samples[channel_index]) { |
|
995 if (in) { |
|
996 for(j=0;j<ichunk;++j) |
|
997 #ifdef FIXED_POINT |
|
998 x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]); |
|
999 #else |
|
1000 x[j+st->filt_len-1]=in[j*istride_save]; |
|
1001 #endif |
|
1002 } else { |
|
1003 for(j=0;j<ichunk;++j) |
|
1004 x[j+st->filt_len-1]=0; |
|
1005 } |
|
1006 |
|
1007 speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk); |
|
1008 } else { |
|
1009 ichunk = 0; |
|
1010 ochunk = 0; |
|
1011 } |
|
1012 |
|
1013 for (j=0;j<ochunk+omagic;++j) |
|
1014 #ifdef FIXED_POINT |
|
1015 out[j*ostride_save] = ystack[j]; |
|
1016 #else |
|
1017 out[j*ostride_save] = WORD2INT(ystack[j]); |
|
1018 #endif |
|
1019 |
|
1020 ilen -= ichunk; |
|
1021 olen -= ochunk; |
|
1022 out += (ochunk+omagic) * ostride_save; |
|
1023 if (in) |
|
1024 in += ichunk * istride_save; |
|
1025 } |
|
1026 st->out_stride = ostride_save; |
|
1027 *in_len -= ilen; |
|
1028 *out_len -= olen; |
|
1029 |
|
1030 return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; |
|
1031 } |
|
1032 |
|
1033 SPX_RESAMPLE_EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) |
|
1034 { |
|
1035 spx_uint32_t i; |
|
1036 int istride_save, ostride_save; |
|
1037 spx_uint32_t bak_out_len = *out_len; |
|
1038 spx_uint32_t bak_in_len = *in_len; |
|
1039 istride_save = st->in_stride; |
|
1040 ostride_save = st->out_stride; |
|
1041 st->in_stride = st->out_stride = st->nb_channels; |
|
1042 for (i=0;i<st->nb_channels;i++) |
|
1043 { |
|
1044 *out_len = bak_out_len; |
|
1045 *in_len = bak_in_len; |
|
1046 if (in != NULL) |
|
1047 speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len); |
|
1048 else |
|
1049 speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len); |
|
1050 } |
|
1051 st->in_stride = istride_save; |
|
1052 st->out_stride = ostride_save; |
|
1053 return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; |
|
1054 } |
|
1055 |
|
1056 SPX_RESAMPLE_EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) |
|
1057 { |
|
1058 spx_uint32_t i; |
|
1059 int istride_save, ostride_save; |
|
1060 spx_uint32_t bak_out_len = *out_len; |
|
1061 spx_uint32_t bak_in_len = *in_len; |
|
1062 istride_save = st->in_stride; |
|
1063 ostride_save = st->out_stride; |
|
1064 st->in_stride = st->out_stride = st->nb_channels; |
|
1065 for (i=0;i<st->nb_channels;i++) |
|
1066 { |
|
1067 *out_len = bak_out_len; |
|
1068 *in_len = bak_in_len; |
|
1069 if (in != NULL) |
|
1070 speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len); |
|
1071 else |
|
1072 speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len); |
|
1073 } |
|
1074 st->in_stride = istride_save; |
|
1075 st->out_stride = ostride_save; |
|
1076 return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; |
|
1077 } |
|
1078 |
|
1079 SPX_RESAMPLE_EXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate) |
|
1080 { |
|
1081 return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate); |
|
1082 } |
|
1083 |
|
1084 SPX_RESAMPLE_EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate) |
|
1085 { |
|
1086 *in_rate = st->in_rate; |
|
1087 *out_rate = st->out_rate; |
|
1088 } |
|
1089 |
|
1090 SPX_RESAMPLE_EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate) |
|
1091 { |
|
1092 spx_uint32_t fact; |
|
1093 spx_uint32_t old_den; |
|
1094 spx_uint32_t i; |
|
1095 if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den) |
|
1096 return RESAMPLER_ERR_SUCCESS; |
|
1097 |
|
1098 old_den = st->den_rate; |
|
1099 st->in_rate = in_rate; |
|
1100 st->out_rate = out_rate; |
|
1101 st->num_rate = ratio_num; |
|
1102 st->den_rate = ratio_den; |
|
1103 /* FIXME: This is terribly inefficient, but who cares (at least for now)? */ |
|
1104 for (fact=2;fact<=IMIN(st->num_rate, st->den_rate);fact++) |
|
1105 { |
|
1106 while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0)) |
|
1107 { |
|
1108 st->num_rate /= fact; |
|
1109 st->den_rate /= fact; |
|
1110 } |
|
1111 } |
|
1112 |
|
1113 if (old_den > 0) |
|
1114 { |
|
1115 for (i=0;i<st->nb_channels;i++) |
|
1116 { |
|
1117 st->samp_frac_num[i]=st->samp_frac_num[i]*st->den_rate/old_den; |
|
1118 /* Safety net */ |
|
1119 if (st->samp_frac_num[i] >= st->den_rate) |
|
1120 st->samp_frac_num[i] = st->den_rate-1; |
|
1121 } |
|
1122 } |
|
1123 |
|
1124 if (st->initialised) |
|
1125 return update_filter(st); |
|
1126 return RESAMPLER_ERR_SUCCESS; |
|
1127 } |
|
1128 |
|
1129 SPX_RESAMPLE_EXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den) |
|
1130 { |
|
1131 *ratio_num = st->num_rate; |
|
1132 *ratio_den = st->den_rate; |
|
1133 } |
|
1134 |
|
1135 SPX_RESAMPLE_EXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality) |
|
1136 { |
|
1137 if (quality > 10 || quality < 0) |
|
1138 return RESAMPLER_ERR_INVALID_ARG; |
|
1139 if (st->quality == quality) |
|
1140 return RESAMPLER_ERR_SUCCESS; |
|
1141 st->quality = quality; |
|
1142 if (st->initialised) |
|
1143 return update_filter(st); |
|
1144 return RESAMPLER_ERR_SUCCESS; |
|
1145 } |
|
1146 |
|
1147 SPX_RESAMPLE_EXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality) |
|
1148 { |
|
1149 *quality = st->quality; |
|
1150 } |
|
1151 |
|
1152 SPX_RESAMPLE_EXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride) |
|
1153 { |
|
1154 st->in_stride = stride; |
|
1155 } |
|
1156 |
|
1157 SPX_RESAMPLE_EXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride) |
|
1158 { |
|
1159 *stride = st->in_stride; |
|
1160 } |
|
1161 |
|
1162 SPX_RESAMPLE_EXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride) |
|
1163 { |
|
1164 st->out_stride = stride; |
|
1165 } |
|
1166 |
|
1167 SPX_RESAMPLE_EXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride) |
|
1168 { |
|
1169 *stride = st->out_stride; |
|
1170 } |
|
1171 |
|
1172 SPX_RESAMPLE_EXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st) |
|
1173 { |
|
1174 return st->filt_len / 2; |
|
1175 } |
|
1176 |
|
1177 SPX_RESAMPLE_EXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st) |
|
1178 { |
|
1179 return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate; |
|
1180 } |
|
1181 |
|
1182 SPX_RESAMPLE_EXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st) |
|
1183 { |
|
1184 spx_uint32_t i; |
|
1185 for (i=0;i<st->nb_channels;i++) |
|
1186 st->last_sample[i] = st->filt_len/2; |
|
1187 return RESAMPLER_ERR_SUCCESS; |
|
1188 } |
|
1189 |
|
1190 SPX_RESAMPLE_EXPORT int speex_resampler_set_skip_frac_num(SpeexResamplerState *st, spx_uint32_t skip_frac_num) |
|
1191 { |
|
1192 spx_uint32_t i; |
|
1193 spx_uint32_t last_sample = skip_frac_num / st->den_rate; |
|
1194 spx_uint32_t samp_frac_num = skip_frac_num % st->den_rate; |
|
1195 for (i=0;i<st->nb_channels;i++) { |
|
1196 st->last_sample[i] = last_sample; |
|
1197 st->samp_frac_num[i] = samp_frac_num; |
|
1198 } |
|
1199 return RESAMPLER_ERR_SUCCESS; |
|
1200 } |
|
1201 |
|
1202 SPX_RESAMPLE_EXPORT int speex_resampler_reset_mem(SpeexResamplerState *st) |
|
1203 { |
|
1204 spx_uint32_t i; |
|
1205 for (i=0;i<st->nb_channels;i++) |
|
1206 { |
|
1207 st->last_sample[i] = 0; |
|
1208 st->magic_samples[i] = 0; |
|
1209 st->samp_frac_num[i] = 0; |
|
1210 } |
|
1211 for (i=0;i<st->nb_channels*(st->filt_len-1);i++) |
|
1212 st->mem[i] = 0; |
|
1213 return RESAMPLER_ERR_SUCCESS; |
|
1214 } |
|
1215 |
|
1216 SPX_RESAMPLE_EXPORT const char *speex_resampler_strerror(int err) |
|
1217 { |
|
1218 switch (err) |
|
1219 { |
|
1220 case RESAMPLER_ERR_SUCCESS: |
|
1221 return "Success."; |
|
1222 case RESAMPLER_ERR_ALLOC_FAILED: |
|
1223 return "Memory allocation failed."; |
|
1224 case RESAMPLER_ERR_BAD_STATE: |
|
1225 return "Bad resampler state."; |
|
1226 case RESAMPLER_ERR_INVALID_ARG: |
|
1227 return "Invalid argument."; |
|
1228 case RESAMPLER_ERR_PTR_OVERLAP: |
|
1229 return "Input and output buffers overlap."; |
|
1230 default: |
|
1231 return "Unknown error. Bad error code or strange version mismatch."; |
|
1232 } |
|
1233 } |