|
1 /* Copyright (C) 2007-2008 Jean-Marc Valin |
|
2 * Copyright (C) 2008 Thorvald Natvig |
|
3 */ |
|
4 /** |
|
5 @file resample_sse.h |
|
6 @brief Resampler functions (SSE version) |
|
7 */ |
|
8 /* |
|
9 Redistribution and use in source and binary forms, with or without |
|
10 modification, are permitted provided that the following conditions |
|
11 are met: |
|
12 |
|
13 - Redistributions of source code must retain the above copyright |
|
14 notice, this list of conditions and the following disclaimer. |
|
15 |
|
16 - Redistributions in binary form must reproduce the above copyright |
|
17 notice, this list of conditions and the following disclaimer in the |
|
18 documentation and/or other materials provided with the distribution. |
|
19 |
|
20 - Neither the name of the Xiph.org Foundation nor the names of its |
|
21 contributors may be used to endorse or promote products derived from |
|
22 this software without specific prior written permission. |
|
23 |
|
24 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
25 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
26 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
27 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
|
28 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
29 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
30 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
31 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
32 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
33 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
34 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
35 */ |
|
36 |
|
37 #include <xmmintrin.h> |
|
38 |
|
39 #define OVERRIDE_INNER_PRODUCT_SINGLE |
|
40 static inline float inner_product_single(const float *a, const float *b, unsigned int len) |
|
41 { |
|
42 int i; |
|
43 float ret; |
|
44 if (1) |
|
45 { |
|
46 __m128 sum = _mm_setzero_ps(); |
|
47 for (i=0;i<len;i+=8) |
|
48 { |
|
49 sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i))); |
|
50 sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4))); |
|
51 } |
|
52 sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum)); |
|
53 sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55)); |
|
54 _mm_store_ss(&ret, sum); |
|
55 } |
|
56 else |
|
57 { |
|
58 ret = 0; |
|
59 for (i=0;i<len;i++) ret += a[i] * b[i]; |
|
60 } |
|
61 return ret; |
|
62 } |
|
63 |
|
64 #define OVERRIDE_INTERPOLATE_PRODUCT_SINGLE |
|
65 static inline float interpolate_product_single(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) { |
|
66 int i; |
|
67 float ret; |
|
68 if (1) |
|
69 { |
|
70 __m128 sum = _mm_setzero_ps(); |
|
71 __m128 f = _mm_loadu_ps(frac); |
|
72 for(i=0;i<len;i+=2) |
|
73 { |
|
74 sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample))); |
|
75 sum = _mm_add_ps(sum, _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample))); |
|
76 } |
|
77 sum = _mm_mul_ps(f, sum); |
|
78 sum = _mm_add_ps(sum, _mm_movehl_ps(sum, sum)); |
|
79 sum = _mm_add_ss(sum, _mm_shuffle_ps(sum, sum, 0x55)); |
|
80 _mm_store_ss(&ret, sum); |
|
81 } |
|
82 else |
|
83 { |
|
84 float accum[4] = {0,0,0,0}; |
|
85 for(i=0;i<len;i++) |
|
86 { |
|
87 const float curr_in=a[i]; |
|
88 accum[0] += curr_in * b[i * oversample + 0]; |
|
89 accum[1] += curr_in * b[i * oversample + 1]; |
|
90 accum[2] += curr_in * b[i * oversample + 2]; |
|
91 accum[3] += curr_in * b[i * oversample + 3]; |
|
92 } |
|
93 ret = accum[0] * frac[0] + accum[1] * frac[1] + accum[2] * frac[2] + accum[3] * frac[3]; |
|
94 } |
|
95 return ret; |
|
96 } |
|
97 |
|
98 #ifdef __SSE2__ |
|
99 #include <emmintrin.h> |
|
100 #define OVERRIDE_INNER_PRODUCT_DOUBLE |
|
101 |
|
102 static inline double inner_product_double(const float *a, const float *b, unsigned int len) |
|
103 { |
|
104 int i; |
|
105 double ret; |
|
106 __m128d sum = _mm_setzero_pd(); |
|
107 __m128 t; |
|
108 for (i=0;i<len;i+=8) |
|
109 { |
|
110 t = _mm_mul_ps(_mm_loadu_ps(a+i), _mm_loadu_ps(b+i)); |
|
111 sum = _mm_add_pd(sum, _mm_cvtps_pd(t)); |
|
112 sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t))); |
|
113 |
|
114 t = _mm_mul_ps(_mm_loadu_ps(a+i+4), _mm_loadu_ps(b+i+4)); |
|
115 sum = _mm_add_pd(sum, _mm_cvtps_pd(t)); |
|
116 sum = _mm_add_pd(sum, _mm_cvtps_pd(_mm_movehl_ps(t, t))); |
|
117 } |
|
118 sum = _mm_add_sd(sum, (__m128d) _mm_movehl_ps((__m128) sum, (__m128) sum)); |
|
119 _mm_store_sd(&ret, sum); |
|
120 return ret; |
|
121 } |
|
122 |
|
123 #define OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE |
|
124 static inline double interpolate_product_double(const float *a, const float *b, unsigned int len, const spx_uint32_t oversample, float *frac) { |
|
125 int i; |
|
126 double ret; |
|
127 __m128d sum; |
|
128 __m128d sum1 = _mm_setzero_pd(); |
|
129 __m128d sum2 = _mm_setzero_pd(); |
|
130 __m128 f = _mm_loadu_ps(frac); |
|
131 __m128d f1 = _mm_cvtps_pd(f); |
|
132 __m128d f2 = _mm_cvtps_pd(_mm_movehl_ps(f,f)); |
|
133 __m128 t; |
|
134 for(i=0;i<len;i+=2) |
|
135 { |
|
136 t = _mm_mul_ps(_mm_load1_ps(a+i), _mm_loadu_ps(b+i*oversample)); |
|
137 sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t)); |
|
138 sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t))); |
|
139 |
|
140 t = _mm_mul_ps(_mm_load1_ps(a+i+1), _mm_loadu_ps(b+(i+1)*oversample)); |
|
141 sum1 = _mm_add_pd(sum1, _mm_cvtps_pd(t)); |
|
142 sum2 = _mm_add_pd(sum2, _mm_cvtps_pd(_mm_movehl_ps(t, t))); |
|
143 } |
|
144 sum1 = _mm_mul_pd(f1, sum1); |
|
145 sum2 = _mm_mul_pd(f2, sum2); |
|
146 sum = _mm_add_pd(sum1, sum2); |
|
147 sum = _mm_add_sd(sum, (__m128d) _mm_movehl_ps((__m128) sum, (__m128) sum)); |
|
148 _mm_store_sd(&ret, sum); |
|
149 return ret; |
|
150 } |
|
151 |
|
152 #endif |