|
1 /* |
|
2 * Copyright (C) 2012 Google Inc. All rights reserved. |
|
3 * |
|
4 * Redistribution and use in source and binary forms, with or without |
|
5 * modification, are permitted provided that the following conditions are |
|
6 * met: |
|
7 * |
|
8 * * Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * * Redistributions in binary form must reproduce the above |
|
11 * copyright notice, this list of conditions and the following disclaimer |
|
12 * in the documentation and/or other materials provided with the |
|
13 * distribution. |
|
14 * * Neither the name of Google Inc. nor the names of its |
|
15 * contributors may be used to endorse or promote products derived from |
|
16 * this software without specific prior written permission. |
|
17 * |
|
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
29 */ |
|
30 |
|
31 #include "Decimal.h" |
|
32 #include "moz-decimal-utils.h" |
|
33 |
|
34 #include <algorithm> |
|
35 #include <float.h> |
|
36 |
|
37 using namespace moz_decimal_utils; |
|
38 |
|
39 namespace WebCore { |
|
40 |
|
41 namespace DecimalPrivate { |
|
42 |
|
43 static int const ExponentMax = 1023; |
|
44 static int const ExponentMin = -1023; |
|
45 static int const Precision = 18; |
|
46 |
|
47 static const uint64_t MaxCoefficient = UINT64_C(0x16345785D89FFFF); // 999999999999999999 == 18 9's |
|
48 |
|
49 // This class handles Decimal special values. |
|
50 class SpecialValueHandler { |
|
51 WTF_MAKE_NONCOPYABLE(SpecialValueHandler); |
|
52 public: |
|
53 enum HandleResult { |
|
54 BothFinite, |
|
55 BothInfinity, |
|
56 EitherNaN, |
|
57 LHSIsInfinity, |
|
58 RHSIsInfinity, |
|
59 }; |
|
60 |
|
61 SpecialValueHandler(const Decimal& lhs, const Decimal& rhs); |
|
62 HandleResult handle(); |
|
63 Decimal value() const; |
|
64 |
|
65 private: |
|
66 enum Result { |
|
67 ResultIsLHS, |
|
68 ResultIsRHS, |
|
69 ResultIsUnknown, |
|
70 }; |
|
71 |
|
72 const Decimal& m_lhs; |
|
73 const Decimal& m_rhs; |
|
74 Result m_result; |
|
75 }; |
|
76 |
|
77 SpecialValueHandler::SpecialValueHandler(const Decimal& lhs, const Decimal& rhs) |
|
78 : m_lhs(lhs), m_rhs(rhs), m_result(ResultIsUnknown) |
|
79 { |
|
80 } |
|
81 |
|
82 SpecialValueHandler::HandleResult SpecialValueHandler::handle() |
|
83 { |
|
84 if (m_lhs.isFinite() && m_rhs.isFinite()) |
|
85 return BothFinite; |
|
86 |
|
87 const Decimal::EncodedData::FormatClass lhsClass = m_lhs.value().formatClass(); |
|
88 const Decimal::EncodedData::FormatClass rhsClass = m_rhs.value().formatClass(); |
|
89 if (lhsClass == Decimal::EncodedData::ClassNaN) { |
|
90 m_result = ResultIsLHS; |
|
91 return EitherNaN; |
|
92 } |
|
93 |
|
94 if (rhsClass == Decimal::EncodedData::ClassNaN) { |
|
95 m_result = ResultIsRHS; |
|
96 return EitherNaN; |
|
97 } |
|
98 |
|
99 if (lhsClass == Decimal::EncodedData::ClassInfinity) |
|
100 return rhsClass == Decimal::EncodedData::ClassInfinity ? BothInfinity : LHSIsInfinity; |
|
101 |
|
102 if (rhsClass == Decimal::EncodedData::ClassInfinity) |
|
103 return RHSIsInfinity; |
|
104 |
|
105 ASSERT_NOT_REACHED(); |
|
106 return BothFinite; |
|
107 } |
|
108 |
|
109 Decimal SpecialValueHandler::value() const |
|
110 { |
|
111 switch (m_result) { |
|
112 case ResultIsLHS: |
|
113 return m_lhs; |
|
114 case ResultIsRHS: |
|
115 return m_rhs; |
|
116 case ResultIsUnknown: |
|
117 default: |
|
118 ASSERT_NOT_REACHED(); |
|
119 return m_lhs; |
|
120 } |
|
121 } |
|
122 |
|
123 // This class is used for 128 bit unsigned integer arithmetic. |
|
124 class UInt128 { |
|
125 public: |
|
126 UInt128(uint64_t low, uint64_t high) |
|
127 : m_high(high), m_low(low) |
|
128 { |
|
129 } |
|
130 |
|
131 UInt128& operator/=(uint32_t); |
|
132 |
|
133 uint64_t high() const { return m_high; } |
|
134 uint64_t low() const { return m_low; } |
|
135 |
|
136 static UInt128 multiply(uint64_t u, uint64_t v) { return UInt128(u * v, multiplyHigh(u, v)); } |
|
137 |
|
138 private: |
|
139 static uint32_t highUInt32(uint64_t x) { return static_cast<uint32_t>(x >> 32); } |
|
140 static uint32_t lowUInt32(uint64_t x) { return static_cast<uint32_t>(x & ((static_cast<uint64_t>(1) << 32) - 1)); } |
|
141 bool isZero() const { return !m_low && !m_high; } |
|
142 static uint64_t makeUInt64(uint32_t low, uint32_t high) { return low | (static_cast<uint64_t>(high) << 32); } |
|
143 |
|
144 static uint64_t multiplyHigh(uint64_t, uint64_t); |
|
145 |
|
146 uint64_t m_high; |
|
147 uint64_t m_low; |
|
148 }; |
|
149 |
|
150 UInt128& UInt128::operator/=(const uint32_t divisor) |
|
151 { |
|
152 ASSERT(divisor); |
|
153 |
|
154 if (!m_high) { |
|
155 m_low /= divisor; |
|
156 return *this; |
|
157 } |
|
158 |
|
159 uint32_t dividend[4]; |
|
160 dividend[0] = lowUInt32(m_low); |
|
161 dividend[1] = highUInt32(m_low); |
|
162 dividend[2] = lowUInt32(m_high); |
|
163 dividend[3] = highUInt32(m_high); |
|
164 |
|
165 uint32_t quotient[4]; |
|
166 uint32_t remainder = 0; |
|
167 for (int i = 3; i >= 0; --i) { |
|
168 const uint64_t work = makeUInt64(dividend[i], remainder); |
|
169 remainder = static_cast<uint32_t>(work % divisor); |
|
170 quotient[i] = static_cast<uint32_t>(work / divisor); |
|
171 } |
|
172 m_low = makeUInt64(quotient[0], quotient[1]); |
|
173 m_high = makeUInt64(quotient[2], quotient[3]); |
|
174 return *this; |
|
175 } |
|
176 |
|
177 // Returns high 64bit of 128bit product. |
|
178 uint64_t UInt128::multiplyHigh(uint64_t u, uint64_t v) |
|
179 { |
|
180 const uint64_t uLow = lowUInt32(u); |
|
181 const uint64_t uHigh = highUInt32(u); |
|
182 const uint64_t vLow = lowUInt32(v); |
|
183 const uint64_t vHigh = highUInt32(v); |
|
184 const uint64_t partialProduct = uHigh * vLow + highUInt32(uLow * vLow); |
|
185 return uHigh * vHigh + highUInt32(partialProduct) + highUInt32(uLow * vHigh + lowUInt32(partialProduct)); |
|
186 } |
|
187 |
|
188 static int countDigits(uint64_t x) |
|
189 { |
|
190 int numberOfDigits = 0; |
|
191 for (uint64_t powerOfTen = 1; x >= powerOfTen; powerOfTen *= 10) { |
|
192 ++numberOfDigits; |
|
193 if (powerOfTen >= std::numeric_limits<uint64_t>::max() / 10) |
|
194 break; |
|
195 } |
|
196 return numberOfDigits; |
|
197 } |
|
198 |
|
199 static uint64_t scaleDown(uint64_t x, int n) |
|
200 { |
|
201 ASSERT(n >= 0); |
|
202 while (n > 0 && x) { |
|
203 x /= 10; |
|
204 --n; |
|
205 } |
|
206 return x; |
|
207 } |
|
208 |
|
209 static uint64_t scaleUp(uint64_t x, int n) |
|
210 { |
|
211 ASSERT(n >= 0); |
|
212 ASSERT(n < Precision); |
|
213 |
|
214 uint64_t y = 1; |
|
215 uint64_t z = 10; |
|
216 for (;;) { |
|
217 if (n & 1) |
|
218 y = y * z; |
|
219 |
|
220 n >>= 1; |
|
221 if (!n) |
|
222 return x * y; |
|
223 |
|
224 z = z * z; |
|
225 } |
|
226 } |
|
227 |
|
228 } // namespace DecimalPrivate |
|
229 |
|
230 using namespace DecimalPrivate; |
|
231 |
|
232 Decimal::EncodedData::EncodedData(Sign sign, FormatClass formatClass) |
|
233 : m_coefficient(0) |
|
234 , m_exponent(0) |
|
235 , m_formatClass(formatClass) |
|
236 , m_sign(sign) |
|
237 { |
|
238 } |
|
239 |
|
240 Decimal::EncodedData::EncodedData(Sign sign, int exponent, uint64_t coefficient) |
|
241 : m_formatClass(coefficient ? ClassNormal : ClassZero) |
|
242 , m_sign(sign) |
|
243 { |
|
244 if (exponent >= ExponentMin && exponent <= ExponentMax) { |
|
245 while (coefficient > MaxCoefficient) { |
|
246 coefficient /= 10; |
|
247 ++exponent; |
|
248 } |
|
249 } |
|
250 |
|
251 if (exponent > ExponentMax) { |
|
252 m_coefficient = 0; |
|
253 m_exponent = 0; |
|
254 m_formatClass = ClassInfinity; |
|
255 return; |
|
256 } |
|
257 |
|
258 if (exponent < ExponentMin) { |
|
259 m_coefficient = 0; |
|
260 m_exponent = 0; |
|
261 m_formatClass = ClassZero; |
|
262 return; |
|
263 } |
|
264 |
|
265 m_coefficient = coefficient; |
|
266 m_exponent = static_cast<int16_t>(exponent); |
|
267 } |
|
268 |
|
269 bool Decimal::EncodedData::operator==(const EncodedData& another) const |
|
270 { |
|
271 return m_sign == another.m_sign |
|
272 && m_formatClass == another.m_formatClass |
|
273 && m_exponent == another.m_exponent |
|
274 && m_coefficient == another.m_coefficient; |
|
275 } |
|
276 |
|
277 Decimal::Decimal(int32_t i32) |
|
278 : m_data(i32 < 0 ? Negative : Positive, 0, i32 < 0 ? static_cast<uint64_t>(-static_cast<int64_t>(i32)) : static_cast<uint64_t>(i32)) |
|
279 { |
|
280 } |
|
281 |
|
282 Decimal::Decimal(Sign sign, int exponent, uint64_t coefficient) |
|
283 : m_data(sign, coefficient ? exponent : 0, coefficient) |
|
284 { |
|
285 } |
|
286 |
|
287 Decimal::Decimal(const EncodedData& data) |
|
288 : m_data(data) |
|
289 { |
|
290 } |
|
291 |
|
292 Decimal::Decimal(const Decimal& other) |
|
293 : m_data(other.m_data) |
|
294 { |
|
295 } |
|
296 |
|
297 Decimal& Decimal::operator=(const Decimal& other) |
|
298 { |
|
299 m_data = other.m_data; |
|
300 return *this; |
|
301 } |
|
302 |
|
303 Decimal& Decimal::operator+=(const Decimal& other) |
|
304 { |
|
305 m_data = (*this + other).m_data; |
|
306 return *this; |
|
307 } |
|
308 |
|
309 Decimal& Decimal::operator-=(const Decimal& other) |
|
310 { |
|
311 m_data = (*this - other).m_data; |
|
312 return *this; |
|
313 } |
|
314 |
|
315 Decimal& Decimal::operator*=(const Decimal& other) |
|
316 { |
|
317 m_data = (*this * other).m_data; |
|
318 return *this; |
|
319 } |
|
320 |
|
321 Decimal& Decimal::operator/=(const Decimal& other) |
|
322 { |
|
323 m_data = (*this / other).m_data; |
|
324 return *this; |
|
325 } |
|
326 |
|
327 Decimal Decimal::operator-() const |
|
328 { |
|
329 if (isNaN()) |
|
330 return *this; |
|
331 |
|
332 Decimal result(*this); |
|
333 result.m_data.setSign(invertSign(m_data.sign())); |
|
334 return result; |
|
335 } |
|
336 |
|
337 Decimal Decimal::operator+(const Decimal& rhs) const |
|
338 { |
|
339 const Decimal& lhs = *this; |
|
340 const Sign lhsSign = lhs.sign(); |
|
341 const Sign rhsSign = rhs.sign(); |
|
342 |
|
343 SpecialValueHandler handler(lhs, rhs); |
|
344 switch (handler.handle()) { |
|
345 case SpecialValueHandler::BothFinite: |
|
346 break; |
|
347 |
|
348 case SpecialValueHandler::BothInfinity: |
|
349 return lhsSign == rhsSign ? lhs : nan(); |
|
350 |
|
351 case SpecialValueHandler::EitherNaN: |
|
352 return handler.value(); |
|
353 |
|
354 case SpecialValueHandler::LHSIsInfinity: |
|
355 return lhs; |
|
356 |
|
357 case SpecialValueHandler::RHSIsInfinity: |
|
358 return rhs; |
|
359 } |
|
360 |
|
361 const AlignedOperands alignedOperands = alignOperands(lhs, rhs); |
|
362 |
|
363 const uint64_t result = lhsSign == rhsSign |
|
364 ? alignedOperands.lhsCoefficient + alignedOperands.rhsCoefficient |
|
365 : alignedOperands.lhsCoefficient - alignedOperands.rhsCoefficient; |
|
366 |
|
367 if (lhsSign == Negative && rhsSign == Positive && !result) |
|
368 return Decimal(Positive, alignedOperands.exponent, 0); |
|
369 |
|
370 return static_cast<int64_t>(result) >= 0 |
|
371 ? Decimal(lhsSign, alignedOperands.exponent, result) |
|
372 : Decimal(invertSign(lhsSign), alignedOperands.exponent, -static_cast<int64_t>(result)); |
|
373 } |
|
374 |
|
375 Decimal Decimal::operator-(const Decimal& rhs) const |
|
376 { |
|
377 const Decimal& lhs = *this; |
|
378 const Sign lhsSign = lhs.sign(); |
|
379 const Sign rhsSign = rhs.sign(); |
|
380 |
|
381 SpecialValueHandler handler(lhs, rhs); |
|
382 switch (handler.handle()) { |
|
383 case SpecialValueHandler::BothFinite: |
|
384 break; |
|
385 |
|
386 case SpecialValueHandler::BothInfinity: |
|
387 return lhsSign == rhsSign ? nan() : lhs; |
|
388 |
|
389 case SpecialValueHandler::EitherNaN: |
|
390 return handler.value(); |
|
391 |
|
392 case SpecialValueHandler::LHSIsInfinity: |
|
393 return lhs; |
|
394 |
|
395 case SpecialValueHandler::RHSIsInfinity: |
|
396 return infinity(invertSign(rhsSign)); |
|
397 } |
|
398 |
|
399 const AlignedOperands alignedOperands = alignOperands(lhs, rhs); |
|
400 |
|
401 const uint64_t result = lhsSign == rhsSign |
|
402 ? alignedOperands.lhsCoefficient - alignedOperands.rhsCoefficient |
|
403 : alignedOperands.lhsCoefficient + alignedOperands.rhsCoefficient; |
|
404 |
|
405 if (lhsSign == Negative && rhsSign == Negative && !result) |
|
406 return Decimal(Positive, alignedOperands.exponent, 0); |
|
407 |
|
408 return static_cast<int64_t>(result) >= 0 |
|
409 ? Decimal(lhsSign, alignedOperands.exponent, result) |
|
410 : Decimal(invertSign(lhsSign), alignedOperands.exponent, -static_cast<int64_t>(result)); |
|
411 } |
|
412 |
|
413 Decimal Decimal::operator*(const Decimal& rhs) const |
|
414 { |
|
415 const Decimal& lhs = *this; |
|
416 const Sign lhsSign = lhs.sign(); |
|
417 const Sign rhsSign = rhs.sign(); |
|
418 const Sign resultSign = lhsSign == rhsSign ? Positive : Negative; |
|
419 |
|
420 SpecialValueHandler handler(lhs, rhs); |
|
421 switch (handler.handle()) { |
|
422 case SpecialValueHandler::BothFinite: { |
|
423 const uint64_t lhsCoefficient = lhs.m_data.coefficient(); |
|
424 const uint64_t rhsCoefficient = rhs.m_data.coefficient(); |
|
425 int resultExponent = lhs.exponent() + rhs.exponent(); |
|
426 UInt128 work(UInt128::multiply(lhsCoefficient, rhsCoefficient)); |
|
427 while (work.high()) { |
|
428 work /= 10; |
|
429 ++resultExponent; |
|
430 } |
|
431 return Decimal(resultSign, resultExponent, work.low()); |
|
432 } |
|
433 |
|
434 case SpecialValueHandler::BothInfinity: |
|
435 return infinity(resultSign); |
|
436 |
|
437 case SpecialValueHandler::EitherNaN: |
|
438 return handler.value(); |
|
439 |
|
440 case SpecialValueHandler::LHSIsInfinity: |
|
441 return rhs.isZero() ? nan() : infinity(resultSign); |
|
442 |
|
443 case SpecialValueHandler::RHSIsInfinity: |
|
444 return lhs.isZero() ? nan() : infinity(resultSign); |
|
445 } |
|
446 |
|
447 ASSERT_NOT_REACHED(); |
|
448 return nan(); |
|
449 } |
|
450 |
|
451 Decimal Decimal::operator/(const Decimal& rhs) const |
|
452 { |
|
453 const Decimal& lhs = *this; |
|
454 const Sign lhsSign = lhs.sign(); |
|
455 const Sign rhsSign = rhs.sign(); |
|
456 const Sign resultSign = lhsSign == rhsSign ? Positive : Negative; |
|
457 |
|
458 SpecialValueHandler handler(lhs, rhs); |
|
459 switch (handler.handle()) { |
|
460 case SpecialValueHandler::BothFinite: |
|
461 break; |
|
462 |
|
463 case SpecialValueHandler::BothInfinity: |
|
464 return nan(); |
|
465 |
|
466 case SpecialValueHandler::EitherNaN: |
|
467 return handler.value(); |
|
468 |
|
469 case SpecialValueHandler::LHSIsInfinity: |
|
470 return infinity(resultSign); |
|
471 |
|
472 case SpecialValueHandler::RHSIsInfinity: |
|
473 return zero(resultSign); |
|
474 } |
|
475 |
|
476 ASSERT(lhs.isFinite()); |
|
477 ASSERT(rhs.isFinite()); |
|
478 |
|
479 if (rhs.isZero()) |
|
480 return lhs.isZero() ? nan() : infinity(resultSign); |
|
481 |
|
482 int resultExponent = lhs.exponent() - rhs.exponent(); |
|
483 |
|
484 if (lhs.isZero()) |
|
485 return Decimal(resultSign, resultExponent, 0); |
|
486 |
|
487 uint64_t remainder = lhs.m_data.coefficient(); |
|
488 const uint64_t divisor = rhs.m_data.coefficient(); |
|
489 uint64_t result = 0; |
|
490 while (result < MaxCoefficient / 100) { |
|
491 while (remainder < divisor) { |
|
492 remainder *= 10; |
|
493 result *= 10; |
|
494 --resultExponent; |
|
495 } |
|
496 result += remainder / divisor; |
|
497 remainder %= divisor; |
|
498 if (!remainder) |
|
499 break; |
|
500 } |
|
501 |
|
502 if (remainder > divisor / 2) |
|
503 ++result; |
|
504 |
|
505 return Decimal(resultSign, resultExponent, result); |
|
506 } |
|
507 |
|
508 bool Decimal::operator==(const Decimal& rhs) const |
|
509 { |
|
510 if (isNaN() || rhs.isNaN()) |
|
511 return false; |
|
512 return m_data == rhs.m_data || compareTo(rhs).isZero(); |
|
513 } |
|
514 |
|
515 bool Decimal::operator!=(const Decimal& rhs) const |
|
516 { |
|
517 if (isNaN() || rhs.isNaN()) |
|
518 return true; |
|
519 if (m_data == rhs.m_data) |
|
520 return false; |
|
521 const Decimal result = compareTo(rhs); |
|
522 if (result.isNaN()) |
|
523 return false; |
|
524 return !result.isZero(); |
|
525 } |
|
526 |
|
527 bool Decimal::operator<(const Decimal& rhs) const |
|
528 { |
|
529 const Decimal result = compareTo(rhs); |
|
530 if (result.isNaN()) |
|
531 return false; |
|
532 return !result.isZero() && result.isNegative(); |
|
533 } |
|
534 |
|
535 bool Decimal::operator<=(const Decimal& rhs) const |
|
536 { |
|
537 if (isNaN() || rhs.isNaN()) |
|
538 return false; |
|
539 if (m_data == rhs.m_data) |
|
540 return true; |
|
541 const Decimal result = compareTo(rhs); |
|
542 if (result.isNaN()) |
|
543 return false; |
|
544 return result.isZero() || result.isNegative(); |
|
545 } |
|
546 |
|
547 bool Decimal::operator>(const Decimal& rhs) const |
|
548 { |
|
549 const Decimal result = compareTo(rhs); |
|
550 if (result.isNaN()) |
|
551 return false; |
|
552 return !result.isZero() && result.isPositive(); |
|
553 } |
|
554 |
|
555 bool Decimal::operator>=(const Decimal& rhs) const |
|
556 { |
|
557 if (isNaN() || rhs.isNaN()) |
|
558 return false; |
|
559 if (m_data == rhs.m_data) |
|
560 return true; |
|
561 const Decimal result = compareTo(rhs); |
|
562 if (result.isNaN()) |
|
563 return false; |
|
564 return result.isZero() || !result.isNegative(); |
|
565 } |
|
566 |
|
567 Decimal Decimal::abs() const |
|
568 { |
|
569 Decimal result(*this); |
|
570 result.m_data.setSign(Positive); |
|
571 return result; |
|
572 } |
|
573 |
|
574 Decimal::AlignedOperands Decimal::alignOperands(const Decimal& lhs, const Decimal& rhs) |
|
575 { |
|
576 ASSERT(lhs.isFinite()); |
|
577 ASSERT(rhs.isFinite()); |
|
578 |
|
579 const int lhsExponent = lhs.exponent(); |
|
580 const int rhsExponent = rhs.exponent(); |
|
581 int exponent = std::min(lhsExponent, rhsExponent); |
|
582 uint64_t lhsCoefficient = lhs.m_data.coefficient(); |
|
583 uint64_t rhsCoefficient = rhs.m_data.coefficient(); |
|
584 |
|
585 if (lhsExponent > rhsExponent) { |
|
586 const int numberOfLHSDigits = countDigits(lhsCoefficient); |
|
587 if (numberOfLHSDigits) { |
|
588 const int lhsShiftAmount = lhsExponent - rhsExponent; |
|
589 const int overflow = numberOfLHSDigits + lhsShiftAmount - Precision; |
|
590 if (overflow <= 0) |
|
591 lhsCoefficient = scaleUp(lhsCoefficient, lhsShiftAmount); |
|
592 else { |
|
593 lhsCoefficient = scaleUp(lhsCoefficient, lhsShiftAmount - overflow); |
|
594 rhsCoefficient = scaleDown(rhsCoefficient, overflow); |
|
595 exponent += overflow; |
|
596 } |
|
597 } |
|
598 |
|
599 } else if (lhsExponent < rhsExponent) { |
|
600 const int numberOfRHSDigits = countDigits(rhsCoefficient); |
|
601 if (numberOfRHSDigits) { |
|
602 const int rhsShiftAmount = rhsExponent - lhsExponent; |
|
603 const int overflow = numberOfRHSDigits + rhsShiftAmount - Precision; |
|
604 if (overflow <= 0) |
|
605 rhsCoefficient = scaleUp(rhsCoefficient, rhsShiftAmount); |
|
606 else { |
|
607 rhsCoefficient = scaleUp(rhsCoefficient, rhsShiftAmount - overflow); |
|
608 lhsCoefficient = scaleDown(lhsCoefficient, overflow); |
|
609 exponent += overflow; |
|
610 } |
|
611 } |
|
612 } |
|
613 |
|
614 AlignedOperands alignedOperands; |
|
615 alignedOperands.exponent = exponent; |
|
616 alignedOperands.lhsCoefficient = lhsCoefficient; |
|
617 alignedOperands.rhsCoefficient = rhsCoefficient; |
|
618 return alignedOperands; |
|
619 } |
|
620 |
|
621 // Round toward positive infinity. |
|
622 // Note: Mac ports defines ceil(x) as wtf_ceil(x), so we can't use name "ceil" here. |
|
623 Decimal Decimal::ceiling() const |
|
624 { |
|
625 if (isSpecial()) |
|
626 return *this; |
|
627 |
|
628 if (exponent() >= 0) |
|
629 return *this; |
|
630 |
|
631 uint64_t coefficient = m_data.coefficient(); |
|
632 const int numberOfDigits = countDigits(coefficient); |
|
633 const int numberOfDropDigits = -exponent(); |
|
634 if (numberOfDigits < numberOfDropDigits) |
|
635 return isPositive() ? Decimal(1) : zero(Positive); |
|
636 |
|
637 uint64_t result = scaleDown(coefficient, numberOfDropDigits); |
|
638 uint64_t droppedDigits = coefficient - scaleUp(result, numberOfDropDigits); |
|
639 if (droppedDigits && isPositive()) |
|
640 result += 1; |
|
641 return Decimal(sign(), 0, result); |
|
642 } |
|
643 |
|
644 Decimal Decimal::compareTo(const Decimal& rhs) const |
|
645 { |
|
646 const Decimal result(*this - rhs); |
|
647 switch (result.m_data.formatClass()) { |
|
648 case EncodedData::ClassInfinity: |
|
649 return result.isNegative() ? Decimal(-1) : Decimal(1); |
|
650 |
|
651 case EncodedData::ClassNaN: |
|
652 case EncodedData::ClassNormal: |
|
653 return result; |
|
654 |
|
655 case EncodedData::ClassZero: |
|
656 return zero(Positive); |
|
657 |
|
658 default: |
|
659 ASSERT_NOT_REACHED(); |
|
660 return nan(); |
|
661 } |
|
662 } |
|
663 |
|
664 // Round toward negative infinity. |
|
665 Decimal Decimal::floor() const |
|
666 { |
|
667 if (isSpecial()) |
|
668 return *this; |
|
669 |
|
670 if (exponent() >= 0) |
|
671 return *this; |
|
672 |
|
673 uint64_t coefficient = m_data.coefficient(); |
|
674 const int numberOfDigits = countDigits(coefficient); |
|
675 const int numberOfDropDigits = -exponent(); |
|
676 if (numberOfDigits < numberOfDropDigits) |
|
677 return isPositive() ? zero(Positive) : Decimal(-1); |
|
678 |
|
679 uint64_t result = scaleDown(coefficient, numberOfDropDigits); |
|
680 uint64_t droppedDigits = coefficient - scaleUp(result, numberOfDropDigits); |
|
681 if (droppedDigits && isNegative()) { |
|
682 result += 1; |
|
683 } |
|
684 return Decimal(sign(), 0, result); |
|
685 } |
|
686 |
|
687 Decimal Decimal::fromDouble(double doubleValue) |
|
688 { |
|
689 if (std::isfinite(doubleValue)) |
|
690 return fromString(mozToString(doubleValue)); |
|
691 |
|
692 if (std::isinf(doubleValue)) |
|
693 return infinity(doubleValue < 0 ? Negative : Positive); |
|
694 |
|
695 return nan(); |
|
696 } |
|
697 |
|
698 Decimal Decimal::fromString(const String& str) |
|
699 { |
|
700 int exponent = 0; |
|
701 Sign exponentSign = Positive; |
|
702 int numberOfDigits = 0; |
|
703 int numberOfDigitsAfterDot = 0; |
|
704 int numberOfExtraDigits = 0; |
|
705 Sign sign = Positive; |
|
706 |
|
707 enum { |
|
708 StateDigit, |
|
709 StateDot, |
|
710 StateDotDigit, |
|
711 StateE, |
|
712 StateEDigit, |
|
713 StateESign, |
|
714 StateSign, |
|
715 StateStart, |
|
716 StateZero, |
|
717 } state = StateStart; |
|
718 |
|
719 #define HandleCharAndBreak(expected, nextState) \ |
|
720 if (ch == expected) { \ |
|
721 state = nextState; \ |
|
722 break; \ |
|
723 } |
|
724 |
|
725 #define HandleTwoCharsAndBreak(expected1, expected2, nextState) \ |
|
726 if (ch == expected1 || ch == expected2) { \ |
|
727 state = nextState; \ |
|
728 break; \ |
|
729 } |
|
730 |
|
731 uint64_t accumulator = 0; |
|
732 for (unsigned index = 0; index < str.length(); ++index) { |
|
733 const int ch = str[index]; |
|
734 switch (state) { |
|
735 case StateDigit: |
|
736 if (ch >= '0' && ch <= '9') { |
|
737 if (numberOfDigits < Precision) { |
|
738 ++numberOfDigits; |
|
739 accumulator *= 10; |
|
740 accumulator += ch - '0'; |
|
741 } else |
|
742 ++numberOfExtraDigits; |
|
743 break; |
|
744 } |
|
745 |
|
746 HandleCharAndBreak('.', StateDot); |
|
747 HandleTwoCharsAndBreak('E', 'e', StateE); |
|
748 return nan(); |
|
749 |
|
750 case StateDot: |
|
751 if (ch >= '0' && ch <= '9') { |
|
752 if (numberOfDigits < Precision) { |
|
753 ++numberOfDigits; |
|
754 ++numberOfDigitsAfterDot; |
|
755 accumulator *= 10; |
|
756 accumulator += ch - '0'; |
|
757 } |
|
758 state = StateDotDigit; |
|
759 break; |
|
760 } |
|
761 |
|
762 case StateDotDigit: |
|
763 if (ch >= '0' && ch <= '9') { |
|
764 if (numberOfDigits < Precision) { |
|
765 ++numberOfDigits; |
|
766 ++numberOfDigitsAfterDot; |
|
767 accumulator *= 10; |
|
768 accumulator += ch - '0'; |
|
769 } |
|
770 break; |
|
771 } |
|
772 |
|
773 HandleTwoCharsAndBreak('E', 'e', StateE); |
|
774 return nan(); |
|
775 |
|
776 case StateE: |
|
777 if (ch == '+') { |
|
778 exponentSign = Positive; |
|
779 state = StateESign; |
|
780 break; |
|
781 } |
|
782 |
|
783 if (ch == '-') { |
|
784 exponentSign = Negative; |
|
785 state = StateESign; |
|
786 break; |
|
787 } |
|
788 |
|
789 if (ch >= '0' && ch <= '9') { |
|
790 exponent = ch - '0'; |
|
791 state = StateEDigit; |
|
792 break; |
|
793 } |
|
794 |
|
795 return nan(); |
|
796 |
|
797 case StateEDigit: |
|
798 if (ch >= '0' && ch <= '9') { |
|
799 exponent *= 10; |
|
800 exponent += ch - '0'; |
|
801 if (exponent > ExponentMax + Precision) { |
|
802 if (accumulator) |
|
803 return exponentSign == Negative ? zero(Positive) : infinity(sign); |
|
804 return zero(sign); |
|
805 } |
|
806 state = StateEDigit; |
|
807 break; |
|
808 } |
|
809 |
|
810 return nan(); |
|
811 |
|
812 case StateESign: |
|
813 if (ch >= '0' && ch <= '9') { |
|
814 exponent = ch - '0'; |
|
815 state = StateEDigit; |
|
816 break; |
|
817 } |
|
818 |
|
819 return nan(); |
|
820 |
|
821 case StateSign: |
|
822 if (ch >= '1' && ch <= '9') { |
|
823 accumulator = ch - '0'; |
|
824 numberOfDigits = 1; |
|
825 state = StateDigit; |
|
826 break; |
|
827 } |
|
828 |
|
829 HandleCharAndBreak('0', StateZero); |
|
830 return nan(); |
|
831 |
|
832 case StateStart: |
|
833 if (ch >= '1' && ch <= '9') { |
|
834 accumulator = ch - '0'; |
|
835 numberOfDigits = 1; |
|
836 state = StateDigit; |
|
837 break; |
|
838 } |
|
839 |
|
840 if (ch == '-') { |
|
841 sign = Negative; |
|
842 state = StateSign; |
|
843 break; |
|
844 } |
|
845 |
|
846 if (ch == '+') { |
|
847 sign = Positive; |
|
848 state = StateSign; |
|
849 break; |
|
850 } |
|
851 |
|
852 HandleCharAndBreak('0', StateZero); |
|
853 HandleCharAndBreak('.', StateDot); |
|
854 return nan(); |
|
855 |
|
856 case StateZero: |
|
857 if (ch == '0') |
|
858 break; |
|
859 |
|
860 if (ch >= '1' && ch <= '9') { |
|
861 accumulator = ch - '0'; |
|
862 numberOfDigits = 1; |
|
863 state = StateDigit; |
|
864 break; |
|
865 } |
|
866 |
|
867 HandleCharAndBreak('.', StateDot); |
|
868 HandleTwoCharsAndBreak('E', 'e', StateE); |
|
869 return nan(); |
|
870 |
|
871 default: |
|
872 ASSERT_NOT_REACHED(); |
|
873 return nan(); |
|
874 } |
|
875 } |
|
876 |
|
877 if (state == StateZero) |
|
878 return zero(sign); |
|
879 |
|
880 if (state == StateDigit || state == StateEDigit || state == StateDotDigit) { |
|
881 int resultExponent = exponent * (exponentSign == Negative ? -1 : 1) - numberOfDigitsAfterDot + numberOfExtraDigits; |
|
882 if (resultExponent < ExponentMin) |
|
883 return zero(Positive); |
|
884 |
|
885 const int overflow = resultExponent - ExponentMax + 1; |
|
886 if (overflow > 0) { |
|
887 if (overflow + numberOfDigits - numberOfDigitsAfterDot > Precision) |
|
888 return infinity(sign); |
|
889 accumulator = scaleUp(accumulator, overflow); |
|
890 resultExponent -= overflow; |
|
891 } |
|
892 |
|
893 return Decimal(sign, resultExponent, accumulator); |
|
894 } |
|
895 |
|
896 return nan(); |
|
897 } |
|
898 |
|
899 Decimal Decimal::infinity(const Sign sign) |
|
900 { |
|
901 return Decimal(EncodedData(sign, EncodedData::ClassInfinity)); |
|
902 } |
|
903 |
|
904 Decimal Decimal::nan() |
|
905 { |
|
906 return Decimal(EncodedData(Positive, EncodedData::ClassNaN)); |
|
907 } |
|
908 |
|
909 Decimal Decimal::remainder(const Decimal& rhs) const |
|
910 { |
|
911 const Decimal quotient = *this / rhs; |
|
912 return quotient.isSpecial() ? quotient : *this - (quotient.isNegative() ? quotient.ceiling() : quotient.floor()) * rhs; |
|
913 } |
|
914 |
|
915 Decimal Decimal::round() const |
|
916 { |
|
917 if (isSpecial()) |
|
918 return *this; |
|
919 |
|
920 if (exponent() >= 0) |
|
921 return *this; |
|
922 |
|
923 uint64_t result = m_data.coefficient(); |
|
924 const int numberOfDigits = countDigits(result); |
|
925 const int numberOfDropDigits = -exponent(); |
|
926 if (numberOfDigits < numberOfDropDigits) |
|
927 return zero(Positive); |
|
928 |
|
929 // We're implementing round-half-away-from-zero, so we only need the one |
|
930 // (the most significant) fractional digit: |
|
931 result = scaleDown(result, numberOfDropDigits - 1); |
|
932 if (result % 10 >= 5) |
|
933 result += 10; |
|
934 result /= 10; |
|
935 return Decimal(sign(), 0, result); |
|
936 } |
|
937 |
|
938 double Decimal::toDouble() const |
|
939 { |
|
940 if (isFinite()) { |
|
941 bool valid; |
|
942 const double doubleValue = mozToDouble(toString(), &valid); |
|
943 return valid ? doubleValue : std::numeric_limits<double>::quiet_NaN(); |
|
944 } |
|
945 |
|
946 if (isInfinity()) |
|
947 return isNegative() ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity(); |
|
948 |
|
949 return std::numeric_limits<double>::quiet_NaN(); |
|
950 } |
|
951 |
|
952 String Decimal::toString() const |
|
953 { |
|
954 switch (m_data.formatClass()) { |
|
955 case EncodedData::ClassInfinity: |
|
956 return sign() ? "-Infinity" : "Infinity"; |
|
957 |
|
958 case EncodedData::ClassNaN: |
|
959 return "NaN"; |
|
960 |
|
961 case EncodedData::ClassNormal: |
|
962 case EncodedData::ClassZero: |
|
963 break; |
|
964 |
|
965 default: |
|
966 ASSERT_NOT_REACHED(); |
|
967 return ""; |
|
968 } |
|
969 |
|
970 StringBuilder builder; |
|
971 if (sign()) |
|
972 builder.append('-'); |
|
973 |
|
974 int originalExponent = exponent(); |
|
975 uint64_t coefficient = m_data.coefficient(); |
|
976 |
|
977 if (originalExponent < 0) { |
|
978 const int maxDigits = DBL_DIG; |
|
979 uint64_t lastDigit = 0; |
|
980 while (countDigits(coefficient) > maxDigits) { |
|
981 lastDigit = coefficient % 10; |
|
982 coefficient /= 10; |
|
983 ++originalExponent; |
|
984 } |
|
985 |
|
986 if (lastDigit >= 5) |
|
987 ++coefficient; |
|
988 |
|
989 while (originalExponent < 0 && coefficient && !(coefficient % 10)) { |
|
990 coefficient /= 10; |
|
991 ++originalExponent; |
|
992 } |
|
993 } |
|
994 |
|
995 const String digits = mozToString(coefficient); |
|
996 int coefficientLength = static_cast<int>(digits.length()); |
|
997 const int adjustedExponent = originalExponent + coefficientLength - 1; |
|
998 if (originalExponent <= 0 && adjustedExponent >= -6) { |
|
999 if (!originalExponent) { |
|
1000 builder.append(digits); |
|
1001 return builder.toString(); |
|
1002 } |
|
1003 |
|
1004 if (adjustedExponent >= 0) { |
|
1005 for (int i = 0; i < coefficientLength; ++i) { |
|
1006 builder.append(digits[i]); |
|
1007 if (i == adjustedExponent) |
|
1008 builder.append('.'); |
|
1009 } |
|
1010 return builder.toString(); |
|
1011 } |
|
1012 |
|
1013 builder.appendLiteral("0."); |
|
1014 for (int i = adjustedExponent + 1; i < 0; ++i) |
|
1015 builder.append('0'); |
|
1016 |
|
1017 builder.append(digits); |
|
1018 |
|
1019 } else { |
|
1020 builder.append(digits[0]); |
|
1021 while (coefficientLength >= 2 && digits[coefficientLength - 1] == '0') |
|
1022 --coefficientLength; |
|
1023 if (coefficientLength >= 2) { |
|
1024 builder.append('.'); |
|
1025 for (int i = 1; i < coefficientLength; ++i) |
|
1026 builder.append(digits[i]); |
|
1027 } |
|
1028 |
|
1029 if (adjustedExponent) { |
|
1030 builder.append(adjustedExponent < 0 ? "e" : "e+"); |
|
1031 builder.appendNumber(adjustedExponent); |
|
1032 } |
|
1033 } |
|
1034 return builder.toString(); |
|
1035 } |
|
1036 |
|
1037 bool Decimal::toString(char* strBuf, size_t bufLength) const |
|
1038 { |
|
1039 ASSERT(bufLength > 0); |
|
1040 String str = toString(); |
|
1041 size_t length = str.copy(strBuf, bufLength); |
|
1042 if (length < bufLength) { |
|
1043 strBuf[length] = '\0'; |
|
1044 return true; |
|
1045 } |
|
1046 strBuf[bufLength - 1] = '\0'; |
|
1047 return false; |
|
1048 } |
|
1049 |
|
1050 Decimal Decimal::zero(Sign sign) |
|
1051 { |
|
1052 return Decimal(EncodedData(sign, EncodedData::ClassZero)); |
|
1053 } |
|
1054 |
|
1055 } // namespace WebCore |
|
1056 |