|
1 /* |
|
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license |
|
5 * that can be found in the LICENSE file in the root of the source |
|
6 * tree. An additional intellectual property rights grant can be found |
|
7 * in the file PATENTS. All contributing project authors may |
|
8 * be found in the AUTHORS file in the root of the source tree. |
|
9 */ |
|
10 |
|
11 #include <assert.h> |
|
12 |
|
13 #include "./vpx_scale_rtcd.h" |
|
14 #include "./vpx_config.h" |
|
15 |
|
16 #include "vpx/vpx_integer.h" |
|
17 |
|
18 #include "vp9/common/vp9_blockd.h" |
|
19 #include "vp9/common/vp9_filter.h" |
|
20 #include "vp9/common/vp9_reconinter.h" |
|
21 #include "vp9/common/vp9_reconintra.h" |
|
22 |
|
23 void vp9_setup_interp_filters(MACROBLOCKD *xd, |
|
24 INTERPOLATION_TYPE mcomp_filter_type, |
|
25 VP9_COMMON *cm) { |
|
26 if (xd->mi_8x8 && xd->mi_8x8[0]) { |
|
27 MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; |
|
28 |
|
29 set_scale_factors(xd, mbmi->ref_frame[0] - LAST_FRAME, |
|
30 mbmi->ref_frame[1] - LAST_FRAME, |
|
31 cm->active_ref_scale); |
|
32 } else { |
|
33 set_scale_factors(xd, -1, -1, cm->active_ref_scale); |
|
34 } |
|
35 |
|
36 xd->subpix.filter_x = xd->subpix.filter_y = |
|
37 vp9_get_filter_kernel(mcomp_filter_type == SWITCHABLE ? |
|
38 EIGHTTAP : mcomp_filter_type); |
|
39 |
|
40 assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); |
|
41 } |
|
42 |
|
43 static void inter_predictor(const uint8_t *src, int src_stride, |
|
44 uint8_t *dst, int dst_stride, |
|
45 const MV32 *mv, |
|
46 const struct scale_factors *scale, |
|
47 int w, int h, int ref, |
|
48 const struct subpix_fn_table *subpix, |
|
49 int xs, int ys) { |
|
50 const int subpel_x = mv->col & SUBPEL_MASK; |
|
51 const int subpel_y = mv->row & SUBPEL_MASK; |
|
52 |
|
53 src += (mv->row >> SUBPEL_BITS) * src_stride + (mv->col >> SUBPEL_BITS); |
|
54 scale->sfc->predict[subpel_x != 0][subpel_y != 0][ref]( |
|
55 src, src_stride, dst, dst_stride, |
|
56 subpix->filter_x[subpel_x], xs, |
|
57 subpix->filter_y[subpel_y], ys, |
|
58 w, h); |
|
59 } |
|
60 |
|
61 void vp9_build_inter_predictor(const uint8_t *src, int src_stride, |
|
62 uint8_t *dst, int dst_stride, |
|
63 const MV *src_mv, |
|
64 const struct scale_factors *scale, |
|
65 int w, int h, int ref, |
|
66 const struct subpix_fn_table *subpix, |
|
67 enum mv_precision precision) { |
|
68 const int is_q4 = precision == MV_PRECISION_Q4; |
|
69 const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
|
70 is_q4 ? src_mv->col : src_mv->col * 2 }; |
|
71 const struct scale_factors_common *sfc = scale->sfc; |
|
72 const MV32 mv = sfc->scale_mv(&mv_q4, scale); |
|
73 |
|
74 inter_predictor(src, src_stride, dst, dst_stride, &mv, scale, |
|
75 w, h, ref, subpix, sfc->x_step_q4, sfc->y_step_q4); |
|
76 } |
|
77 |
|
78 static INLINE int round_mv_comp_q4(int value) { |
|
79 return (value < 0 ? value - 2 : value + 2) / 4; |
|
80 } |
|
81 |
|
82 static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { |
|
83 MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row + |
|
84 mi->bmi[1].as_mv[idx].as_mv.row + |
|
85 mi->bmi[2].as_mv[idx].as_mv.row + |
|
86 mi->bmi[3].as_mv[idx].as_mv.row), |
|
87 round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col + |
|
88 mi->bmi[1].as_mv[idx].as_mv.col + |
|
89 mi->bmi[2].as_mv[idx].as_mv.col + |
|
90 mi->bmi[3].as_mv[idx].as_mv.col) }; |
|
91 return res; |
|
92 } |
|
93 |
|
94 // TODO(jkoleszar): yet another mv clamping function :-( |
|
95 MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, |
|
96 int bw, int bh, int ss_x, int ss_y) { |
|
97 // If the MV points so far into the UMV border that no visible pixels |
|
98 // are used for reconstruction, the subpel part of the MV can be |
|
99 // discarded and the MV limited to 16 pixels with equivalent results. |
|
100 const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; |
|
101 const int spel_right = spel_left - SUBPEL_SHIFTS; |
|
102 const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; |
|
103 const int spel_bottom = spel_top - SUBPEL_SHIFTS; |
|
104 MV clamped_mv = { |
|
105 src_mv->row * (1 << (1 - ss_y)), |
|
106 src_mv->col * (1 << (1 - ss_x)) |
|
107 }; |
|
108 assert(ss_x <= 1); |
|
109 assert(ss_y <= 1); |
|
110 |
|
111 clamp_mv(&clamped_mv, |
|
112 xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, |
|
113 xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, |
|
114 xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, |
|
115 xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); |
|
116 |
|
117 return clamped_mv; |
|
118 } |
|
119 |
|
120 |
|
121 // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could |
|
122 // calculate the subsampled BLOCK_SIZE, but that type isn't defined for |
|
123 // sizes smaller than 16x16 yet. |
|
124 static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block, |
|
125 BLOCK_SIZE bsize, int pred_w, int pred_h, |
|
126 int mi_x, int mi_y) { |
|
127 struct macroblockd_plane *const pd = &xd->plane[plane]; |
|
128 const int bwl = b_width_log2(bsize) - pd->subsampling_x; |
|
129 const int bw = 4 << bwl; |
|
130 const int bh = plane_block_height(bsize, pd); |
|
131 const int x = 4 * (block & ((1 << bwl) - 1)); |
|
132 const int y = 4 * (block >> bwl); |
|
133 const MODE_INFO *mi = xd->mi_8x8[0]; |
|
134 const int is_compound = has_second_ref(&mi->mbmi); |
|
135 int ref; |
|
136 |
|
137 assert(x < bw); |
|
138 assert(y < bh); |
|
139 assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw); |
|
140 assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh); |
|
141 |
|
142 for (ref = 0; ref < 1 + is_compound; ++ref) { |
|
143 struct scale_factors *const scale = &xd->scale_factor[ref]; |
|
144 struct buf_2d *const pre_buf = &pd->pre[ref]; |
|
145 struct buf_2d *const dst_buf = &pd->dst; |
|
146 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
|
147 |
|
148 // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the |
|
149 // same MV (the average of the 4 luma MVs) but we could do something |
|
150 // smarter for non-4:2:0. Just punt for now, pending the changes to get |
|
151 // rid of SPLITMV mode entirely. |
|
152 const MV mv = mi->mbmi.sb_type < BLOCK_8X8 |
|
153 ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv |
|
154 : mi_mv_pred_q4(mi, ref)) |
|
155 : mi->mbmi.mv[ref].as_mv; |
|
156 |
|
157 // TODO(jkoleszar): This clamping is done in the incorrect place for the |
|
158 // scaling case. It needs to be done on the scaled MV, not the pre-scaling |
|
159 // MV. Note however that it performs the subsampling aware scaling so |
|
160 // that the result is always q4. |
|
161 // mv_precision precision is MV_PRECISION_Q4. |
|
162 const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, |
|
163 pd->subsampling_x, |
|
164 pd->subsampling_y); |
|
165 |
|
166 uint8_t *pre; |
|
167 MV32 scaled_mv; |
|
168 int xs, ys; |
|
169 |
|
170 if (vp9_is_scaled(scale->sfc)) { |
|
171 pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, scale); |
|
172 scale->sfc->set_scaled_offsets(scale, mi_y + y, mi_x + x); |
|
173 scaled_mv = scale->sfc->scale_mv(&mv_q4, scale); |
|
174 xs = scale->sfc->x_step_q4; |
|
175 ys = scale->sfc->y_step_q4; |
|
176 } else { |
|
177 pre = pre_buf->buf + (y * pre_buf->stride + x); |
|
178 scaled_mv.row = mv_q4.row; |
|
179 scaled_mv.col = mv_q4.col; |
|
180 xs = ys = 16; |
|
181 } |
|
182 |
|
183 inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, |
|
184 &scaled_mv, scale, |
|
185 4 << pred_w, 4 << pred_h, ref, |
|
186 &xd->subpix, xs, ys); |
|
187 } |
|
188 } |
|
189 |
|
190 static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
|
191 int mi_row, int mi_col, |
|
192 int plane_from, int plane_to) { |
|
193 int plane; |
|
194 for (plane = plane_from; plane <= plane_to; ++plane) { |
|
195 const int mi_x = mi_col * MI_SIZE; |
|
196 const int mi_y = mi_row * MI_SIZE; |
|
197 const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
|
198 const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
|
199 |
|
200 if (xd->mi_8x8[0]->mbmi.sb_type < BLOCK_8X8) { |
|
201 int i = 0, x, y; |
|
202 assert(bsize == BLOCK_8X8); |
|
203 for (y = 0; y < 1 << bhl; ++y) |
|
204 for (x = 0; x < 1 << bwl; ++x) |
|
205 build_inter_predictors(xd, plane, i++, bsize, 0, 0, mi_x, mi_y); |
|
206 } else { |
|
207 build_inter_predictors(xd, plane, 0, bsize, bwl, bhl, mi_x, mi_y); |
|
208 } |
|
209 } |
|
210 } |
|
211 |
|
212 void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, |
|
213 BLOCK_SIZE bsize) { |
|
214 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); |
|
215 } |
|
216 void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, |
|
217 BLOCK_SIZE bsize) { |
|
218 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, |
|
219 MAX_MB_PLANE - 1); |
|
220 } |
|
221 void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, |
|
222 BLOCK_SIZE bsize) { |
|
223 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, |
|
224 MAX_MB_PLANE - 1); |
|
225 } |
|
226 |
|
227 // TODO(dkovalev: find better place for this function) |
|
228 void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { |
|
229 const int ref = cm->active_ref_idx[i]; |
|
230 struct scale_factors *const sf = &cm->active_ref_scale[i]; |
|
231 struct scale_factors_common *const sfc = &cm->active_ref_scale_comm[i]; |
|
232 if (ref >= NUM_YV12_BUFFERS) { |
|
233 vp9_zero(*sf); |
|
234 vp9_zero(*sfc); |
|
235 } else { |
|
236 YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; |
|
237 vp9_setup_scale_factors_for_frame(sf, sfc, |
|
238 fb->y_crop_width, fb->y_crop_height, |
|
239 cm->width, cm->height); |
|
240 |
|
241 if (vp9_is_scaled(sfc)) |
|
242 vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y); |
|
243 } |
|
244 } |
|
245 |