|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 #include "ec2.h" |
|
6 #include "mplogic.h" |
|
7 #include "mp_gf2m.h" |
|
8 #include <stdlib.h> |
|
9 |
|
10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ |
|
11 mp_err |
|
12 ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py) |
|
13 { |
|
14 |
|
15 if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) { |
|
16 return MP_YES; |
|
17 } else { |
|
18 return MP_NO; |
|
19 } |
|
20 |
|
21 } |
|
22 |
|
23 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ |
|
24 mp_err |
|
25 ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py) |
|
26 { |
|
27 mp_zero(px); |
|
28 mp_zero(py); |
|
29 return MP_OKAY; |
|
30 } |
|
31 |
|
32 /* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P, |
|
33 * Q, and R can all be identical. Uses affine coordinates. */ |
|
34 mp_err |
|
35 ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, |
|
36 const mp_int *qy, mp_int *rx, mp_int *ry, |
|
37 const ECGroup *group) |
|
38 { |
|
39 mp_err res = MP_OKAY; |
|
40 mp_int lambda, tempx, tempy; |
|
41 |
|
42 MP_DIGITS(&lambda) = 0; |
|
43 MP_DIGITS(&tempx) = 0; |
|
44 MP_DIGITS(&tempy) = 0; |
|
45 MP_CHECKOK(mp_init(&lambda)); |
|
46 MP_CHECKOK(mp_init(&tempx)); |
|
47 MP_CHECKOK(mp_init(&tempy)); |
|
48 /* if P = inf, then R = Q */ |
|
49 if (ec_GF2m_pt_is_inf_aff(px, py) == 0) { |
|
50 MP_CHECKOK(mp_copy(qx, rx)); |
|
51 MP_CHECKOK(mp_copy(qy, ry)); |
|
52 res = MP_OKAY; |
|
53 goto CLEANUP; |
|
54 } |
|
55 /* if Q = inf, then R = P */ |
|
56 if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) { |
|
57 MP_CHECKOK(mp_copy(px, rx)); |
|
58 MP_CHECKOK(mp_copy(py, ry)); |
|
59 res = MP_OKAY; |
|
60 goto CLEANUP; |
|
61 } |
|
62 /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2 |
|
63 * + lambda + px + qx */ |
|
64 if (mp_cmp(px, qx) != 0) { |
|
65 MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth)); |
|
66 MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth)); |
|
67 MP_CHECKOK(group->meth-> |
|
68 field_div(&tempy, &tempx, &lambda, group->meth)); |
|
69 MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth)); |
|
70 MP_CHECKOK(group->meth-> |
|
71 field_add(&tempx, &lambda, &tempx, group->meth)); |
|
72 MP_CHECKOK(group->meth-> |
|
73 field_add(&tempx, &group->curvea, &tempx, group->meth)); |
|
74 MP_CHECKOK(group->meth-> |
|
75 field_add(&tempx, px, &tempx, group->meth)); |
|
76 MP_CHECKOK(group->meth-> |
|
77 field_add(&tempx, qx, &tempx, group->meth)); |
|
78 } else { |
|
79 /* if py != qy or qx = 0, then R = inf */ |
|
80 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) { |
|
81 mp_zero(rx); |
|
82 mp_zero(ry); |
|
83 res = MP_OKAY; |
|
84 goto CLEANUP; |
|
85 } |
|
86 /* lambda = qx + qy / qx */ |
|
87 MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth)); |
|
88 MP_CHECKOK(group->meth-> |
|
89 field_add(&lambda, qx, &lambda, group->meth)); |
|
90 /* tempx = a + lambda^2 + lambda */ |
|
91 MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth)); |
|
92 MP_CHECKOK(group->meth-> |
|
93 field_add(&tempx, &lambda, &tempx, group->meth)); |
|
94 MP_CHECKOK(group->meth-> |
|
95 field_add(&tempx, &group->curvea, &tempx, group->meth)); |
|
96 } |
|
97 /* ry = (qx + tempx) * lambda + tempx + qy */ |
|
98 MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth)); |
|
99 MP_CHECKOK(group->meth-> |
|
100 field_mul(&tempy, &lambda, &tempy, group->meth)); |
|
101 MP_CHECKOK(group->meth-> |
|
102 field_add(&tempy, &tempx, &tempy, group->meth)); |
|
103 MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth)); |
|
104 /* rx = tempx */ |
|
105 MP_CHECKOK(mp_copy(&tempx, rx)); |
|
106 |
|
107 CLEANUP: |
|
108 mp_clear(&lambda); |
|
109 mp_clear(&tempx); |
|
110 mp_clear(&tempy); |
|
111 return res; |
|
112 } |
|
113 |
|
114 /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be |
|
115 * identical. Uses affine coordinates. */ |
|
116 mp_err |
|
117 ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, |
|
118 const mp_int *qy, mp_int *rx, mp_int *ry, |
|
119 const ECGroup *group) |
|
120 { |
|
121 mp_err res = MP_OKAY; |
|
122 mp_int nqy; |
|
123 |
|
124 MP_DIGITS(&nqy) = 0; |
|
125 MP_CHECKOK(mp_init(&nqy)); |
|
126 /* nqy = qx+qy */ |
|
127 MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth)); |
|
128 MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group)); |
|
129 CLEANUP: |
|
130 mp_clear(&nqy); |
|
131 return res; |
|
132 } |
|
133 |
|
134 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses |
|
135 * affine coordinates. */ |
|
136 mp_err |
|
137 ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, |
|
138 mp_int *ry, const ECGroup *group) |
|
139 { |
|
140 return group->point_add(px, py, px, py, rx, ry, group); |
|
141 } |
|
142 |
|
143 /* by default, this routine is unused and thus doesn't need to be compiled */ |
|
144 #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF |
|
145 /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and |
|
146 * R can be identical. Uses affine coordinates. */ |
|
147 mp_err |
|
148 ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, |
|
149 mp_int *rx, mp_int *ry, const ECGroup *group) |
|
150 { |
|
151 mp_err res = MP_OKAY; |
|
152 mp_int k, k3, qx, qy, sx, sy; |
|
153 int b1, b3, i, l; |
|
154 |
|
155 MP_DIGITS(&k) = 0; |
|
156 MP_DIGITS(&k3) = 0; |
|
157 MP_DIGITS(&qx) = 0; |
|
158 MP_DIGITS(&qy) = 0; |
|
159 MP_DIGITS(&sx) = 0; |
|
160 MP_DIGITS(&sy) = 0; |
|
161 MP_CHECKOK(mp_init(&k)); |
|
162 MP_CHECKOK(mp_init(&k3)); |
|
163 MP_CHECKOK(mp_init(&qx)); |
|
164 MP_CHECKOK(mp_init(&qy)); |
|
165 MP_CHECKOK(mp_init(&sx)); |
|
166 MP_CHECKOK(mp_init(&sy)); |
|
167 |
|
168 /* if n = 0 then r = inf */ |
|
169 if (mp_cmp_z(n) == 0) { |
|
170 mp_zero(rx); |
|
171 mp_zero(ry); |
|
172 res = MP_OKAY; |
|
173 goto CLEANUP; |
|
174 } |
|
175 /* Q = P, k = n */ |
|
176 MP_CHECKOK(mp_copy(px, &qx)); |
|
177 MP_CHECKOK(mp_copy(py, &qy)); |
|
178 MP_CHECKOK(mp_copy(n, &k)); |
|
179 /* if n < 0 then Q = -Q, k = -k */ |
|
180 if (mp_cmp_z(n) < 0) { |
|
181 MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth)); |
|
182 MP_CHECKOK(mp_neg(&k, &k)); |
|
183 } |
|
184 #ifdef ECL_DEBUG /* basic double and add method */ |
|
185 l = mpl_significant_bits(&k) - 1; |
|
186 MP_CHECKOK(mp_copy(&qx, &sx)); |
|
187 MP_CHECKOK(mp_copy(&qy, &sy)); |
|
188 for (i = l - 1; i >= 0; i--) { |
|
189 /* S = 2S */ |
|
190 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); |
|
191 /* if k_i = 1, then S = S + Q */ |
|
192 if (mpl_get_bit(&k, i) != 0) { |
|
193 MP_CHECKOK(group-> |
|
194 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); |
|
195 } |
|
196 } |
|
197 #else /* double and add/subtract method from |
|
198 * standard */ |
|
199 /* k3 = 3 * k */ |
|
200 MP_CHECKOK(mp_set_int(&k3, 3)); |
|
201 MP_CHECKOK(mp_mul(&k, &k3, &k3)); |
|
202 /* S = Q */ |
|
203 MP_CHECKOK(mp_copy(&qx, &sx)); |
|
204 MP_CHECKOK(mp_copy(&qy, &sy)); |
|
205 /* l = index of high order bit in binary representation of 3*k */ |
|
206 l = mpl_significant_bits(&k3) - 1; |
|
207 /* for i = l-1 downto 1 */ |
|
208 for (i = l - 1; i >= 1; i--) { |
|
209 /* S = 2S */ |
|
210 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); |
|
211 b3 = MP_GET_BIT(&k3, i); |
|
212 b1 = MP_GET_BIT(&k, i); |
|
213 /* if k3_i = 1 and k_i = 0, then S = S + Q */ |
|
214 if ((b3 == 1) && (b1 == 0)) { |
|
215 MP_CHECKOK(group-> |
|
216 point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); |
|
217 /* if k3_i = 0 and k_i = 1, then S = S - Q */ |
|
218 } else if ((b3 == 0) && (b1 == 1)) { |
|
219 MP_CHECKOK(group-> |
|
220 point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group)); |
|
221 } |
|
222 } |
|
223 #endif |
|
224 /* output S */ |
|
225 MP_CHECKOK(mp_copy(&sx, rx)); |
|
226 MP_CHECKOK(mp_copy(&sy, ry)); |
|
227 |
|
228 CLEANUP: |
|
229 mp_clear(&k); |
|
230 mp_clear(&k3); |
|
231 mp_clear(&qx); |
|
232 mp_clear(&qy); |
|
233 mp_clear(&sx); |
|
234 mp_clear(&sy); |
|
235 return res; |
|
236 } |
|
237 #endif |
|
238 |
|
239 /* Validates a point on a GF2m curve. */ |
|
240 mp_err |
|
241 ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group) |
|
242 { |
|
243 mp_err res = MP_NO; |
|
244 mp_int accl, accr, tmp, pxt, pyt; |
|
245 |
|
246 MP_DIGITS(&accl) = 0; |
|
247 MP_DIGITS(&accr) = 0; |
|
248 MP_DIGITS(&tmp) = 0; |
|
249 MP_DIGITS(&pxt) = 0; |
|
250 MP_DIGITS(&pyt) = 0; |
|
251 MP_CHECKOK(mp_init(&accl)); |
|
252 MP_CHECKOK(mp_init(&accr)); |
|
253 MP_CHECKOK(mp_init(&tmp)); |
|
254 MP_CHECKOK(mp_init(&pxt)); |
|
255 MP_CHECKOK(mp_init(&pyt)); |
|
256 |
|
257 /* 1: Verify that publicValue is not the point at infinity */ |
|
258 if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) { |
|
259 res = MP_NO; |
|
260 goto CLEANUP; |
|
261 } |
|
262 /* 2: Verify that the coordinates of publicValue are elements |
|
263 * of the field. |
|
264 */ |
|
265 if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) || |
|
266 (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) { |
|
267 res = MP_NO; |
|
268 goto CLEANUP; |
|
269 } |
|
270 /* 3: Verify that publicValue is on the curve. */ |
|
271 if (group->meth->field_enc) { |
|
272 group->meth->field_enc(px, &pxt, group->meth); |
|
273 group->meth->field_enc(py, &pyt, group->meth); |
|
274 } else { |
|
275 mp_copy(px, &pxt); |
|
276 mp_copy(py, &pyt); |
|
277 } |
|
278 /* left-hand side: y^2 + x*y */ |
|
279 MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) ); |
|
280 MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) ); |
|
281 MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) ); |
|
282 /* right-hand side: x^3 + a*x^2 + b */ |
|
283 MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) ); |
|
284 MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) ); |
|
285 MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) ); |
|
286 MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) ); |
|
287 MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) ); |
|
288 /* check LHS - RHS == 0 */ |
|
289 MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) ); |
|
290 if (mp_cmp_z(&accr) != 0) { |
|
291 res = MP_NO; |
|
292 goto CLEANUP; |
|
293 } |
|
294 /* 4: Verify that the order of the curve times the publicValue |
|
295 * is the point at infinity. |
|
296 */ |
|
297 MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) ); |
|
298 if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) { |
|
299 res = MP_NO; |
|
300 goto CLEANUP; |
|
301 } |
|
302 |
|
303 res = MP_YES; |
|
304 |
|
305 CLEANUP: |
|
306 mp_clear(&accl); |
|
307 mp_clear(&accr); |
|
308 mp_clear(&tmp); |
|
309 mp_clear(&pxt); |
|
310 mp_clear(&pyt); |
|
311 return res; |
|
312 } |