|
1 /* |
|
2 * aes_icm.c |
|
3 * |
|
4 * AES Integer Counter Mode |
|
5 * |
|
6 * David A. McGrew |
|
7 * Cisco Systems, Inc. |
|
8 */ |
|
9 |
|
10 /* |
|
11 * |
|
12 * Copyright (c) 2001-2006, Cisco Systems, Inc. |
|
13 * All rights reserved. |
|
14 * |
|
15 * Redistribution and use in source and binary forms, with or without |
|
16 * modification, are permitted provided that the following conditions |
|
17 * are met: |
|
18 * |
|
19 * Redistributions of source code must retain the above copyright |
|
20 * notice, this list of conditions and the following disclaimer. |
|
21 * |
|
22 * Redistributions in binary form must reproduce the above |
|
23 * copyright notice, this list of conditions and the following |
|
24 * disclaimer in the documentation and/or other materials provided |
|
25 * with the distribution. |
|
26 * |
|
27 * Neither the name of the Cisco Systems, Inc. nor the names of its |
|
28 * contributors may be used to endorse or promote products derived |
|
29 * from this software without specific prior written permission. |
|
30 * |
|
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
34 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
35 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
|
36 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
37 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
38 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
41 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
42 * OF THE POSSIBILITY OF SUCH DAMAGE. |
|
43 * |
|
44 */ |
|
45 |
|
46 |
|
47 #define ALIGN_32 0 |
|
48 |
|
49 #include "aes_icm.h" |
|
50 #include "alloc.h" |
|
51 |
|
52 |
|
53 debug_module_t mod_aes_icm = { |
|
54 0, /* debugging is off by default */ |
|
55 "aes icm" /* printable module name */ |
|
56 }; |
|
57 |
|
58 /* |
|
59 * integer counter mode works as follows: |
|
60 * |
|
61 * 16 bits |
|
62 * <-----> |
|
63 * +------+------+------+------+------+------+------+------+ |
|
64 * | nonce | pakcet index | ctr |---+ |
|
65 * +------+------+------+------+------+------+------+------+ | |
|
66 * | |
|
67 * +------+------+------+------+------+------+------+------+ v |
|
68 * | salt |000000|->(+) |
|
69 * +------+------+------+------+------+------+------+------+ | |
|
70 * | |
|
71 * +---------+ |
|
72 * | encrypt | |
|
73 * +---------+ |
|
74 * | |
|
75 * +------+------+------+------+------+------+------+------+ | |
|
76 * | keystream block |<--+ |
|
77 * +------+------+------+------+------+------+------+------+ |
|
78 * |
|
79 * All fields are big-endian |
|
80 * |
|
81 * ctr is the block counter, which increments from zero for |
|
82 * each packet (16 bits wide) |
|
83 * |
|
84 * packet index is distinct for each packet (48 bits wide) |
|
85 * |
|
86 * nonce can be distinct across many uses of the same key, or |
|
87 * can be a fixed value per key, or can be per-packet randomness |
|
88 * (64 bits) |
|
89 * |
|
90 */ |
|
91 |
|
92 err_status_t |
|
93 aes_icm_alloc_ismacryp(cipher_t **c, int key_len, int forIsmacryp) { |
|
94 extern cipher_type_t aes_icm; |
|
95 uint8_t *pointer; |
|
96 int tmp; |
|
97 |
|
98 debug_print(mod_aes_icm, |
|
99 "allocating cipher with key length %d", key_len); |
|
100 |
|
101 /* |
|
102 * Ismacryp, for example, uses 16 byte key + 8 byte |
|
103 * salt so this function is called with key_len = 24. |
|
104 * The check for key_len = 30/38/46 does not apply. Our usage |
|
105 * of aes functions with key_len = values other than 30 |
|
106 * has not broken anything. Don't know what would be the |
|
107 * effect of skipping this check for srtp in general. |
|
108 */ |
|
109 if (!(forIsmacryp && key_len > 16 && key_len < 30) && |
|
110 key_len != 30 && key_len != 38 && key_len != 46) |
|
111 return err_status_bad_param; |
|
112 |
|
113 /* allocate memory a cipher of type aes_icm */ |
|
114 tmp = (sizeof(aes_icm_ctx_t) + sizeof(cipher_t)); |
|
115 pointer = (uint8_t*)crypto_alloc(tmp); |
|
116 if (pointer == NULL) |
|
117 return err_status_alloc_fail; |
|
118 |
|
119 /* set pointers */ |
|
120 *c = (cipher_t *)pointer; |
|
121 (*c)->type = &aes_icm; |
|
122 (*c)->state = pointer + sizeof(cipher_t); |
|
123 |
|
124 /* increment ref_count */ |
|
125 aes_icm.ref_count++; |
|
126 |
|
127 /* set key size */ |
|
128 (*c)->key_len = key_len; |
|
129 |
|
130 return err_status_ok; |
|
131 } |
|
132 |
|
133 err_status_t aes_icm_alloc(cipher_t **c, int key_len, int forIsmacryp) { |
|
134 return aes_icm_alloc_ismacryp(c, key_len, 0); |
|
135 } |
|
136 |
|
137 err_status_t |
|
138 aes_icm_dealloc(cipher_t *c) { |
|
139 extern cipher_type_t aes_icm; |
|
140 |
|
141 /* zeroize entire state*/ |
|
142 octet_string_set_to_zero((uint8_t *)c, |
|
143 sizeof(aes_icm_ctx_t) + sizeof(cipher_t)); |
|
144 |
|
145 /* free memory */ |
|
146 crypto_free(c); |
|
147 |
|
148 /* decrement ref_count */ |
|
149 aes_icm.ref_count--; |
|
150 |
|
151 return err_status_ok; |
|
152 } |
|
153 |
|
154 |
|
155 /* |
|
156 * aes_icm_context_init(...) initializes the aes_icm_context |
|
157 * using the value in key[]. |
|
158 * |
|
159 * the key is the secret key |
|
160 * |
|
161 * the salt is unpredictable (but not necessarily secret) data which |
|
162 * randomizes the starting point in the keystream |
|
163 */ |
|
164 |
|
165 err_status_t |
|
166 aes_icm_context_init(aes_icm_ctx_t *c, const uint8_t *key, int key_len) { |
|
167 err_status_t status; |
|
168 int base_key_len, copy_len; |
|
169 |
|
170 if (key_len > 16 && key_len < 30) /* Ismacryp */ |
|
171 base_key_len = 16; |
|
172 else if (key_len == 30 || key_len == 38 || key_len == 46) |
|
173 base_key_len = key_len - 14; |
|
174 else |
|
175 return err_status_bad_param; |
|
176 |
|
177 /* |
|
178 * set counter and initial values to 'offset' value, being careful not to |
|
179 * go past the end of the key buffer |
|
180 */ |
|
181 v128_set_to_zero(&c->counter); |
|
182 v128_set_to_zero(&c->offset); |
|
183 |
|
184 copy_len = key_len - base_key_len; |
|
185 /* force last two octets of the offset to be left zero (for srtp compatibility) */ |
|
186 if (copy_len > 14) |
|
187 copy_len = 14; |
|
188 |
|
189 memcpy(&c->counter, key + base_key_len, copy_len); |
|
190 memcpy(&c->offset, key + base_key_len, copy_len); |
|
191 |
|
192 debug_print(mod_aes_icm, |
|
193 "key: %s", octet_string_hex_string(key, base_key_len)); |
|
194 debug_print(mod_aes_icm, |
|
195 "offset: %s", v128_hex_string(&c->offset)); |
|
196 |
|
197 /* expand key */ |
|
198 status = aes_expand_encryption_key(key, base_key_len, &c->expanded_key); |
|
199 if (status) { |
|
200 v128_set_to_zero(&c->counter); |
|
201 v128_set_to_zero(&c->offset); |
|
202 return status; |
|
203 } |
|
204 |
|
205 /* indicate that the keystream_buffer is empty */ |
|
206 c->bytes_in_buffer = 0; |
|
207 |
|
208 return err_status_ok; |
|
209 } |
|
210 |
|
211 /* |
|
212 * aes_icm_set_octet(c, i) sets the counter of the context which it is |
|
213 * passed so that the next octet of keystream that will be generated |
|
214 * is the ith octet |
|
215 */ |
|
216 |
|
217 err_status_t |
|
218 aes_icm_set_octet(aes_icm_ctx_t *c, |
|
219 uint64_t octet_num) { |
|
220 |
|
221 #ifdef NO_64BIT_MATH |
|
222 int tail_num = low32(octet_num) & 0x0f; |
|
223 /* 64-bit right-shift 4 */ |
|
224 uint64_t block_num = make64(high32(octet_num) >> 4, |
|
225 ((high32(octet_num) & 0x0f)<<(32-4)) | |
|
226 (low32(octet_num) >> 4)); |
|
227 #else |
|
228 int tail_num = (int)(octet_num % 16); |
|
229 uint64_t block_num = octet_num / 16; |
|
230 #endif |
|
231 |
|
232 |
|
233 /* set counter value */ |
|
234 /* FIX - There's no way this is correct */ |
|
235 c->counter.v64[0] = c->offset.v64[0]; |
|
236 #ifdef NO_64BIT_MATH |
|
237 c->counter.v64[0] = make64(high32(c->offset.v64[0]) ^ high32(block_num), |
|
238 low32(c->offset.v64[0]) ^ low32(block_num)); |
|
239 #else |
|
240 c->counter.v64[0] = c->offset.v64[0] ^ block_num; |
|
241 #endif |
|
242 |
|
243 debug_print(mod_aes_icm, |
|
244 "set_octet: %s", v128_hex_string(&c->counter)); |
|
245 |
|
246 /* fill keystream buffer, if needed */ |
|
247 if (tail_num) { |
|
248 v128_copy(&c->keystream_buffer, &c->counter); |
|
249 aes_encrypt(&c->keystream_buffer, &c->expanded_key); |
|
250 c->bytes_in_buffer = sizeof(v128_t); |
|
251 |
|
252 debug_print(mod_aes_icm, "counter: %s", |
|
253 v128_hex_string(&c->counter)); |
|
254 debug_print(mod_aes_icm, "ciphertext: %s", |
|
255 v128_hex_string(&c->keystream_buffer)); |
|
256 |
|
257 /* indicate number of bytes in keystream_buffer */ |
|
258 c->bytes_in_buffer = sizeof(v128_t) - tail_num; |
|
259 |
|
260 } else { |
|
261 |
|
262 /* indicate that keystream_buffer is empty */ |
|
263 c->bytes_in_buffer = 0; |
|
264 } |
|
265 |
|
266 return err_status_ok; |
|
267 } |
|
268 |
|
269 /* |
|
270 * aes_icm_set_iv(c, iv) sets the counter value to the exor of iv with |
|
271 * the offset |
|
272 */ |
|
273 |
|
274 err_status_t |
|
275 aes_icm_set_iv(aes_icm_ctx_t *c, void *iv) { |
|
276 v128_t *nonce = (v128_t *) iv; |
|
277 |
|
278 debug_print(mod_aes_icm, |
|
279 "setting iv: %s", v128_hex_string(nonce)); |
|
280 |
|
281 v128_xor(&c->counter, &c->offset, nonce); |
|
282 |
|
283 debug_print(mod_aes_icm, |
|
284 "set_counter: %s", v128_hex_string(&c->counter)); |
|
285 |
|
286 /* indicate that the keystream_buffer is empty */ |
|
287 c->bytes_in_buffer = 0; |
|
288 |
|
289 return err_status_ok; |
|
290 } |
|
291 |
|
292 |
|
293 |
|
294 /* |
|
295 * aes_icm_advance(...) refills the keystream_buffer and |
|
296 * advances the block index of the sicm_context forward by one |
|
297 * |
|
298 * this is an internal, hopefully inlined function |
|
299 */ |
|
300 |
|
301 static inline void |
|
302 aes_icm_advance_ismacryp(aes_icm_ctx_t *c, uint8_t forIsmacryp) { |
|
303 /* fill buffer with new keystream */ |
|
304 v128_copy(&c->keystream_buffer, &c->counter); |
|
305 aes_encrypt(&c->keystream_buffer, &c->expanded_key); |
|
306 c->bytes_in_buffer = sizeof(v128_t); |
|
307 |
|
308 debug_print(mod_aes_icm, "counter: %s", |
|
309 v128_hex_string(&c->counter)); |
|
310 debug_print(mod_aes_icm, "ciphertext: %s", |
|
311 v128_hex_string(&c->keystream_buffer)); |
|
312 |
|
313 /* clock counter forward */ |
|
314 |
|
315 if (forIsmacryp) { |
|
316 uint32_t temp; |
|
317 //alex's clock counter forward |
|
318 temp = ntohl(c->counter.v32[3]); |
|
319 c->counter.v32[3] = htonl(++temp); |
|
320 } else { |
|
321 if (!++(c->counter.v8[15])) |
|
322 ++(c->counter.v8[14]); |
|
323 } |
|
324 } |
|
325 |
|
326 static inline void aes_icm_advance(aes_icm_ctx_t *c) { |
|
327 aes_icm_advance_ismacryp(c, 0); |
|
328 } |
|
329 |
|
330 |
|
331 /*e |
|
332 * icm_encrypt deals with the following cases: |
|
333 * |
|
334 * bytes_to_encr < bytes_in_buffer |
|
335 * - add keystream into data |
|
336 * |
|
337 * bytes_to_encr > bytes_in_buffer |
|
338 * - add keystream into data until keystream_buffer is depleted |
|
339 * - loop over blocks, filling keystream_buffer and then |
|
340 * adding keystream into data |
|
341 * - fill buffer then add in remaining (< 16) bytes of keystream |
|
342 */ |
|
343 |
|
344 err_status_t |
|
345 aes_icm_encrypt_ismacryp(aes_icm_ctx_t *c, |
|
346 unsigned char *buf, unsigned int *enc_len, |
|
347 int forIsmacryp) { |
|
348 unsigned int bytes_to_encr = *enc_len; |
|
349 unsigned int i; |
|
350 uint32_t *b; |
|
351 |
|
352 /* check that there's enough segment left but not for ismacryp*/ |
|
353 if (!forIsmacryp && (bytes_to_encr + htons(c->counter.v16[7])) > 0xffff) |
|
354 return err_status_terminus; |
|
355 |
|
356 debug_print(mod_aes_icm, "block index: %d", |
|
357 htons(c->counter.v16[7])); |
|
358 if (bytes_to_encr <= (unsigned int)c->bytes_in_buffer) { |
|
359 |
|
360 /* deal with odd case of small bytes_to_encr */ |
|
361 for (i = (sizeof(v128_t) - c->bytes_in_buffer); |
|
362 i < (sizeof(v128_t) - c->bytes_in_buffer + bytes_to_encr); i++) |
|
363 { |
|
364 *buf++ ^= c->keystream_buffer.v8[i]; |
|
365 } |
|
366 |
|
367 c->bytes_in_buffer -= bytes_to_encr; |
|
368 |
|
369 /* return now to avoid the main loop */ |
|
370 return err_status_ok; |
|
371 |
|
372 } else { |
|
373 |
|
374 /* encrypt bytes until the remaining data is 16-byte aligned */ |
|
375 for (i=(sizeof(v128_t) - c->bytes_in_buffer); i < sizeof(v128_t); i++) |
|
376 *buf++ ^= c->keystream_buffer.v8[i]; |
|
377 |
|
378 bytes_to_encr -= c->bytes_in_buffer; |
|
379 c->bytes_in_buffer = 0; |
|
380 |
|
381 } |
|
382 |
|
383 /* now loop over entire 16-byte blocks of keystream */ |
|
384 for (i=0; i < (bytes_to_encr/sizeof(v128_t)); i++) { |
|
385 |
|
386 /* fill buffer with new keystream */ |
|
387 aes_icm_advance_ismacryp(c, forIsmacryp); |
|
388 |
|
389 /* |
|
390 * add keystream into the data buffer (this would be a lot faster |
|
391 * if we could assume 32-bit alignment!) |
|
392 */ |
|
393 |
|
394 #if ALIGN_32 |
|
395 b = (uint32_t *)buf; |
|
396 *b++ ^= c->keystream_buffer.v32[0]; |
|
397 *b++ ^= c->keystream_buffer.v32[1]; |
|
398 *b++ ^= c->keystream_buffer.v32[2]; |
|
399 *b++ ^= c->keystream_buffer.v32[3]; |
|
400 buf = (uint8_t *)b; |
|
401 #else |
|
402 if ((((unsigned long) buf) & 0x03) != 0) { |
|
403 *buf++ ^= c->keystream_buffer.v8[0]; |
|
404 *buf++ ^= c->keystream_buffer.v8[1]; |
|
405 *buf++ ^= c->keystream_buffer.v8[2]; |
|
406 *buf++ ^= c->keystream_buffer.v8[3]; |
|
407 *buf++ ^= c->keystream_buffer.v8[4]; |
|
408 *buf++ ^= c->keystream_buffer.v8[5]; |
|
409 *buf++ ^= c->keystream_buffer.v8[6]; |
|
410 *buf++ ^= c->keystream_buffer.v8[7]; |
|
411 *buf++ ^= c->keystream_buffer.v8[8]; |
|
412 *buf++ ^= c->keystream_buffer.v8[9]; |
|
413 *buf++ ^= c->keystream_buffer.v8[10]; |
|
414 *buf++ ^= c->keystream_buffer.v8[11]; |
|
415 *buf++ ^= c->keystream_buffer.v8[12]; |
|
416 *buf++ ^= c->keystream_buffer.v8[13]; |
|
417 *buf++ ^= c->keystream_buffer.v8[14]; |
|
418 *buf++ ^= c->keystream_buffer.v8[15]; |
|
419 } else { |
|
420 b = (uint32_t *)buf; |
|
421 *b++ ^= c->keystream_buffer.v32[0]; |
|
422 *b++ ^= c->keystream_buffer.v32[1]; |
|
423 *b++ ^= c->keystream_buffer.v32[2]; |
|
424 *b++ ^= c->keystream_buffer.v32[3]; |
|
425 buf = (uint8_t *)b; |
|
426 } |
|
427 #endif /* #if ALIGN_32 */ |
|
428 |
|
429 } |
|
430 |
|
431 /* if there is a tail end of the data, process it */ |
|
432 if ((bytes_to_encr & 0xf) != 0) { |
|
433 |
|
434 /* fill buffer with new keystream */ |
|
435 aes_icm_advance_ismacryp(c, forIsmacryp); |
|
436 |
|
437 for (i=0; i < (bytes_to_encr & 0xf); i++) |
|
438 *buf++ ^= c->keystream_buffer.v8[i]; |
|
439 |
|
440 /* reset the keystream buffer size to right value */ |
|
441 c->bytes_in_buffer = sizeof(v128_t) - i; |
|
442 } else { |
|
443 |
|
444 /* no tail, so just reset the keystream buffer size to zero */ |
|
445 c->bytes_in_buffer = 0; |
|
446 |
|
447 } |
|
448 |
|
449 return err_status_ok; |
|
450 } |
|
451 |
|
452 err_status_t |
|
453 aes_icm_encrypt(aes_icm_ctx_t *c, unsigned char *buf, unsigned int *enc_len) { |
|
454 return aes_icm_encrypt_ismacryp(c, buf, enc_len, 0); |
|
455 } |
|
456 |
|
457 err_status_t |
|
458 aes_icm_output(aes_icm_ctx_t *c, uint8_t *buffer, int num_octets_to_output) { |
|
459 unsigned int len = num_octets_to_output; |
|
460 |
|
461 /* zeroize the buffer */ |
|
462 octet_string_set_to_zero(buffer, num_octets_to_output); |
|
463 |
|
464 /* exor keystream into buffer */ |
|
465 return aes_icm_encrypt(c, buffer, &len); |
|
466 } |
|
467 |
|
468 |
|
469 char |
|
470 aes_icm_description[] = "aes integer counter mode"; |
|
471 |
|
472 uint8_t aes_icm_test_case_0_key[30] = { |
|
473 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, |
|
474 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c, |
|
475 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
|
476 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd |
|
477 }; |
|
478 |
|
479 uint8_t aes_icm_test_case_0_nonce[16] = { |
|
480 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
481 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
|
482 }; |
|
483 |
|
484 uint8_t aes_icm_test_case_0_plaintext[32] = { |
|
485 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
486 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
487 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
488 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
489 }; |
|
490 |
|
491 uint8_t aes_icm_test_case_0_ciphertext[32] = { |
|
492 0xe0, 0x3e, 0xad, 0x09, 0x35, 0xc9, 0x5e, 0x80, |
|
493 0xe1, 0x66, 0xb1, 0x6d, 0xd9, 0x2b, 0x4e, 0xb4, |
|
494 0xd2, 0x35, 0x13, 0x16, 0x2b, 0x02, 0xd0, 0xf7, |
|
495 0x2a, 0x43, 0xa2, 0xfe, 0x4a, 0x5f, 0x97, 0xab |
|
496 }; |
|
497 |
|
498 cipher_test_case_t aes_icm_test_case_0 = { |
|
499 30, /* octets in key */ |
|
500 aes_icm_test_case_0_key, /* key */ |
|
501 aes_icm_test_case_0_nonce, /* packet index */ |
|
502 32, /* octets in plaintext */ |
|
503 aes_icm_test_case_0_plaintext, /* plaintext */ |
|
504 32, /* octets in ciphertext */ |
|
505 aes_icm_test_case_0_ciphertext, /* ciphertext */ |
|
506 NULL /* pointer to next testcase */ |
|
507 }; |
|
508 |
|
509 uint8_t aes_icm_test_case_1_key[46] = { |
|
510 0x57, 0xf8, 0x2f, 0xe3, 0x61, 0x3f, 0xd1, 0x70, |
|
511 0xa8, 0x5e, 0xc9, 0x3c, 0x40, 0xb1, 0xf0, 0x92, |
|
512 0x2e, 0xc4, 0xcb, 0x0d, 0xc0, 0x25, 0xb5, 0x82, |
|
513 0x72, 0x14, 0x7c, 0xc4, 0x38, 0x94, 0x4a, 0x98, |
|
514 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
|
515 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd |
|
516 }; |
|
517 |
|
518 uint8_t aes_icm_test_case_1_nonce[16] = { |
|
519 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
520 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
|
521 }; |
|
522 |
|
523 uint8_t aes_icm_test_case_1_plaintext[32] = { |
|
524 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
525 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
526 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
527 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
|
528 }; |
|
529 |
|
530 uint8_t aes_icm_test_case_1_ciphertext[32] = { |
|
531 0x92, 0xbd, 0xd2, 0x8a, 0x93, 0xc3, 0xf5, 0x25, |
|
532 0x11, 0xc6, 0x77, 0xd0, 0x8b, 0x55, 0x15, 0xa4, |
|
533 0x9d, 0xa7, 0x1b, 0x23, 0x78, 0xa8, 0x54, 0xf6, |
|
534 0x70, 0x50, 0x75, 0x6d, 0xed, 0x16, 0x5b, 0xac |
|
535 }; |
|
536 |
|
537 cipher_test_case_t aes_icm_test_case_1 = { |
|
538 46, /* octets in key */ |
|
539 aes_icm_test_case_1_key, /* key */ |
|
540 aes_icm_test_case_1_nonce, /* packet index */ |
|
541 32, /* octets in plaintext */ |
|
542 aes_icm_test_case_1_plaintext, /* plaintext */ |
|
543 32, /* octets in ciphertext */ |
|
544 aes_icm_test_case_1_ciphertext, /* ciphertext */ |
|
545 &aes_icm_test_case_0 /* pointer to next testcase */ |
|
546 }; |
|
547 |
|
548 |
|
549 |
|
550 /* |
|
551 * note: the encrypt function is identical to the decrypt function |
|
552 */ |
|
553 |
|
554 cipher_type_t aes_icm = { |
|
555 (cipher_alloc_func_t) aes_icm_alloc, |
|
556 (cipher_dealloc_func_t) aes_icm_dealloc, |
|
557 (cipher_init_func_t) aes_icm_context_init, |
|
558 (cipher_encrypt_func_t) aes_icm_encrypt, |
|
559 (cipher_decrypt_func_t) aes_icm_encrypt, |
|
560 (cipher_set_iv_func_t) aes_icm_set_iv, |
|
561 (char *) aes_icm_description, |
|
562 (int) 0, /* instance count */ |
|
563 (cipher_test_case_t *) &aes_icm_test_case_1, |
|
564 (debug_module_t *) &mod_aes_icm, |
|
565 (cipher_type_id_t) AES_ICM |
|
566 }; |
|
567 |