|
1 /* |
|
2 * cipher.c |
|
3 * |
|
4 * cipher meta-functions |
|
5 * |
|
6 * David A. McGrew |
|
7 * Cisco Systems, Inc. |
|
8 * |
|
9 */ |
|
10 |
|
11 /* |
|
12 * |
|
13 * Copyright (c) 2001-2006, Cisco Systems, Inc. |
|
14 * All rights reserved. |
|
15 * |
|
16 * Redistribution and use in source and binary forms, with or without |
|
17 * modification, are permitted provided that the following conditions |
|
18 * are met: |
|
19 * |
|
20 * Redistributions of source code must retain the above copyright |
|
21 * notice, this list of conditions and the following disclaimer. |
|
22 * |
|
23 * Redistributions in binary form must reproduce the above |
|
24 * copyright notice, this list of conditions and the following |
|
25 * disclaimer in the documentation and/or other materials provided |
|
26 * with the distribution. |
|
27 * |
|
28 * Neither the name of the Cisco Systems, Inc. nor the names of its |
|
29 * contributors may be used to endorse or promote products derived |
|
30 * from this software without specific prior written permission. |
|
31 * |
|
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
36 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
|
37 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
38 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
39 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
43 * OF THE POSSIBILITY OF SUCH DAMAGE. |
|
44 * |
|
45 */ |
|
46 |
|
47 #include "cipher.h" |
|
48 #include "rand_source.h" /* used in invertibiltiy tests */ |
|
49 #include "alloc.h" /* for crypto_alloc(), crypto_free() */ |
|
50 |
|
51 debug_module_t mod_cipher = { |
|
52 0, /* debugging is off by default */ |
|
53 "cipher" /* printable module name */ |
|
54 }; |
|
55 |
|
56 err_status_t |
|
57 cipher_output(cipher_t *c, uint8_t *buffer, int num_octets_to_output) { |
|
58 |
|
59 /* zeroize the buffer */ |
|
60 octet_string_set_to_zero(buffer, num_octets_to_output); |
|
61 |
|
62 /* exor keystream into buffer */ |
|
63 return cipher_encrypt(c, buffer, (unsigned int *) &num_octets_to_output); |
|
64 } |
|
65 |
|
66 /* some bookkeeping functions */ |
|
67 |
|
68 int |
|
69 cipher_get_key_length(const cipher_t *c) { |
|
70 return c->key_len; |
|
71 } |
|
72 |
|
73 /* |
|
74 * cipher_type_test(ct, test_data) tests a cipher of type ct against |
|
75 * test cases provided in a list test_data of values of key, salt, iv, |
|
76 * plaintext, and ciphertext that is known to be good |
|
77 */ |
|
78 |
|
79 #define SELF_TEST_BUF_OCTETS 128 |
|
80 #define NUM_RAND_TESTS 128 |
|
81 #define MAX_KEY_LEN 64 |
|
82 |
|
83 err_status_t |
|
84 cipher_type_test(const cipher_type_t *ct, const cipher_test_case_t *test_data) { |
|
85 const cipher_test_case_t *test_case = test_data; |
|
86 cipher_t *c; |
|
87 err_status_t status; |
|
88 uint8_t buffer[SELF_TEST_BUF_OCTETS]; |
|
89 uint8_t buffer2[SELF_TEST_BUF_OCTETS]; |
|
90 unsigned int len; |
|
91 int i, j, case_num = 0; |
|
92 |
|
93 debug_print(mod_cipher, "running self-test for cipher %s", |
|
94 ct->description); |
|
95 |
|
96 /* |
|
97 * check to make sure that we have at least one test case, and |
|
98 * return an error if we don't - we need to be paranoid here |
|
99 */ |
|
100 if (test_case == NULL) |
|
101 return err_status_cant_check; |
|
102 |
|
103 /* |
|
104 * loop over all test cases, perform known-answer tests of both the |
|
105 * encryption and decryption functions |
|
106 */ |
|
107 while (test_case != NULL) { |
|
108 |
|
109 /* allocate cipher */ |
|
110 status = cipher_type_alloc(ct, &c, test_case->key_length_octets); |
|
111 if (status) |
|
112 return status; |
|
113 |
|
114 /* |
|
115 * test the encrypt function |
|
116 */ |
|
117 debug_print(mod_cipher, "testing encryption", NULL); |
|
118 |
|
119 /* initialize cipher */ |
|
120 status = cipher_init(c, test_case->key, direction_encrypt); |
|
121 if (status) { |
|
122 cipher_dealloc(c); |
|
123 return status; |
|
124 } |
|
125 |
|
126 /* copy plaintext into test buffer */ |
|
127 if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) { |
|
128 cipher_dealloc(c); |
|
129 return err_status_bad_param; |
|
130 } |
|
131 for (i=0; i < test_case->plaintext_length_octets; i++) |
|
132 buffer[i] = test_case->plaintext[i]; |
|
133 |
|
134 debug_print(mod_cipher, "plaintext: %s", |
|
135 octet_string_hex_string(buffer, |
|
136 test_case->plaintext_length_octets)); |
|
137 |
|
138 /* set the initialization vector */ |
|
139 status = cipher_set_iv(c, test_case->idx); |
|
140 if (status) { |
|
141 cipher_dealloc(c); |
|
142 return status; |
|
143 } |
|
144 |
|
145 /* encrypt */ |
|
146 len = test_case->plaintext_length_octets; |
|
147 status = cipher_encrypt(c, buffer, &len); |
|
148 if (status) { |
|
149 cipher_dealloc(c); |
|
150 return status; |
|
151 } |
|
152 |
|
153 debug_print(mod_cipher, "ciphertext: %s", |
|
154 octet_string_hex_string(buffer, |
|
155 test_case->ciphertext_length_octets)); |
|
156 |
|
157 /* compare the resulting ciphertext with that in the test case */ |
|
158 if (len != (unsigned int)test_case->ciphertext_length_octets) |
|
159 return err_status_algo_fail; |
|
160 status = err_status_ok; |
|
161 for (i=0; i < test_case->ciphertext_length_octets; i++) |
|
162 if (buffer[i] != test_case->ciphertext[i]) { |
|
163 status = err_status_algo_fail; |
|
164 debug_print(mod_cipher, "test case %d failed", case_num); |
|
165 debug_print(mod_cipher, "(failure at byte %d)", i); |
|
166 break; |
|
167 } |
|
168 if (status) { |
|
169 |
|
170 debug_print(mod_cipher, "c computed: %s", |
|
171 octet_string_hex_string(buffer, |
|
172 2*test_case->plaintext_length_octets)); |
|
173 debug_print(mod_cipher, "c expected: %s", |
|
174 octet_string_hex_string(test_case->ciphertext, |
|
175 2*test_case->plaintext_length_octets)); |
|
176 |
|
177 cipher_dealloc(c); |
|
178 return err_status_algo_fail; |
|
179 } |
|
180 |
|
181 /* |
|
182 * test the decrypt function |
|
183 */ |
|
184 debug_print(mod_cipher, "testing decryption", NULL); |
|
185 |
|
186 /* re-initialize cipher for decryption */ |
|
187 status = cipher_init(c, test_case->key, direction_decrypt); |
|
188 if (status) { |
|
189 cipher_dealloc(c); |
|
190 return status; |
|
191 } |
|
192 |
|
193 /* copy ciphertext into test buffer */ |
|
194 if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) { |
|
195 cipher_dealloc(c); |
|
196 return err_status_bad_param; |
|
197 } |
|
198 for (i=0; i < test_case->ciphertext_length_octets; i++) |
|
199 buffer[i] = test_case->ciphertext[i]; |
|
200 |
|
201 debug_print(mod_cipher, "ciphertext: %s", |
|
202 octet_string_hex_string(buffer, |
|
203 test_case->plaintext_length_octets)); |
|
204 |
|
205 /* set the initialization vector */ |
|
206 status = cipher_set_iv(c, test_case->idx); |
|
207 if (status) { |
|
208 cipher_dealloc(c); |
|
209 return status; |
|
210 } |
|
211 |
|
212 /* decrypt */ |
|
213 len = test_case->ciphertext_length_octets; |
|
214 status = cipher_decrypt(c, buffer, &len); |
|
215 if (status) { |
|
216 cipher_dealloc(c); |
|
217 return status; |
|
218 } |
|
219 |
|
220 debug_print(mod_cipher, "plaintext: %s", |
|
221 octet_string_hex_string(buffer, |
|
222 test_case->plaintext_length_octets)); |
|
223 |
|
224 /* compare the resulting plaintext with that in the test case */ |
|
225 if (len != (unsigned int)test_case->plaintext_length_octets) |
|
226 return err_status_algo_fail; |
|
227 status = err_status_ok; |
|
228 for (i=0; i < test_case->plaintext_length_octets; i++) |
|
229 if (buffer[i] != test_case->plaintext[i]) { |
|
230 status = err_status_algo_fail; |
|
231 debug_print(mod_cipher, "test case %d failed", case_num); |
|
232 debug_print(mod_cipher, "(failure at byte %d)", i); |
|
233 } |
|
234 if (status) { |
|
235 |
|
236 debug_print(mod_cipher, "p computed: %s", |
|
237 octet_string_hex_string(buffer, |
|
238 2*test_case->plaintext_length_octets)); |
|
239 debug_print(mod_cipher, "p expected: %s", |
|
240 octet_string_hex_string(test_case->plaintext, |
|
241 2*test_case->plaintext_length_octets)); |
|
242 |
|
243 cipher_dealloc(c); |
|
244 return err_status_algo_fail; |
|
245 } |
|
246 |
|
247 /* deallocate the cipher */ |
|
248 status = cipher_dealloc(c); |
|
249 if (status) |
|
250 return status; |
|
251 |
|
252 /* |
|
253 * the cipher passed the test case, so move on to the next test |
|
254 * case in the list; if NULL, we'l proceed to the next test |
|
255 */ |
|
256 test_case = test_case->next_test_case; |
|
257 ++case_num; |
|
258 } |
|
259 |
|
260 /* now run some random invertibility tests */ |
|
261 |
|
262 /* allocate cipher, using paramaters from the first test case */ |
|
263 test_case = test_data; |
|
264 status = cipher_type_alloc(ct, &c, test_case->key_length_octets); |
|
265 if (status) |
|
266 return status; |
|
267 |
|
268 rand_source_init(); |
|
269 |
|
270 for (j=0; j < NUM_RAND_TESTS; j++) { |
|
271 unsigned length; |
|
272 int plaintext_len; |
|
273 uint8_t key[MAX_KEY_LEN]; |
|
274 uint8_t iv[MAX_KEY_LEN]; |
|
275 |
|
276 /* choose a length at random (leaving room for IV and padding) */ |
|
277 length = rand() % (SELF_TEST_BUF_OCTETS - 64); |
|
278 debug_print(mod_cipher, "random plaintext length %d\n", length); |
|
279 status = rand_source_get_octet_string(buffer, length); |
|
280 if (status) return status; |
|
281 |
|
282 debug_print(mod_cipher, "plaintext: %s", |
|
283 octet_string_hex_string(buffer, length)); |
|
284 |
|
285 /* copy plaintext into second buffer */ |
|
286 for (i=0; (unsigned int)i < length; i++) |
|
287 buffer2[i] = buffer[i]; |
|
288 |
|
289 /* choose a key at random */ |
|
290 if (test_case->key_length_octets > MAX_KEY_LEN) |
|
291 return err_status_cant_check; |
|
292 status = rand_source_get_octet_string(key, test_case->key_length_octets); |
|
293 if (status) return status; |
|
294 |
|
295 /* chose a random initialization vector */ |
|
296 status = rand_source_get_octet_string(iv, MAX_KEY_LEN); |
|
297 if (status) return status; |
|
298 |
|
299 /* initialize cipher */ |
|
300 status = cipher_init(c, key, direction_encrypt); |
|
301 if (status) { |
|
302 cipher_dealloc(c); |
|
303 return status; |
|
304 } |
|
305 |
|
306 /* set initialization vector */ |
|
307 status = cipher_set_iv(c, test_case->idx); |
|
308 if (status) { |
|
309 cipher_dealloc(c); |
|
310 return status; |
|
311 } |
|
312 |
|
313 /* encrypt buffer with cipher */ |
|
314 plaintext_len = length; |
|
315 status = cipher_encrypt(c, buffer, &length); |
|
316 if (status) { |
|
317 cipher_dealloc(c); |
|
318 return status; |
|
319 } |
|
320 debug_print(mod_cipher, "ciphertext: %s", |
|
321 octet_string_hex_string(buffer, length)); |
|
322 |
|
323 /* |
|
324 * re-initialize cipher for decryption, re-set the iv, then |
|
325 * decrypt the ciphertext |
|
326 */ |
|
327 status = cipher_init(c, key, direction_decrypt); |
|
328 if (status) { |
|
329 cipher_dealloc(c); |
|
330 return status; |
|
331 } |
|
332 status = cipher_set_iv(c, test_case->idx); |
|
333 if (status) { |
|
334 cipher_dealloc(c); |
|
335 return status; |
|
336 } |
|
337 status = cipher_decrypt(c, buffer, &length); |
|
338 if (status) { |
|
339 cipher_dealloc(c); |
|
340 return status; |
|
341 } |
|
342 |
|
343 debug_print(mod_cipher, "plaintext[2]: %s", |
|
344 octet_string_hex_string(buffer, length)); |
|
345 |
|
346 /* compare the resulting plaintext with the original one */ |
|
347 if (length != (unsigned)plaintext_len) |
|
348 return err_status_algo_fail; |
|
349 status = err_status_ok; |
|
350 for (i=0; i < plaintext_len; i++) |
|
351 if (buffer[i] != buffer2[i]) { |
|
352 status = err_status_algo_fail; |
|
353 debug_print(mod_cipher, "random test case %d failed", case_num); |
|
354 debug_print(mod_cipher, "(failure at byte %d)", i); |
|
355 } |
|
356 if (status) { |
|
357 cipher_dealloc(c); |
|
358 return err_status_algo_fail; |
|
359 } |
|
360 |
|
361 } |
|
362 |
|
363 status = cipher_dealloc(c); |
|
364 if (status) |
|
365 return status; |
|
366 |
|
367 return err_status_ok; |
|
368 } |
|
369 |
|
370 |
|
371 /* |
|
372 * cipher_type_self_test(ct) performs cipher_type_test on ct's internal |
|
373 * list of test data. |
|
374 */ |
|
375 |
|
376 err_status_t |
|
377 cipher_type_self_test(const cipher_type_t *ct) { |
|
378 return cipher_type_test(ct, ct->test_data); |
|
379 } |
|
380 |
|
381 /* |
|
382 * cipher_bits_per_second(c, l, t) computes (an estimate of) the |
|
383 * number of bits that a cipher implementation can encrypt in a second |
|
384 * |
|
385 * c is a cipher (which MUST be allocated and initialized already), l |
|
386 * is the length in octets of the test data to be encrypted, and t is |
|
387 * the number of trials |
|
388 * |
|
389 * if an error is encountered, the value 0 is returned |
|
390 */ |
|
391 |
|
392 uint64_t |
|
393 cipher_bits_per_second(cipher_t *c, int octets_in_buffer, int num_trials) { |
|
394 int i; |
|
395 v128_t nonce; |
|
396 clock_t timer; |
|
397 unsigned char *enc_buf; |
|
398 unsigned int len = octets_in_buffer; |
|
399 |
|
400 enc_buf = (unsigned char*) crypto_alloc(octets_in_buffer); |
|
401 if (enc_buf == NULL) |
|
402 return 0; /* indicate bad parameters by returning null */ |
|
403 |
|
404 /* time repeated trials */ |
|
405 v128_set_to_zero(&nonce); |
|
406 timer = clock(); |
|
407 for(i=0; i < num_trials; i++, nonce.v32[3] = i) { |
|
408 cipher_set_iv(c, &nonce); |
|
409 cipher_encrypt(c, enc_buf, &len); |
|
410 } |
|
411 timer = clock() - timer; |
|
412 |
|
413 crypto_free(enc_buf); |
|
414 |
|
415 if (timer == 0) { |
|
416 /* Too fast! */ |
|
417 return 0; |
|
418 } |
|
419 |
|
420 return (uint64_t)CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer; |
|
421 } |