security/nss/lib/freebl/mpi/hpma512.s

changeset 0
6474c204b198
equal deleted inserted replaced
-1:000000000000 0:c19687e53b74
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4 /*
5 *
6 * This PA-RISC 2.0 function computes the product of two unsigned integers,
7 * and adds the result to a previously computed integer. The multiplicand
8 * is a 512-bit (64-byte, eight doubleword) unsigned integer, stored in
9 * memory in little-double-wordian order. The multiplier is an unsigned
10 * 64-bit integer. The previously computed integer to which the product is
11 * added is located in the result ("res") area, and is assumed to be a
12 * 576-bit (72-byte, nine doubleword) unsigned integer, stored in memory
13 * in little-double-wordian order. This value normally will be the result
14 * of a previously computed nine doubleword result. It is not necessary
15 * to pad the multiplicand with an additional 64-bit zero doubleword.
16 *
17 * Multiplicand, multiplier, and addend ideally should be aligned at
18 * 16-byte boundaries for best performance. The code will function
19 * correctly for alignment at eight-byte boundaries which are not 16-byte
20 * boundaries, but the execution may be slightly slower due to even/odd
21 * bank conflicts on PA-RISC 8000 processors.
22 *
23 * This function is designed to accept the same calling sequence as Bill
24 * Ackerman's "maxpy_little" function. The carry from the ninth doubleword
25 * of the result is written to the tenth word of the result, as is done by
26 * Bill Ackerman's function. The final carry also is returned as an
27 * integer, which may be ignored. The function prototype may be either
28 * of the following:
29 *
30 * void multacc512( int l, chunk* m, const chunk* a, chunk* res );
31 * or
32 * int multacc512( int l, chunk* m, const chunk* a, chunk* res );
33 *
34 * where: "l" originally denoted vector lengths. This parameter is
35 * ignored. This function always assumes a multiplicand length of
36 * 512 bits (eight doublewords), and addend and result lengths of
37 * 576 bits (nine doublewords).
38 *
39 * "m" is a pointer to the doubleword multiplier, ideally aligned
40 * on a 16-byte boundary.
41 *
42 * "a" is a pointer to the eight-doubleword multiplicand, stored
43 * in little-double-wordian order, and ideally aligned on a 16-byte
44 * boundary.
45 *
46 * "res" is a pointer to the nine doubleword addend, and to the
47 * nine-doubleword product computed by this function. The result
48 * also is stored in little-double-wordian order, and ideally is
49 * aligned on a 16-byte boundary. It is expected that the alignment
50 * of the "res" area may alternate between even/odd doubleword
51 * boundaries for successive calls for 512-bit x 512-bit
52 * multiplications.
53 *
54 * The code for this function has been scheduled to use the parallelism
55 * of the PA-RISC 8000 series microprocessors as well as the author was
56 * able. Comments and/or suggestions for improvement are welcomed.
57 *
58 * The code is "64-bit safe". This means it may be called in either
59 * the 32ILP context or the 64LP context. All 64-bits of registers are
60 * saved and restored.
61 *
62 * This code is self-contained. It requires no other header files in order
63 * to compile and to be linkable on a PA-RISC 2.0 machine. Symbolic
64 * definitions for registers and stack offsets are included within this
65 * one source file.
66 *
67 * This is a leaf routine. As such, minimal use is made of the stack area.
68 * Of the 192 bytes allocated, 64 bytes are used for saving/restoring eight
69 * general registers, and 128 bytes are used to move intermediate products
70 * from the floating-point registers to the general registers. Stack
71 * protocols assure proper alignment of these areas.
72 *
73 */
74
75
76 /* ====================================================================*/
77 /* symbolic definitions for PA-RISC registers */
78 /* in the MIPS style, avoids lots of case shifts */
79 /* assigments (except t4) preserve register number parity */
80 /* ====================================================================*/
81
82 #define zero %r0 /* permanent zero */
83 #define t5 %r1 /* temp register, altered by addil */
84
85 #define rp %r2 /* return pointer */
86
87 #define s1 %r3 /* callee saves register*/
88 #define s0 %r4 /* callee saves register*/
89 #define s3 %r5 /* callee saves register*/
90 #define s2 %r6 /* callee saves register*/
91 #define s5 %r7 /* callee saves register*/
92 #define s4 %r8 /* callee saves register*/
93 #define s7 %r9 /* callee saves register*/
94 #define s6 %r10 /* callee saves register*/
95
96 #define t1 %r19 /* caller saves register*/
97 #define t0 %r20 /* caller saves register*/
98 #define t3 %r21 /* caller saves register*/
99 #define t2 %r22 /* caller saves register*/
100
101 #define a3 %r23 /* fourth argument register, high word */
102 #define a2 %r24 /* third argument register, low word*/
103 #define a1 %r25 /* second argument register, high word*/
104 #define a0 %r26 /* first argument register, low word*/
105
106 #define v0 %r28 /* high order return value*/
107 #define v1 %r29 /* low order return value*/
108
109 #define sp %r30 /* stack pointer*/
110 #define t4 %r31 /* temporary register */
111
112 #define fa0 %fr4 /* first argument register*/
113 #define fa1 %fr5 /* second argument register*/
114 #define fa2 %fr6 /* third argument register*/
115 #define fa3 %fr7 /* fourth argument register*/
116
117 #define fa0r %fr4R /* first argument register*/
118 #define fa1r %fr5R /* second argument register*/
119 #define fa2r %fr6R /* third argument register*/
120 #define fa3r %fr7R /* fourth argument register*/
121
122 #define ft0 %fr8 /* caller saves register*/
123 #define ft1 %fr9 /* caller saves register*/
124 #define ft2 %fr10 /* caller saves register*/
125 #define ft3 %fr11 /* caller saves register*/
126
127 #define ft0r %fr8R /* caller saves register*/
128 #define ft1r %fr9R /* caller saves register*/
129 #define ft2r %fr10R /* caller saves register*/
130 #define ft3r %fr11R /* caller saves register*/
131
132 #define ft4 %fr22 /* caller saves register*/
133 #define ft5 %fr23 /* caller saves register*/
134 #define ft6 %fr24 /* caller saves register*/
135 #define ft7 %fr25 /* caller saves register*/
136 #define ft8 %fr26 /* caller saves register*/
137 #define ft9 %fr27 /* caller saves register*/
138 #define ft10 %fr28 /* caller saves register*/
139 #define ft11 %fr29 /* caller saves register*/
140 #define ft12 %fr30 /* caller saves register*/
141 #define ft13 %fr31 /* caller saves register*/
142
143 #define ft4r %fr22R /* caller saves register*/
144 #define ft5r %fr23R /* caller saves register*/
145 #define ft6r %fr24R /* caller saves register*/
146 #define ft7r %fr25R /* caller saves register*/
147 #define ft8r %fr26R /* caller saves register*/
148 #define ft9r %fr27R /* caller saves register*/
149 #define ft10r %fr28R /* caller saves register*/
150 #define ft11r %fr29R /* caller saves register*/
151 #define ft12r %fr30R /* caller saves register*/
152 #define ft13r %fr31R /* caller saves register*/
153
154
155
156 /* ================================================================== */
157 /* functional definitions for PA-RISC registers */
158 /* ================================================================== */
159
160 /* general registers */
161
162 #define T1 a0 /* temp, (length parameter ignored) */
163
164 #define pM a1 /* -> 64-bit multiplier */
165 #define T2 a1 /* temp, (after fetching multiplier) */
166
167 #define pA a2 /* -> multiplicand vector (8 64-bit words) */
168 #define T3 a2 /* temp, (after fetching multiplicand) */
169
170 #define pR a3 /* -> addend vector (8 64-bit doublewords,
171 result vector (9 64-bit words) */
172
173 #define S0 s0 /* callee saves summand registers */
174 #define S1 s1
175 #define S2 s2
176 #define S3 s3
177 #define S4 s4
178 #define S5 s5
179 #define S6 s6
180 #define S7 s7
181
182 #define S8 v0 /* caller saves summand registers */
183 #define S9 v1
184 #define S10 t0
185 #define S11 t1
186 #define S12 t2
187 #define S13 t3
188 #define S14 t4
189 #define S15 t5
190
191
192
193 /* floating-point registers */
194
195 #define M fa0 /* multiplier double word */
196 #define MR fa0r /* low order half of multiplier double word */
197 #define ML fa0 /* high order half of multiplier double word */
198
199 #define A0 fa2 /* multiplicand double word 0 */
200 #define A0R fa2r /* low order half of multiplicand double word */
201 #define A0L fa2 /* high order half of multiplicand double word */
202
203 #define A1 fa3 /* multiplicand double word 1 */
204 #define A1R fa3r /* low order half of multiplicand double word */
205 #define A1L fa3 /* high order half of multiplicand double word */
206
207 #define A2 ft0 /* multiplicand double word 2 */
208 #define A2R ft0r /* low order half of multiplicand double word */
209 #define A2L ft0 /* high order half of multiplicand double word */
210
211 #define A3 ft1 /* multiplicand double word 3 */
212 #define A3R ft1r /* low order half of multiplicand double word */
213 #define A3L ft1 /* high order half of multiplicand double word */
214
215 #define A4 ft2 /* multiplicand double word 4 */
216 #define A4R ft2r /* low order half of multiplicand double word */
217 #define A4L ft2 /* high order half of multiplicand double word */
218
219 #define A5 ft3 /* multiplicand double word 5 */
220 #define A5R ft3r /* low order half of multiplicand double word */
221 #define A5L ft3 /* high order half of multiplicand double word */
222
223 #define A6 ft4 /* multiplicand double word 6 */
224 #define A6R ft4r /* low order half of multiplicand double word */
225 #define A6L ft4 /* high order half of multiplicand double word */
226
227 #define A7 ft5 /* multiplicand double word 7 */
228 #define A7R ft5r /* low order half of multiplicand double word */
229 #define A7L ft5 /* high order half of multiplicand double word */
230
231 #define P0 ft6 /* product word 0 */
232 #define P1 ft7 /* product word 0 */
233 #define P2 ft8 /* product word 0 */
234 #define P3 ft9 /* product word 0 */
235 #define P4 ft10 /* product word 0 */
236 #define P5 ft11 /* product word 0 */
237 #define P6 ft12 /* product word 0 */
238 #define P7 ft13 /* product word 0 */
239
240
241
242
243 /* ====================================================================== */
244 /* symbolic definitions for HP-UX stack offsets */
245 /* symbolic definitions for memory NOPs */
246 /* ====================================================================== */
247
248 #define ST_SZ 192 /* stack area total size */
249
250 #define SV0 -192(sp) /* general register save area */
251 #define SV1 -184(sp)
252 #define SV2 -176(sp)
253 #define SV3 -168(sp)
254 #define SV4 -160(sp)
255 #define SV5 -152(sp)
256 #define SV6 -144(sp)
257 #define SV7 -136(sp)
258
259 #define XF0 -128(sp) /* data transfer area */
260 #define XF1 -120(sp) /* for floating-pt to integer regs */
261 #define XF2 -112(sp)
262 #define XF3 -104(sp)
263 #define XF4 -96(sp)
264 #define XF5 -88(sp)
265 #define XF6 -80(sp)
266 #define XF7 -72(sp)
267 #define XF8 -64(sp)
268 #define XF9 -56(sp)
269 #define XF10 -48(sp)
270 #define XF11 -40(sp)
271 #define XF12 -32(sp)
272 #define XF13 -24(sp)
273 #define XF14 -16(sp)
274 #define XF15 -8(sp)
275
276 #define mnop proberi (sp),3,zero /* memory NOP */
277
278
279
280
281 /* ====================================================================== */
282 /* assembler formalities */
283 /* ====================================================================== */
284
285 #ifdef __LP64__
286 .level 2.0W
287 #else
288 .level 2.0
289 #endif
290 .space $TEXT$
291 .subspa $CODE$
292 .align 16
293
294 /* ====================================================================== */
295 /* here to compute 64-bit x 512-bit product + 512-bit addend */
296 /* ====================================================================== */
297
298 multacc512
299 .PROC
300 .CALLINFO
301 .ENTRY
302 fldd 0(pM),M ; multiplier double word
303 ldo ST_SZ(sp),sp ; push stack
304
305 fldd 0(pA),A0 ; multiplicand double word 0
306 std S1,SV1 ; save s1
307
308 fldd 16(pA),A2 ; multiplicand double word 2
309 std S3,SV3 ; save s3
310
311 fldd 32(pA),A4 ; multiplicand double word 4
312 std S5,SV5 ; save s5
313
314 fldd 48(pA),A6 ; multiplicand double word 6
315 std S7,SV7 ; save s7
316
317
318 std S0,SV0 ; save s0
319 fldd 8(pA),A1 ; multiplicand double word 1
320 xmpyu MR,A0L,P0 ; A0 cross 32-bit word products
321 xmpyu ML,A0R,P2
322
323 std S2,SV2 ; save s2
324 fldd 24(pA),A3 ; multiplicand double word 3
325 xmpyu MR,A2L,P4 ; A2 cross 32-bit word products
326 xmpyu ML,A2R,P6
327
328 std S4,SV4 ; save s4
329 fldd 40(pA),A5 ; multiplicand double word 5
330
331 std S6,SV6 ; save s6
332 fldd 56(pA),A7 ; multiplicand double word 7
333
334
335 fstd P0,XF0 ; MR * A0L
336 xmpyu MR,A0R,P0 ; A0 right 32-bit word product
337 xmpyu MR,A1L,P1 ; A1 cross 32-bit word product
338
339 fstd P2,XF2 ; ML * A0R
340 xmpyu ML,A0L,P2 ; A0 left 32-bit word product
341 xmpyu ML,A1R,P3 ; A1 cross 32-bit word product
342
343 fstd P4,XF4 ; MR * A2L
344 xmpyu MR,A2R,P4 ; A2 right 32-bit word product
345 xmpyu MR,A3L,P5 ; A3 cross 32-bit word product
346
347 fstd P6,XF6 ; ML * A2R
348 xmpyu ML,A2L,P6 ; A2 parallel 32-bit word product
349 xmpyu ML,A3R,P7 ; A3 cross 32-bit word product
350
351
352 ldd XF0,S0 ; MR * A0L
353 fstd P1,XF1 ; MR * A1L
354
355 ldd XF2,S2 ; ML * A0R
356 fstd P3,XF3 ; ML * A1R
357
358 ldd XF4,S4 ; MR * A2L
359 fstd P5,XF5 ; MR * A3L
360 xmpyu MR,A1R,P1 ; A1 parallel 32-bit word products
361 xmpyu ML,A1L,P3
362
363 ldd XF6,S6 ; ML * A2R
364 fstd P7,XF7 ; ML * A3R
365 xmpyu MR,A3R,P5 ; A3 parallel 32-bit word products
366 xmpyu ML,A3L,P7
367
368
369 fstd P0,XF0 ; MR * A0R
370 ldd XF1,S1 ; MR * A1L
371 nop
372 add S0,S2,T1 ; A0 cross product sum
373
374 fstd P2,XF2 ; ML * A0L
375 ldd XF3,S3 ; ML * A1R
376 add,dc zero,zero,S0 ; A0 cross product sum carry
377 depd,z T1,31,32,S2 ; A0 cross product sum << 32
378
379 fstd P4,XF4 ; MR * A2R
380 ldd XF5,S5 ; MR * A3L
381 shrpd S0,T1,32,S0 ; A0 carry | cross product sum >> 32
382 add S4,S6,T3 ; A2 cross product sum
383
384 fstd P6,XF6 ; ML * A2L
385 ldd XF7,S7 ; ML * A3R
386 add,dc zero,zero,S4 ; A2 cross product sum carry
387 depd,z T3,31,32,S6 ; A2 cross product sum << 32
388
389
390 ldd XF0,S8 ; MR * A0R
391 fstd P1,XF1 ; MR * A1R
392 xmpyu MR,A4L,P0 ; A4 cross 32-bit word product
393 xmpyu MR,A5L,P1 ; A5 cross 32-bit word product
394
395 ldd XF2,S10 ; ML * A0L
396 fstd P3,XF3 ; ML * A1L
397 xmpyu ML,A4R,P2 ; A4 cross 32-bit word product
398 xmpyu ML,A5R,P3 ; A5 cross 32-bit word product
399
400 ldd XF4,S12 ; MR * A2R
401 fstd P5,XF5 ; MR * A3L
402 xmpyu MR,A6L,P4 ; A6 cross 32-bit word product
403 xmpyu MR,A7L,P5 ; A7 cross 32-bit word product
404
405 ldd XF6,S14 ; ML * A2L
406 fstd P7,XF7 ; ML * A3L
407 xmpyu ML,A6R,P6 ; A6 cross 32-bit word product
408 xmpyu ML,A7R,P7 ; A7 cross 32-bit word product
409
410
411 fstd P0,XF0 ; MR * A4L
412 ldd XF1,S9 ; MR * A1R
413 shrpd S4,T3,32,S4 ; A2 carry | cross product sum >> 32
414 add S1,S3,T1 ; A1 cross product sum
415
416 fstd P2,XF2 ; ML * A4R
417 ldd XF3,S11 ; ML * A1L
418 add,dc zero,zero,S1 ; A1 cross product sum carry
419 depd,z T1,31,32,S3 ; A1 cross product sum << 32
420
421 fstd P4,XF4 ; MR * A6L
422 ldd XF5,S13 ; MR * A3R
423 shrpd S1,T1,32,S1 ; A1 carry | cross product sum >> 32
424 add S5,S7,T3 ; A3 cross product sum
425
426 fstd P6,XF6 ; ML * A6R
427 ldd XF7,S15 ; ML * A3L
428 add,dc zero,zero,S5 ; A3 cross product sum carry
429 depd,z T3,31,32,S7 ; A3 cross product sum << 32
430
431
432 shrpd S5,T3,32,S5 ; A3 carry | cross product sum >> 32
433 add S2,S8,S8 ; M * A0 right doubleword, P0 doubleword
434
435 add,dc S0,S10,S10 ; M * A0 left doubleword
436 add S3,S9,S9 ; M * A1 right doubleword
437
438 add,dc S1,S11,S11 ; M * A1 left doubleword
439 add S6,S12,S12 ; M * A2 right doubleword
440
441
442 ldd 24(pR),S3 ; Addend word 3
443 fstd P1,XF1 ; MR * A5L
444 add,dc S4,S14,S14 ; M * A2 left doubleword
445 xmpyu MR,A5R,P1 ; A5 right 32-bit word product
446
447 ldd 8(pR),S1 ; Addend word 1
448 fstd P3,XF3 ; ML * A5R
449 add S7,S13,S13 ; M * A3 right doubleword
450 xmpyu ML,A5L,P3 ; A5 left 32-bit word product
451
452 ldd 0(pR),S7 ; Addend word 0
453 fstd P5,XF5 ; MR * A7L
454 add,dc S5,S15,S15 ; M * A3 left doubleword
455 xmpyu MR,A7R,P5 ; A7 right 32-bit word product
456
457 ldd 16(pR),S5 ; Addend word 2
458 fstd P7,XF7 ; ML * A7R
459 add S10,S9,S9 ; P1 doubleword
460 xmpyu ML,A7L,P7 ; A7 left 32-bit word products
461
462
463 ldd XF0,S0 ; MR * A4L
464 fstd P1,XF9 ; MR * A5R
465 add,dc S11,S12,S12 ; P2 doubleword
466 xmpyu MR,A4R,P0 ; A4 right 32-bit word product
467
468 ldd XF2,S2 ; ML * A4R
469 fstd P3,XF11 ; ML * A5L
470 add,dc S14,S13,S13 ; P3 doubleword
471 xmpyu ML,A4L,P2 ; A4 left 32-bit word product
472
473 ldd XF6,S6 ; ML * A6R
474 fstd P5,XF13 ; MR * A7R
475 add,dc zero,S15,T2 ; P4 partial doubleword
476 xmpyu MR,A6R,P4 ; A6 right 32-bit word product
477
478 ldd XF4,S4 ; MR * A6L
479 fstd P7,XF15 ; ML * A7L
480 add S7,S8,S8 ; R0 + P0, new R0 doubleword
481 xmpyu ML,A6L,P6 ; A6 left 32-bit word product
482
483
484 fstd P0,XF0 ; MR * A4R
485 ldd XF7,S7 ; ML * A7R
486 add,dc S1,S9,S9 ; c + R1 + P1, new R1 doubleword
487
488 fstd P2,XF2 ; ML * A4L
489 ldd XF1,S1 ; MR * A5L
490 add,dc S5,S12,S12 ; c + R2 + P2, new R2 doubleword
491
492 fstd P4,XF4 ; MR * A6R
493 ldd XF5,S5 ; MR * A7L
494 add,dc S3,S13,S13 ; c + R3 + P3, new R3 doubleword
495
496 fstd P6,XF6 ; ML * A6L
497 ldd XF3,S3 ; ML * A5R
498 add,dc zero,T2,T2 ; c + partial P4
499 add S0,S2,T1 ; A4 cross product sum
500
501
502 std S8,0(pR) ; save R0
503 add,dc zero,zero,S0 ; A4 cross product sum carry
504 depd,z T1,31,32,S2 ; A4 cross product sum << 32
505
506 std S9,8(pR) ; save R1
507 shrpd S0,T1,32,S0 ; A4 carry | cross product sum >> 32
508 add S4,S6,T3 ; A6 cross product sum
509
510 std S12,16(pR) ; save R2
511 add,dc zero,zero,S4 ; A6 cross product sum carry
512 depd,z T3,31,32,S6 ; A6 cross product sum << 32
513
514
515 std S13,24(pR) ; save R3
516 shrpd S4,T3,32,S4 ; A6 carry | cross product sum >> 32
517 add S1,S3,T1 ; A5 cross product sum
518
519 ldd XF0,S8 ; MR * A4R
520 add,dc zero,zero,S1 ; A5 cross product sum carry
521 depd,z T1,31,32,S3 ; A5 cross product sum << 32
522
523 ldd XF2,S10 ; ML * A4L
524 ldd XF9,S9 ; MR * A5R
525 shrpd S1,T1,32,S1 ; A5 carry | cross product sum >> 32
526 add S5,S7,T3 ; A7 cross product sum
527
528 ldd XF4,S12 ; MR * A6R
529 ldd XF11,S11 ; ML * A5L
530 add,dc zero,zero,S5 ; A7 cross product sum carry
531 depd,z T3,31,32,S7 ; A7 cross product sum << 32
532
533 ldd XF6,S14 ; ML * A6L
534 ldd XF13,S13 ; MR * A7R
535 shrpd S5,T3,32,S5 ; A7 carry | cross product sum >> 32
536 add S2,S8,S8 ; M * A4 right doubleword
537
538
539 ldd XF15,S15 ; ML * A7L
540 add,dc S0,S10,S10 ; M * A4 left doubleword
541 add S3,S9,S9 ; M * A5 right doubleword
542
543 add,dc S1,S11,S11 ; M * A5 left doubleword
544 add S6,S12,S12 ; M * A6 right doubleword
545
546 ldd 32(pR),S0 ; Addend word 4
547 ldd 40(pR),S1 ; Addend word 5
548 add,dc S4,S14,S14 ; M * A6 left doubleword
549 add S7,S13,S13 ; M * A7 right doubleword
550
551 ldd 48(pR),S2 ; Addend word 6
552 ldd 56(pR),S3 ; Addend word 7
553 add,dc S5,S15,S15 ; M * A7 left doubleword
554 add S8,T2,S8 ; P4 doubleword
555
556 ldd 64(pR),S4 ; Addend word 8
557 ldd SV5,s5 ; restore s5
558 add,dc S10,S9,S9 ; P5 doubleword
559 add,dc S11,S12,S12 ; P6 doubleword
560
561
562 ldd SV6,s6 ; restore s6
563 ldd SV7,s7 ; restore s7
564 add,dc S14,S13,S13 ; P7 doubleword
565 add,dc zero,S15,S15 ; P8 doubleword
566
567 add S0,S8,S8 ; new R4 doubleword
568
569 ldd SV0,s0 ; restore s0
570 std S8,32(pR) ; save R4
571 add,dc S1,S9,S9 ; new R5 doubleword
572
573 ldd SV1,s1 ; restore s1
574 std S9,40(pR) ; save R5
575 add,dc S2,S12,S12 ; new R6 doubleword
576
577 ldd SV2,s2 ; restore s2
578 std S12,48(pR) ; save R6
579 add,dc S3,S13,S13 ; new R7 doubleword
580
581 ldd SV3,s3 ; restore s3
582 std S13,56(pR) ; save R7
583 add,dc S4,S15,S15 ; new R8 doubleword
584
585 ldd SV4,s4 ; restore s4
586 std S15,64(pR) ; save result[8]
587 add,dc zero,zero,v0 ; return carry from R8
588
589 CMPIB,*= 0,v0,$L0 ; if no overflow, exit
590 LDO 8(pR),pR
591
592 $FINAL1 ; Final carry propagation
593 LDD 64(pR),v0
594 LDO 8(pR),pR
595 ADDI 1,v0,v0
596 CMPIB,*= 0,v0,$FINAL1 ; Keep looping if there is a carry.
597 STD v0,56(pR)
598 $L0
599 bv zero(rp) ; -> caller
600 ldo -ST_SZ(sp),sp ; pop stack
601
602 /* ====================================================================== */
603 /* end of module */
604 /* ====================================================================== */
605
606
607 bve (rp)
608 .EXIT
609 nop
610 .PROCEND
611 .SPACE $TEXT$
612 .SUBSPA $CODE$
613 .EXPORT multacc512,ENTRY
614
615 .end

mercurial