|
1 |
|
2 /* |
|
3 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license |
|
6 * that can be found in the LICENSE file in the root of the source |
|
7 * tree. An additional intellectual property rights grant can be found |
|
8 * in the file PATENTS. All contributing project authors may |
|
9 * be found in the AUTHORS file in the root of the source tree. |
|
10 */ |
|
11 |
|
12 #include <limits.h> |
|
13 |
|
14 #include "vp9/common/vp9_common.h" |
|
15 #include "vp9/common/vp9_pred_common.h" |
|
16 #include "vp9/common/vp9_seg_common.h" |
|
17 #include "vp9/common/vp9_treecoder.h" |
|
18 |
|
19 static INLINE const MB_MODE_INFO *get_above_mbmi(const MODE_INFO *const above) { |
|
20 return (above != NULL) ? &above->mbmi : NULL; |
|
21 } |
|
22 |
|
23 static INLINE const MB_MODE_INFO *get_left_mbmi(const MODE_INFO *const left) { |
|
24 return (left != NULL) ? &left->mbmi : NULL; |
|
25 } |
|
26 |
|
27 // Returns a context number for the given MB prediction signal |
|
28 unsigned char vp9_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { |
|
29 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
30 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
31 const int above_in_image = above_mi != NULL; |
|
32 const int left_in_image = left_mi != NULL; |
|
33 // Note: |
|
34 // The mode info data structure has a one element border above and to the |
|
35 // left of the entries correpsonding to real macroblocks. |
|
36 // The prediction flags in these dummy entries are initialised to 0. |
|
37 // left |
|
38 const int left_mv_pred = left_in_image ? is_inter_block(&left_mi->mbmi) |
|
39 : 0; |
|
40 const int left_interp = left_in_image && left_mv_pred |
|
41 ? left_mi->mbmi.interp_filter |
|
42 : SWITCHABLE_FILTERS; |
|
43 |
|
44 // above |
|
45 const int above_mv_pred = above_in_image ? is_inter_block(&above_mi->mbmi) |
|
46 : 0; |
|
47 const int above_interp = above_in_image && above_mv_pred |
|
48 ? above_mi->mbmi.interp_filter |
|
49 : SWITCHABLE_FILTERS; |
|
50 |
|
51 if (left_interp == above_interp) |
|
52 return left_interp; |
|
53 else if (left_interp == SWITCHABLE_FILTERS && |
|
54 above_interp != SWITCHABLE_FILTERS) |
|
55 return above_interp; |
|
56 else if (left_interp != SWITCHABLE_FILTERS && |
|
57 above_interp == SWITCHABLE_FILTERS) |
|
58 return left_interp; |
|
59 else |
|
60 return SWITCHABLE_FILTERS; |
|
61 } |
|
62 // Returns a context number for the given MB prediction signal |
|
63 unsigned char vp9_get_pred_context_intra_inter(const MACROBLOCKD *xd) { |
|
64 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
65 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
66 const MB_MODE_INFO *const above_mbmi = get_above_mbmi(above_mi); |
|
67 const MB_MODE_INFO *const left_mbmi = get_left_mbmi(left_mi); |
|
68 const int above_in_image = above_mi != NULL; |
|
69 const int left_in_image = left_mi != NULL; |
|
70 const int above_intra = above_in_image ? !is_inter_block(above_mbmi) : 1; |
|
71 const int left_intra = left_in_image ? !is_inter_block(left_mbmi) : 1; |
|
72 |
|
73 // The mode info data structure has a one element border above and to the |
|
74 // left of the entries corresponding to real macroblocks. |
|
75 // The prediction flags in these dummy entries are initialized to 0. |
|
76 // 0 - inter/inter, inter/--, --/inter, --/-- |
|
77 // 1 - intra/inter, inter/intra |
|
78 // 2 - intra/--, --/intra |
|
79 // 3 - intra/intra |
|
80 if (above_in_image && left_in_image) // both edges available |
|
81 return left_intra && above_intra ? 3 |
|
82 : left_intra || above_intra; |
|
83 else if (above_in_image || left_in_image) // one edge available |
|
84 return 2 * (above_in_image ? above_intra : left_intra); |
|
85 else |
|
86 return 0; |
|
87 } |
|
88 // Returns a context number for the given MB prediction signal |
|
89 unsigned char vp9_get_pred_context_comp_inter_inter(const VP9_COMMON *cm, |
|
90 const MACROBLOCKD *xd) { |
|
91 int pred_context; |
|
92 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
93 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
94 const MB_MODE_INFO *const above_mbmi = get_above_mbmi(above_mi); |
|
95 const MB_MODE_INFO *const left_mbmi = get_left_mbmi(left_mi); |
|
96 const int above_in_image = above_mi != NULL; |
|
97 const int left_in_image = left_mi != NULL; |
|
98 // Note: |
|
99 // The mode info data structure has a one element border above and to the |
|
100 // left of the entries correpsonding to real macroblocks. |
|
101 // The prediction flags in these dummy entries are initialised to 0. |
|
102 if (above_in_image && left_in_image) { // both edges available |
|
103 if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) |
|
104 // neither edge uses comp pred (0/1) |
|
105 pred_context = (above_mbmi->ref_frame[0] == cm->comp_fixed_ref) ^ |
|
106 (left_mbmi->ref_frame[0] == cm->comp_fixed_ref); |
|
107 else if (!has_second_ref(above_mbmi)) |
|
108 // one of two edges uses comp pred (2/3) |
|
109 pred_context = 2 + (above_mbmi->ref_frame[0] == cm->comp_fixed_ref || |
|
110 !is_inter_block(above_mbmi)); |
|
111 else if (!has_second_ref(left_mbmi)) |
|
112 // one of two edges uses comp pred (2/3) |
|
113 pred_context = 2 + (left_mbmi->ref_frame[0] == cm->comp_fixed_ref || |
|
114 !is_inter_block(left_mbmi)); |
|
115 else // both edges use comp pred (4) |
|
116 pred_context = 4; |
|
117 } else if (above_in_image || left_in_image) { // one edge available |
|
118 const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
|
119 |
|
120 if (!has_second_ref(edge_mbmi)) |
|
121 // edge does not use comp pred (0/1) |
|
122 pred_context = edge_mbmi->ref_frame[0] == cm->comp_fixed_ref; |
|
123 else |
|
124 // edge uses comp pred (3) |
|
125 pred_context = 3; |
|
126 } else { // no edges available (1) |
|
127 pred_context = 1; |
|
128 } |
|
129 assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS); |
|
130 return pred_context; |
|
131 } |
|
132 |
|
133 // Returns a context number for the given MB prediction signal |
|
134 unsigned char vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, |
|
135 const MACROBLOCKD *xd) { |
|
136 int pred_context; |
|
137 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
138 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
139 const MB_MODE_INFO *const above_mbmi = get_above_mbmi(above_mi); |
|
140 const MB_MODE_INFO *const left_mbmi = get_left_mbmi(left_mi); |
|
141 const int above_in_image = above_mi != NULL; |
|
142 const int left_in_image = left_mi != NULL; |
|
143 const int above_intra = above_in_image ? !is_inter_block(above_mbmi) : 1; |
|
144 const int left_intra = left_in_image ? !is_inter_block(left_mbmi) : 1; |
|
145 // Note: |
|
146 // The mode info data structure has a one element border above and to the |
|
147 // left of the entries correpsonding to real macroblocks. |
|
148 // The prediction flags in these dummy entries are initialised to 0. |
|
149 const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; |
|
150 const int var_ref_idx = !fix_ref_idx; |
|
151 |
|
152 if (above_in_image && left_in_image) { // both edges available |
|
153 if (above_intra && left_intra) { // intra/intra (2) |
|
154 pred_context = 2; |
|
155 } else if (above_intra || left_intra) { // intra/inter |
|
156 const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
|
157 |
|
158 if (!has_second_ref(edge_mbmi)) // single pred (1/3) |
|
159 pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); |
|
160 else // comp pred (1/3) |
|
161 pred_context = 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx] |
|
162 != cm->comp_var_ref[1]); |
|
163 } else { // inter/inter |
|
164 const int l_sg = !has_second_ref(left_mbmi); |
|
165 const int a_sg = !has_second_ref(above_mbmi); |
|
166 MV_REFERENCE_FRAME vrfa = a_sg ? above_mbmi->ref_frame[0] |
|
167 : above_mbmi->ref_frame[var_ref_idx]; |
|
168 MV_REFERENCE_FRAME vrfl = l_sg ? left_mbmi->ref_frame[0] |
|
169 : left_mbmi->ref_frame[var_ref_idx]; |
|
170 |
|
171 if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { |
|
172 pred_context = 0; |
|
173 } else if (l_sg && a_sg) { // single/single |
|
174 if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || |
|
175 (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) |
|
176 pred_context = 4; |
|
177 else if (vrfa == vrfl) |
|
178 pred_context = 3; |
|
179 else |
|
180 pred_context = 1; |
|
181 } else if (l_sg || a_sg) { // single/comp |
|
182 MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; |
|
183 MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; |
|
184 if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) |
|
185 pred_context = 1; |
|
186 else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) |
|
187 pred_context = 2; |
|
188 else |
|
189 pred_context = 4; |
|
190 } else if (vrfa == vrfl) { // comp/comp |
|
191 pred_context = 4; |
|
192 } else { |
|
193 pred_context = 2; |
|
194 } |
|
195 } |
|
196 } else if (above_in_image || left_in_image) { // one edge available |
|
197 const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
|
198 |
|
199 if (!is_inter_block(edge_mbmi)) { |
|
200 pred_context = 2; |
|
201 } else { |
|
202 if (has_second_ref(edge_mbmi)) |
|
203 pred_context = 4 * (edge_mbmi->ref_frame[var_ref_idx] |
|
204 != cm->comp_var_ref[1]); |
|
205 else |
|
206 pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); |
|
207 } |
|
208 } else { // no edges available (2) |
|
209 pred_context = 2; |
|
210 } |
|
211 assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
|
212 |
|
213 return pred_context; |
|
214 } |
|
215 unsigned char vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { |
|
216 int pred_context; |
|
217 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
218 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
219 const MB_MODE_INFO *const above_mbmi = get_above_mbmi(above_mi); |
|
220 const MB_MODE_INFO *const left_mbmi = get_left_mbmi(left_mi); |
|
221 const int above_in_image = above_mi != NULL; |
|
222 const int left_in_image = left_mi != NULL; |
|
223 const int above_intra = above_in_image ? !is_inter_block(above_mbmi) : 1; |
|
224 const int left_intra = left_in_image ? !is_inter_block(left_mbmi) : 1; |
|
225 // Note: |
|
226 // The mode info data structure has a one element border above and to the |
|
227 // left of the entries correpsonding to real macroblocks. |
|
228 // The prediction flags in these dummy entries are initialised to 0. |
|
229 if (above_in_image && left_in_image) { // both edges available |
|
230 if (above_intra && left_intra) { // intra/intra |
|
231 pred_context = 2; |
|
232 } else if (above_intra || left_intra) { // intra/inter or inter/intra |
|
233 const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
|
234 if (!has_second_ref(edge_mbmi)) |
|
235 pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); |
|
236 else |
|
237 pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || |
|
238 edge_mbmi->ref_frame[1] == LAST_FRAME); |
|
239 } else { // inter/inter |
|
240 if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) { |
|
241 pred_context = 2 * (above_mbmi->ref_frame[0] == LAST_FRAME) + |
|
242 2 * (left_mbmi->ref_frame[0] == LAST_FRAME); |
|
243 } else if (has_second_ref(above_mbmi) && has_second_ref(left_mbmi)) { |
|
244 pred_context = 1 + (above_mbmi->ref_frame[0] == LAST_FRAME || |
|
245 above_mbmi->ref_frame[1] == LAST_FRAME || |
|
246 left_mbmi->ref_frame[0] == LAST_FRAME || |
|
247 left_mbmi->ref_frame[1] == LAST_FRAME); |
|
248 } else { |
|
249 const MV_REFERENCE_FRAME rfs = !has_second_ref(above_mbmi) ? |
|
250 above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; |
|
251 const MV_REFERENCE_FRAME crf1 = has_second_ref(above_mbmi) ? |
|
252 above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; |
|
253 const MV_REFERENCE_FRAME crf2 = has_second_ref(above_mbmi) ? |
|
254 above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1]; |
|
255 |
|
256 if (rfs == LAST_FRAME) |
|
257 pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
|
258 else |
|
259 pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME; |
|
260 } |
|
261 } |
|
262 } else if (above_in_image || left_in_image) { // one edge available |
|
263 const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
|
264 if (!is_inter_block(edge_mbmi)) { // intra |
|
265 pred_context = 2; |
|
266 } else { // inter |
|
267 if (!has_second_ref(edge_mbmi)) |
|
268 pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); |
|
269 else |
|
270 pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || |
|
271 edge_mbmi->ref_frame[1] == LAST_FRAME); |
|
272 } |
|
273 } else { // no edges available |
|
274 pred_context = 2; |
|
275 } |
|
276 |
|
277 assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
|
278 return pred_context; |
|
279 } |
|
280 |
|
281 unsigned char vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { |
|
282 int pred_context; |
|
283 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
284 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
285 const MB_MODE_INFO *const above_mbmi = get_above_mbmi(above_mi); |
|
286 const MB_MODE_INFO *const left_mbmi = get_left_mbmi(left_mi); |
|
287 const int above_in_image = above_mi != NULL; |
|
288 const int left_in_image = left_mi != NULL; |
|
289 const int above_intra = above_in_image ? !is_inter_block(above_mbmi) : 1; |
|
290 const int left_intra = left_in_image ? !is_inter_block(left_mbmi) : 1; |
|
291 |
|
292 // Note: |
|
293 // The mode info data structure has a one element border above and to the |
|
294 // left of the entries correpsonding to real macroblocks. |
|
295 // The prediction flags in these dummy entries are initialised to 0. |
|
296 if (above_in_image && left_in_image) { // both edges available |
|
297 if (above_intra && left_intra) { // intra/intra |
|
298 pred_context = 2; |
|
299 } else if (above_intra || left_intra) { // intra/inter or inter/intra |
|
300 const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
|
301 if (!has_second_ref(edge_mbmi)) { |
|
302 if (edge_mbmi->ref_frame[0] == LAST_FRAME) |
|
303 pred_context = 3; |
|
304 else |
|
305 pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); |
|
306 } else { |
|
307 pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || |
|
308 edge_mbmi->ref_frame[1] == GOLDEN_FRAME); |
|
309 } |
|
310 } else { // inter/inter |
|
311 if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) { |
|
312 if (above_mbmi->ref_frame[0] == LAST_FRAME && |
|
313 left_mbmi->ref_frame[0] == LAST_FRAME) { |
|
314 pred_context = 3; |
|
315 } else if (above_mbmi->ref_frame[0] == LAST_FRAME || |
|
316 left_mbmi->ref_frame[0] == LAST_FRAME) { |
|
317 const MB_MODE_INFO *edge_mbmi = |
|
318 above_mbmi->ref_frame[0] == LAST_FRAME ? left_mbmi : above_mbmi; |
|
319 |
|
320 pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); |
|
321 } else { |
|
322 pred_context = 2 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME) + |
|
323 2 * (left_mbmi->ref_frame[0] == GOLDEN_FRAME); |
|
324 } |
|
325 } else if (has_second_ref(above_mbmi) && has_second_ref(left_mbmi)) { |
|
326 if (above_mbmi->ref_frame[0] == left_mbmi->ref_frame[0] && |
|
327 above_mbmi->ref_frame[1] == left_mbmi->ref_frame[1]) |
|
328 pred_context = 3 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME || |
|
329 above_mbmi->ref_frame[1] == GOLDEN_FRAME || |
|
330 left_mbmi->ref_frame[0] == GOLDEN_FRAME || |
|
331 left_mbmi->ref_frame[1] == GOLDEN_FRAME); |
|
332 else |
|
333 pred_context = 2; |
|
334 } else { |
|
335 const MV_REFERENCE_FRAME rfs = !has_second_ref(above_mbmi) ? |
|
336 above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; |
|
337 const MV_REFERENCE_FRAME crf1 = has_second_ref(above_mbmi) ? |
|
338 above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; |
|
339 const MV_REFERENCE_FRAME crf2 = has_second_ref(above_mbmi) ? |
|
340 above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1]; |
|
341 |
|
342 if (rfs == GOLDEN_FRAME) |
|
343 pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
|
344 else if (rfs == ALTREF_FRAME) |
|
345 pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; |
|
346 else |
|
347 pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
|
348 } |
|
349 } |
|
350 } else if (above_in_image || left_in_image) { // one edge available |
|
351 const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
|
352 |
|
353 if (!is_inter_block(edge_mbmi) || |
|
354 (edge_mbmi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mbmi))) |
|
355 pred_context = 2; |
|
356 else if (!has_second_ref(edge_mbmi)) |
|
357 pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); |
|
358 else |
|
359 pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || |
|
360 edge_mbmi->ref_frame[1] == GOLDEN_FRAME); |
|
361 } else { // no edges available (2) |
|
362 pred_context = 2; |
|
363 } |
|
364 assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
|
365 return pred_context; |
|
366 } |
|
367 // Returns a context number for the given MB prediction signal |
|
368 // The mode info data structure has a one element border above and to the |
|
369 // left of the entries corresponding to real blocks. |
|
370 // The prediction flags in these dummy entries are initialized to 0. |
|
371 unsigned char vp9_get_pred_context_tx_size(const MACROBLOCKD *xd) { |
|
372 const MODE_INFO *const above_mi = get_above_mi(xd); |
|
373 const MODE_INFO *const left_mi = get_left_mi(xd); |
|
374 const MB_MODE_INFO *const above_mbmi = get_above_mbmi(above_mi); |
|
375 const MB_MODE_INFO *const left_mbmi = get_left_mbmi(left_mi); |
|
376 const int above_in_image = above_mi != NULL; |
|
377 const int left_in_image = left_mi != NULL; |
|
378 const int max_tx_size = max_txsize_lookup[xd->mi_8x8[0]->mbmi.sb_type]; |
|
379 int above_context = max_tx_size; |
|
380 int left_context = max_tx_size; |
|
381 |
|
382 if (above_in_image) |
|
383 above_context = above_mbmi->skip_coeff ? max_tx_size |
|
384 : above_mbmi->tx_size; |
|
385 |
|
386 if (left_in_image) |
|
387 left_context = left_mbmi->skip_coeff ? max_tx_size |
|
388 : left_mbmi->tx_size; |
|
389 |
|
390 if (!left_in_image) |
|
391 left_context = above_context; |
|
392 |
|
393 if (!above_in_image) |
|
394 above_context = left_context; |
|
395 |
|
396 return above_context + left_context > max_tx_size; |
|
397 } |
|
398 |
|
399 void vp9_set_pred_flag_seg_id(MACROBLOCKD *xd, uint8_t pred_flag) { |
|
400 xd->mi_8x8[0]->mbmi.seg_id_predicted = pred_flag; |
|
401 } |
|
402 |
|
403 int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids, |
|
404 BLOCK_SIZE bsize, int mi_row, int mi_col) { |
|
405 const int mi_offset = mi_row * cm->mi_cols + mi_col; |
|
406 const int bw = num_8x8_blocks_wide_lookup[bsize]; |
|
407 const int bh = num_8x8_blocks_high_lookup[bsize]; |
|
408 const int xmis = MIN(cm->mi_cols - mi_col, bw); |
|
409 const int ymis = MIN(cm->mi_rows - mi_row, bh); |
|
410 int x, y, segment_id = INT_MAX; |
|
411 |
|
412 for (y = 0; y < ymis; y++) |
|
413 for (x = 0; x < xmis; x++) |
|
414 segment_id = MIN(segment_id, |
|
415 segment_ids[mi_offset + y * cm->mi_cols + x]); |
|
416 |
|
417 assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); |
|
418 return segment_id; |
|
419 } |