|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 /* |
|
6 * RSA key generation, public key op, private key op. |
|
7 */ |
|
8 #ifdef FREEBL_NO_DEPEND |
|
9 #include "stubs.h" |
|
10 #endif |
|
11 |
|
12 #include "secerr.h" |
|
13 |
|
14 #include "prclist.h" |
|
15 #include "nssilock.h" |
|
16 #include "prinit.h" |
|
17 #include "blapi.h" |
|
18 #include "mpi.h" |
|
19 #include "mpprime.h" |
|
20 #include "mplogic.h" |
|
21 #include "secmpi.h" |
|
22 #include "secitem.h" |
|
23 #include "blapii.h" |
|
24 |
|
25 /* |
|
26 ** Number of times to attempt to generate a prime (p or q) from a random |
|
27 ** seed (the seed changes for each iteration). |
|
28 */ |
|
29 #define MAX_PRIME_GEN_ATTEMPTS 10 |
|
30 /* |
|
31 ** Number of times to attempt to generate a key. The primes p and q change |
|
32 ** for each attempt. |
|
33 */ |
|
34 #define MAX_KEY_GEN_ATTEMPTS 10 |
|
35 |
|
36 /* Blinding Parameters max cache size */ |
|
37 #define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20 |
|
38 |
|
39 /* exponent should not be greater than modulus */ |
|
40 #define BAD_RSA_KEY_SIZE(modLen, expLen) \ |
|
41 ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \ |
|
42 (expLen) > RSA_MAX_EXPONENT_BITS/8) |
|
43 |
|
44 struct blindingParamsStr; |
|
45 typedef struct blindingParamsStr blindingParams; |
|
46 |
|
47 struct blindingParamsStr { |
|
48 blindingParams *next; |
|
49 mp_int f, g; /* blinding parameter */ |
|
50 int counter; /* number of remaining uses of (f, g) */ |
|
51 }; |
|
52 |
|
53 /* |
|
54 ** RSABlindingParamsStr |
|
55 ** |
|
56 ** For discussion of Paul Kocher's timing attack against an RSA private key |
|
57 ** operation, see http://www.cryptography.com/timingattack/paper.html. The |
|
58 ** countermeasure to this attack, known as blinding, is also discussed in |
|
59 ** the Handbook of Applied Cryptography, 11.118-11.119. |
|
60 */ |
|
61 struct RSABlindingParamsStr |
|
62 { |
|
63 /* Blinding-specific parameters */ |
|
64 PRCList link; /* link to list of structs */ |
|
65 SECItem modulus; /* list element "key" */ |
|
66 blindingParams *free, *bp; /* Blinding parameters queue */ |
|
67 blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE]; |
|
68 }; |
|
69 typedef struct RSABlindingParamsStr RSABlindingParams; |
|
70 |
|
71 /* |
|
72 ** RSABlindingParamsListStr |
|
73 ** |
|
74 ** List of key-specific blinding params. The arena holds the volatile pool |
|
75 ** of memory for each entry and the list itself. The lock is for list |
|
76 ** operations, in this case insertions and iterations, as well as control |
|
77 ** of the counter for each set of blinding parameters. |
|
78 */ |
|
79 struct RSABlindingParamsListStr |
|
80 { |
|
81 PZLock *lock; /* Lock for the list */ |
|
82 PRCondVar *cVar; /* Condidtion Variable */ |
|
83 int waitCount; /* Number of threads waiting on cVar */ |
|
84 PRCList head; /* Pointer to the list */ |
|
85 }; |
|
86 |
|
87 /* |
|
88 ** The master blinding params list. |
|
89 */ |
|
90 static struct RSABlindingParamsListStr blindingParamsList = { 0 }; |
|
91 |
|
92 /* Number of times to reuse (f, g). Suggested by Paul Kocher */ |
|
93 #define RSA_BLINDING_PARAMS_MAX_REUSE 50 |
|
94 |
|
95 /* Global, allows optional use of blinding. On by default. */ |
|
96 /* Cannot be changed at the moment, due to thread-safety issues. */ |
|
97 static PRBool nssRSAUseBlinding = PR_TRUE; |
|
98 |
|
99 static SECStatus |
|
100 rsa_build_from_primes(const mp_int *p, const mp_int *q, |
|
101 mp_int *e, PRBool needPublicExponent, |
|
102 mp_int *d, PRBool needPrivateExponent, |
|
103 RSAPrivateKey *key, unsigned int keySizeInBits) |
|
104 { |
|
105 mp_int n, phi; |
|
106 mp_int psub1, qsub1, tmp; |
|
107 mp_err err = MP_OKAY; |
|
108 SECStatus rv = SECSuccess; |
|
109 MP_DIGITS(&n) = 0; |
|
110 MP_DIGITS(&phi) = 0; |
|
111 MP_DIGITS(&psub1) = 0; |
|
112 MP_DIGITS(&qsub1) = 0; |
|
113 MP_DIGITS(&tmp) = 0; |
|
114 CHECK_MPI_OK( mp_init(&n) ); |
|
115 CHECK_MPI_OK( mp_init(&phi) ); |
|
116 CHECK_MPI_OK( mp_init(&psub1) ); |
|
117 CHECK_MPI_OK( mp_init(&qsub1) ); |
|
118 CHECK_MPI_OK( mp_init(&tmp) ); |
|
119 /* p and q must be distinct. */ |
|
120 if (mp_cmp(p, q) == 0) { |
|
121 PORT_SetError(SEC_ERROR_NEED_RANDOM); |
|
122 rv = SECFailure; |
|
123 goto cleanup; |
|
124 } |
|
125 /* 1. Compute n = p*q */ |
|
126 CHECK_MPI_OK( mp_mul(p, q, &n) ); |
|
127 /* verify that the modulus has the desired number of bits */ |
|
128 if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) { |
|
129 PORT_SetError(SEC_ERROR_NEED_RANDOM); |
|
130 rv = SECFailure; |
|
131 goto cleanup; |
|
132 } |
|
133 |
|
134 /* at least one exponent must be given */ |
|
135 PORT_Assert(!(needPublicExponent && needPrivateExponent)); |
|
136 |
|
137 /* 2. Compute phi = (p-1)*(q-1) */ |
|
138 CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) ); |
|
139 CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) ); |
|
140 if (needPublicExponent || needPrivateExponent) { |
|
141 CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) ); |
|
142 /* 3. Compute d = e**-1 mod(phi) */ |
|
143 /* or e = d**-1 mod(phi) as necessary */ |
|
144 if (needPublicExponent) { |
|
145 err = mp_invmod(d, &phi, e); |
|
146 } else { |
|
147 err = mp_invmod(e, &phi, d); |
|
148 } |
|
149 } else { |
|
150 err = MP_OKAY; |
|
151 } |
|
152 /* Verify that phi(n) and e have no common divisors */ |
|
153 if (err != MP_OKAY) { |
|
154 if (err == MP_UNDEF) { |
|
155 PORT_SetError(SEC_ERROR_NEED_RANDOM); |
|
156 err = MP_OKAY; /* to keep PORT_SetError from being called again */ |
|
157 rv = SECFailure; |
|
158 } |
|
159 goto cleanup; |
|
160 } |
|
161 |
|
162 /* 4. Compute exponent1 = d mod (p-1) */ |
|
163 CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) ); |
|
164 MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena); |
|
165 /* 5. Compute exponent2 = d mod (q-1) */ |
|
166 CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) ); |
|
167 MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena); |
|
168 /* 6. Compute coefficient = q**-1 mod p */ |
|
169 CHECK_MPI_OK( mp_invmod(q, p, &tmp) ); |
|
170 MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena); |
|
171 |
|
172 /* copy our calculated results, overwrite what is there */ |
|
173 key->modulus.data = NULL; |
|
174 MPINT_TO_SECITEM(&n, &key->modulus, key->arena); |
|
175 key->privateExponent.data = NULL; |
|
176 MPINT_TO_SECITEM(d, &key->privateExponent, key->arena); |
|
177 key->publicExponent.data = NULL; |
|
178 MPINT_TO_SECITEM(e, &key->publicExponent, key->arena); |
|
179 key->prime1.data = NULL; |
|
180 MPINT_TO_SECITEM(p, &key->prime1, key->arena); |
|
181 key->prime2.data = NULL; |
|
182 MPINT_TO_SECITEM(q, &key->prime2, key->arena); |
|
183 cleanup: |
|
184 mp_clear(&n); |
|
185 mp_clear(&phi); |
|
186 mp_clear(&psub1); |
|
187 mp_clear(&qsub1); |
|
188 mp_clear(&tmp); |
|
189 if (err) { |
|
190 MP_TO_SEC_ERROR(err); |
|
191 rv = SECFailure; |
|
192 } |
|
193 return rv; |
|
194 } |
|
195 static SECStatus |
|
196 generate_prime(mp_int *prime, int primeLen) |
|
197 { |
|
198 mp_err err = MP_OKAY; |
|
199 SECStatus rv = SECSuccess; |
|
200 unsigned long counter = 0; |
|
201 int piter; |
|
202 unsigned char *pb = NULL; |
|
203 pb = PORT_Alloc(primeLen); |
|
204 if (!pb) { |
|
205 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
206 goto cleanup; |
|
207 } |
|
208 for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) { |
|
209 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) ); |
|
210 pb[0] |= 0xC0; /* set two high-order bits */ |
|
211 pb[primeLen-1] |= 0x01; /* set low-order bit */ |
|
212 CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) ); |
|
213 err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter); |
|
214 if (err != MP_NO) |
|
215 goto cleanup; |
|
216 /* keep going while err == MP_NO */ |
|
217 } |
|
218 cleanup: |
|
219 if (pb) |
|
220 PORT_ZFree(pb, primeLen); |
|
221 if (err) { |
|
222 MP_TO_SEC_ERROR(err); |
|
223 rv = SECFailure; |
|
224 } |
|
225 return rv; |
|
226 } |
|
227 |
|
228 /* |
|
229 ** Generate and return a new RSA public and private key. |
|
230 ** Both keys are encoded in a single RSAPrivateKey structure. |
|
231 ** "cx" is the random number generator context |
|
232 ** "keySizeInBits" is the size of the key to be generated, in bits. |
|
233 ** 512, 1024, etc. |
|
234 ** "publicExponent" when not NULL is a pointer to some data that |
|
235 ** represents the public exponent to use. The data is a byte |
|
236 ** encoded integer, in "big endian" order. |
|
237 */ |
|
238 RSAPrivateKey * |
|
239 RSA_NewKey(int keySizeInBits, SECItem *publicExponent) |
|
240 { |
|
241 unsigned int primeLen; |
|
242 mp_int p, q, e, d; |
|
243 int kiter; |
|
244 mp_err err = MP_OKAY; |
|
245 SECStatus rv = SECSuccess; |
|
246 int prerr = 0; |
|
247 RSAPrivateKey *key = NULL; |
|
248 PLArenaPool *arena = NULL; |
|
249 /* Require key size to be a multiple of 16 bits. */ |
|
250 if (!publicExponent || keySizeInBits % 16 != 0 || |
|
251 BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) { |
|
252 PORT_SetError(SEC_ERROR_INVALID_ARGS); |
|
253 return NULL; |
|
254 } |
|
255 /* 1. Allocate arena & key */ |
|
256 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
|
257 if (!arena) { |
|
258 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
259 return NULL; |
|
260 } |
|
261 key = PORT_ArenaZNew(arena, RSAPrivateKey); |
|
262 if (!key) { |
|
263 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
264 PORT_FreeArena(arena, PR_TRUE); |
|
265 return NULL; |
|
266 } |
|
267 key->arena = arena; |
|
268 /* length of primes p and q (in bytes) */ |
|
269 primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE); |
|
270 MP_DIGITS(&p) = 0; |
|
271 MP_DIGITS(&q) = 0; |
|
272 MP_DIGITS(&e) = 0; |
|
273 MP_DIGITS(&d) = 0; |
|
274 CHECK_MPI_OK( mp_init(&p) ); |
|
275 CHECK_MPI_OK( mp_init(&q) ); |
|
276 CHECK_MPI_OK( mp_init(&e) ); |
|
277 CHECK_MPI_OK( mp_init(&d) ); |
|
278 /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */ |
|
279 SECITEM_AllocItem(arena, &key->version, 1); |
|
280 key->version.data[0] = 0; |
|
281 /* 3. Set the public exponent */ |
|
282 SECITEM_TO_MPINT(*publicExponent, &e); |
|
283 kiter = 0; |
|
284 do { |
|
285 prerr = 0; |
|
286 PORT_SetError(0); |
|
287 CHECK_SEC_OK( generate_prime(&p, primeLen) ); |
|
288 CHECK_SEC_OK( generate_prime(&q, primeLen) ); |
|
289 /* Assure p > q */ |
|
290 /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any |
|
291 * implementation optimization that requires p > q. We can remove |
|
292 * this code in the future. |
|
293 */ |
|
294 if (mp_cmp(&p, &q) < 0) |
|
295 mp_exch(&p, &q); |
|
296 /* Attempt to use these primes to generate a key */ |
|
297 rv = rsa_build_from_primes(&p, &q, |
|
298 &e, PR_FALSE, /* needPublicExponent=false */ |
|
299 &d, PR_TRUE, /* needPrivateExponent=true */ |
|
300 key, keySizeInBits); |
|
301 if (rv == SECSuccess) |
|
302 break; /* generated two good primes */ |
|
303 prerr = PORT_GetError(); |
|
304 kiter++; |
|
305 /* loop until have primes */ |
|
306 } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS); |
|
307 if (prerr) |
|
308 goto cleanup; |
|
309 cleanup: |
|
310 mp_clear(&p); |
|
311 mp_clear(&q); |
|
312 mp_clear(&e); |
|
313 mp_clear(&d); |
|
314 if (err) { |
|
315 MP_TO_SEC_ERROR(err); |
|
316 rv = SECFailure; |
|
317 } |
|
318 if (rv && arena) { |
|
319 PORT_FreeArena(arena, PR_TRUE); |
|
320 key = NULL; |
|
321 } |
|
322 return key; |
|
323 } |
|
324 |
|
325 mp_err |
|
326 rsa_is_prime(mp_int *p) { |
|
327 int res; |
|
328 |
|
329 /* run a Fermat test */ |
|
330 res = mpp_fermat(p, 2); |
|
331 if (res != MP_OKAY) { |
|
332 return res; |
|
333 } |
|
334 |
|
335 /* If that passed, run some Miller-Rabin tests */ |
|
336 res = mpp_pprime(p, 2); |
|
337 return res; |
|
338 } |
|
339 |
|
340 /* |
|
341 * Try to find the two primes based on 2 exponents plus either a prime |
|
342 * or a modulus. |
|
343 * |
|
344 * In: e, d and either p or n (depending on the setting of hasModulus). |
|
345 * Out: p,q. |
|
346 * |
|
347 * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or |
|
348 * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is |
|
349 * usually less than d, then k must be an integer between e-1 and 1 |
|
350 * (probably on the order of e). |
|
351 * Step 1a, If we were passed just a prime, we can divide k*phi by that |
|
352 * prime-1 and get k*(q-1). This will reduce the size of our division |
|
353 * through the rest of the loop. |
|
354 * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on |
|
355 * the order or e, and e is typically small. This may take a while for |
|
356 * a large random e. We are looking for a k that divides kphi |
|
357 * evenly. Once we find a k that divides kphi evenly, we assume it |
|
358 * is the true k. It's possible this k is not the 'true' k but has |
|
359 * swapped factors of p-1 and/or q-1. Because of this, we |
|
360 * tentatively continue Steps 3-6 inside this loop, and may return looking |
|
361 * for another k on failure. |
|
362 * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1). |
|
363 * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative |
|
364 * q-1. q = phi+1. If k is correct, q should be the right length and |
|
365 * prime. |
|
366 * Step 4b, It's possible q-1 and k could have swapped factors. We now have a |
|
367 * possible solution that meets our criteria. It may not be the only |
|
368 * solution, however, so we keep looking. If we find more than one, |
|
369 * we will fail since we cannot determine which is the correct |
|
370 * solution, and returning the wrong modulus will compromise both |
|
371 * moduli. If no other solution is found, we return the unique solution. |
|
372 * Step 5a, If we have the modulus (n=pq), then use the following formula to |
|
373 * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so |
|
374 * s=n-phi+1. |
|
375 * Step 5b, Use n=pq and s=p+q to solve for p and q as follows: |
|
376 * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0. |
|
377 * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and |
|
378 * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE. |
|
379 * If it is not, continue in our look looking for another k. NOTE: the |
|
380 * code actually distributes the 1/2 and results in the equations: |
|
381 * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us |
|
382 * and extra divide by 2 and a multiply by 4. |
|
383 * |
|
384 * This will return p & q. q may be larger than p in the case that p was given |
|
385 * and it was the smaller prime. |
|
386 */ |
|
387 static mp_err |
|
388 rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q, |
|
389 mp_int *n, PRBool hasModulus, |
|
390 unsigned int keySizeInBits) |
|
391 { |
|
392 mp_int kphi; /* k*phi */ |
|
393 mp_int k; /* current guess at 'k' */ |
|
394 mp_int phi; /* (p-1)(q-1) */ |
|
395 mp_int s; /* p+q/2 (s/2 in the algebra) */ |
|
396 mp_int r; /* remainder */ |
|
397 mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */ |
|
398 mp_int sqrt; /* sqrt(s/2*s/2-n) */ |
|
399 mp_err err = MP_OKAY; |
|
400 unsigned int order_k; |
|
401 |
|
402 MP_DIGITS(&kphi) = 0; |
|
403 MP_DIGITS(&phi) = 0; |
|
404 MP_DIGITS(&s) = 0; |
|
405 MP_DIGITS(&k) = 0; |
|
406 MP_DIGITS(&r) = 0; |
|
407 MP_DIGITS(&tmp) = 0; |
|
408 MP_DIGITS(&sqrt) = 0; |
|
409 CHECK_MPI_OK( mp_init(&kphi) ); |
|
410 CHECK_MPI_OK( mp_init(&phi) ); |
|
411 CHECK_MPI_OK( mp_init(&s) ); |
|
412 CHECK_MPI_OK( mp_init(&k) ); |
|
413 CHECK_MPI_OK( mp_init(&r) ); |
|
414 CHECK_MPI_OK( mp_init(&tmp) ); |
|
415 CHECK_MPI_OK( mp_init(&sqrt) ); |
|
416 |
|
417 /* our algorithm looks for a factor k whose maximum size is dependent |
|
418 * on the size of our smallest exponent, which had better be the public |
|
419 * exponent (if it's the private, the key is vulnerable to a brute force |
|
420 * attack). |
|
421 * |
|
422 * since our factor search is linear, we need to limit the maximum |
|
423 * size of the public key. this should not be a problem normally, since |
|
424 * public keys are usually small. |
|
425 * |
|
426 * if we want to handle larger public key sizes, we should have |
|
427 * a version which tries to 'completely' factor k*phi (where completely |
|
428 * means 'factor into primes, or composites with which are products of |
|
429 * large primes). Once we have all the factors, we can sort them out and |
|
430 * try different combinations to form our phi. The risk is if (p-1)/2, |
|
431 * (q-1)/2, and k are all large primes. In any case if the public key |
|
432 * is small (order of 20 some bits), then a linear search for k is |
|
433 * manageable. |
|
434 */ |
|
435 if (mpl_significant_bits(e) > 23) { |
|
436 err=MP_RANGE; |
|
437 goto cleanup; |
|
438 } |
|
439 |
|
440 /* calculate k*phi = e*d - 1 */ |
|
441 CHECK_MPI_OK( mp_mul(e, d, &kphi) ); |
|
442 CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) ); |
|
443 |
|
444 |
|
445 /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1) |
|
446 * d < (p-1)(q-1), therefor k must be less than e-1 |
|
447 * We can narrow down k even more, though. Since p and q are odd and both |
|
448 * have their high bit set, then we know that phi must be on order of |
|
449 * keySizeBits. |
|
450 */ |
|
451 order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits; |
|
452 |
|
453 /* for (k=kinit; order(k) >= order_k; k--) { */ |
|
454 /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */ |
|
455 CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) ); |
|
456 CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL)); |
|
457 if (mp_cmp(&k,e) >= 0) { |
|
458 /* also can't be bigger then e-1 */ |
|
459 CHECK_MPI_OK( mp_sub_d(e, 1, &k) ); |
|
460 } |
|
461 |
|
462 /* calculate our temp value */ |
|
463 /* This saves recalculating this value when the k guess is wrong, which |
|
464 * is reasonably frequent. */ |
|
465 /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */ |
|
466 /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */ |
|
467 if (hasModulus) { |
|
468 CHECK_MPI_OK( mp_add_d(n, 1, &tmp) ); |
|
469 } else { |
|
470 CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) ); |
|
471 CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r)); |
|
472 if (mp_cmp_z(&r) != 0) { |
|
473 /* p-1 doesn't divide kphi, some parameter wasn't correct */ |
|
474 err=MP_RANGE; |
|
475 goto cleanup; |
|
476 } |
|
477 mp_zero(q); |
|
478 /* kphi is now k*(q-1) */ |
|
479 } |
|
480 |
|
481 /* rest of the for loop */ |
|
482 for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k); |
|
483 err = mp_sub_d(&k, 1, &k)) { |
|
484 /* looking for k as a factor of kphi */ |
|
485 CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r)); |
|
486 if (mp_cmp_z(&r) != 0) { |
|
487 /* not a factor, try the next one */ |
|
488 continue; |
|
489 } |
|
490 /* we have a possible phi, see if it works */ |
|
491 if (!hasModulus) { |
|
492 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) { |
|
493 /* phi is not the right size */ |
|
494 continue; |
|
495 } |
|
496 /* phi should be divisible by 2, since |
|
497 * q is odd and phi=(q-1). */ |
|
498 if (mpp_divis_d(&phi,2) == MP_NO) { |
|
499 /* phi is not divisible by 4 */ |
|
500 continue; |
|
501 } |
|
502 /* we now have a candidate for the second prime */ |
|
503 CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp)); |
|
504 |
|
505 /* check to make sure it is prime */ |
|
506 err = rsa_is_prime(&tmp); |
|
507 if (err != MP_OKAY) { |
|
508 if (err == MP_NO) { |
|
509 /* No, then we still have the wrong phi */ |
|
510 err = MP_OKAY; |
|
511 continue; |
|
512 } |
|
513 goto cleanup; |
|
514 } |
|
515 /* |
|
516 * It is possible that we have the wrong phi if |
|
517 * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors). |
|
518 * since our q_quess is prime, however. We have found a valid |
|
519 * rsa key because: |
|
520 * q is the correct order of magnitude. |
|
521 * phi = (p-1)(q-1) where p and q are both primes. |
|
522 * e*d mod phi = 1. |
|
523 * There is no way to know from the info given if this is the |
|
524 * original key. We never want to return the wrong key because if |
|
525 * two moduli with the same factor is known, then euclid's gcd |
|
526 * algorithm can be used to find that factor. Even though the |
|
527 * caller didn't pass the original modulus, it doesn't mean the |
|
528 * modulus wasn't known or isn't available somewhere. So to be safe |
|
529 * if we can't be sure we have the right q, we don't return any. |
|
530 * |
|
531 * So to make sure we continue looking for other valid q's. If none |
|
532 * are found, then we can safely return this one, otherwise we just |
|
533 * fail */ |
|
534 if (mp_cmp_z(q) != 0) { |
|
535 /* this is the second valid q, don't return either, |
|
536 * just fail */ |
|
537 err = MP_RANGE; |
|
538 break; |
|
539 } |
|
540 /* we only have one q so far, save it and if no others are found, |
|
541 * it's safe to return it */ |
|
542 CHECK_MPI_OK(mp_copy(&tmp, q)); |
|
543 continue; |
|
544 } |
|
545 /* test our tentative phi */ |
|
546 /* phi should be the correct order */ |
|
547 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) { |
|
548 /* phi is not the right size */ |
|
549 continue; |
|
550 } |
|
551 /* phi should be divisible by 4, since |
|
552 * p and q are odd and phi=(p-1)(q-1). */ |
|
553 if (mpp_divis_d(&phi,4) == MP_NO) { |
|
554 /* phi is not divisible by 4 */ |
|
555 continue; |
|
556 } |
|
557 /* n was given, calculate s/2=(p+q)/2 */ |
|
558 CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) ); |
|
559 CHECK_MPI_OK( mp_div_2(&s, &s) ); |
|
560 |
|
561 /* calculate sqrt(s/2*s/2-n) */ |
|
562 CHECK_MPI_OK(mp_sqr(&s,&sqrt)); |
|
563 CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */ |
|
564 CHECK_MPI_OK(mp_sqrt(&r,&sqrt)); |
|
565 /* make sure it's a perfect square */ |
|
566 /* r is our original value we took the square root of */ |
|
567 /* q is the square of our tentative square root. They should be equal*/ |
|
568 CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */ |
|
569 if (mp_cmp(&r,q) != 0) { |
|
570 /* sigh according to the doc, mp_sqrt could return sqrt-1 */ |
|
571 CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt)); |
|
572 CHECK_MPI_OK(mp_sqr(&sqrt,q)); |
|
573 if (mp_cmp(&r,q) != 0) { |
|
574 /* s*s-n not a perfect square, this phi isn't valid, find * another.*/ |
|
575 continue; |
|
576 } |
|
577 } |
|
578 |
|
579 /* NOTE: In this case we know we have the one and only answer. |
|
580 * "Why?", you ask. Because: |
|
581 * 1) n is a composite of two large primes (or it wasn't a |
|
582 * valid RSA modulus). |
|
583 * 2) If we know any number such that x^2-n is a perfect square |
|
584 * and x is not (n+1)/2, then we can calculate 2 non-trivial |
|
585 * factors of n. |
|
586 * 3) Since we know that n has only 2 non-trivial prime factors, |
|
587 * we know the two factors we have are the only possible factors. |
|
588 */ |
|
589 |
|
590 /* Now we are home free to calculate p and q */ |
|
591 /* p = s/2 + sqrt, q= s/2 - sqrt */ |
|
592 CHECK_MPI_OK(mp_add(&s,&sqrt,p)); |
|
593 CHECK_MPI_OK(mp_sub(&s,&sqrt,q)); |
|
594 break; |
|
595 } |
|
596 if ((unsigned)mpl_significant_bits(&k) < order_k) { |
|
597 if (hasModulus || (mp_cmp_z(q) == 0)) { |
|
598 /* If we get here, something was wrong with the parameters we |
|
599 * were given */ |
|
600 err = MP_RANGE; |
|
601 } |
|
602 } |
|
603 cleanup: |
|
604 mp_clear(&kphi); |
|
605 mp_clear(&phi); |
|
606 mp_clear(&s); |
|
607 mp_clear(&k); |
|
608 mp_clear(&r); |
|
609 mp_clear(&tmp); |
|
610 mp_clear(&sqrt); |
|
611 return err; |
|
612 } |
|
613 |
|
614 /* |
|
615 * take a private key with only a few elements and fill out the missing pieces. |
|
616 * |
|
617 * All the entries will be overwritten with data allocated out of the arena |
|
618 * If no arena is supplied, one will be created. |
|
619 * |
|
620 * The following fields must be supplied in order for this function |
|
621 * to succeed: |
|
622 * one of either publicExponent or privateExponent |
|
623 * two more of the following 5 parameters. |
|
624 * modulus (n) |
|
625 * prime1 (p) |
|
626 * prime2 (q) |
|
627 * publicExponent (e) |
|
628 * privateExponent (d) |
|
629 * |
|
630 * NOTE: if only the publicExponent, privateExponent, and one prime is given, |
|
631 * then there may be more than one RSA key that matches that combination. |
|
632 * |
|
633 * All parameters will be replaced in the key structure with new parameters |
|
634 * Allocated out of the arena. There is no attempt to free the old structures. |
|
635 * Prime1 will always be greater than prime2 (even if the caller supplies the |
|
636 * smaller prime as prime1 or the larger prime as prime2). The parameters are |
|
637 * not overwritten on failure. |
|
638 * |
|
639 * How it works: |
|
640 * We can generate all the parameters from: |
|
641 * one of the exponents, plus the two primes. (rsa_build_key_from_primes) * |
|
642 * If we are given one of the exponents and both primes, we are done. |
|
643 * If we are given one of the exponents, the modulus and one prime, we |
|
644 * caclulate the second prime by dividing the modulus by the given |
|
645 * prime, giving us and exponent and 2 primes. |
|
646 * If we are given 2 exponents and either the modulus or one of the primes |
|
647 * we calculate k*phi = d*e-1, where k is an integer less than d which |
|
648 * divides d*e-1. We find factor k so we can isolate phi. |
|
649 * phi = (p-1)(q-1) |
|
650 * If one of the primes are given, we can use phi to find the other prime |
|
651 * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an |
|
652 * exponent. (NOTE: if more then one prime meets this condition, the |
|
653 * operation will fail. See comments elsewhere in this file about this). |
|
654 * If the modulus is given, then we can calculate the sum of the primes |
|
655 * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n -> |
|
656 * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq, |
|
657 * we can solve our 2 equations and 2 unknowns as follows: q=s-p -> |
|
658 * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for |
|
659 * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have |
|
660 * 2 primes and an exponent. |
|
661 * |
|
662 */ |
|
663 SECStatus |
|
664 RSA_PopulatePrivateKey(RSAPrivateKey *key) |
|
665 { |
|
666 PLArenaPool *arena = NULL; |
|
667 PRBool needPublicExponent = PR_TRUE; |
|
668 PRBool needPrivateExponent = PR_TRUE; |
|
669 PRBool hasModulus = PR_FALSE; |
|
670 unsigned int keySizeInBits = 0; |
|
671 int prime_count = 0; |
|
672 /* standard RSA nominclature */ |
|
673 mp_int p, q, e, d, n; |
|
674 /* remainder */ |
|
675 mp_int r; |
|
676 mp_err err = 0; |
|
677 SECStatus rv = SECFailure; |
|
678 |
|
679 MP_DIGITS(&p) = 0; |
|
680 MP_DIGITS(&q) = 0; |
|
681 MP_DIGITS(&e) = 0; |
|
682 MP_DIGITS(&d) = 0; |
|
683 MP_DIGITS(&n) = 0; |
|
684 MP_DIGITS(&r) = 0; |
|
685 CHECK_MPI_OK( mp_init(&p) ); |
|
686 CHECK_MPI_OK( mp_init(&q) ); |
|
687 CHECK_MPI_OK( mp_init(&e) ); |
|
688 CHECK_MPI_OK( mp_init(&d) ); |
|
689 CHECK_MPI_OK( mp_init(&n) ); |
|
690 CHECK_MPI_OK( mp_init(&r) ); |
|
691 |
|
692 /* if the key didn't already have an arena, create one. */ |
|
693 if (key->arena == NULL) { |
|
694 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
|
695 if (!arena) { |
|
696 goto cleanup; |
|
697 } |
|
698 key->arena = arena; |
|
699 } |
|
700 |
|
701 /* load up the known exponents */ |
|
702 if (key->publicExponent.data) { |
|
703 SECITEM_TO_MPINT(key->publicExponent, &e); |
|
704 needPublicExponent = PR_FALSE; |
|
705 } |
|
706 if (key->privateExponent.data) { |
|
707 SECITEM_TO_MPINT(key->privateExponent, &d); |
|
708 needPrivateExponent = PR_FALSE; |
|
709 } |
|
710 if (needPrivateExponent && needPublicExponent) { |
|
711 /* Not enough information, we need at least one exponent */ |
|
712 err = MP_BADARG; |
|
713 goto cleanup; |
|
714 } |
|
715 |
|
716 /* load up the known primes. If only one prime is given, it will be |
|
717 * assigned 'p'. Once we have both primes, well make sure p is the larger. |
|
718 * The value prime_count tells us howe many we have acquired. |
|
719 */ |
|
720 if (key->prime1.data) { |
|
721 int primeLen = key->prime1.len; |
|
722 if (key->prime1.data[0] == 0) { |
|
723 primeLen--; |
|
724 } |
|
725 keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; |
|
726 SECITEM_TO_MPINT(key->prime1, &p); |
|
727 prime_count++; |
|
728 } |
|
729 if (key->prime2.data) { |
|
730 int primeLen = key->prime2.len; |
|
731 if (key->prime2.data[0] == 0) { |
|
732 primeLen--; |
|
733 } |
|
734 keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE; |
|
735 SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p); |
|
736 prime_count++; |
|
737 } |
|
738 /* load up the modulus */ |
|
739 if (key->modulus.data) { |
|
740 int modLen = key->modulus.len; |
|
741 if (key->modulus.data[0] == 0) { |
|
742 modLen--; |
|
743 } |
|
744 keySizeInBits = modLen * PR_BITS_PER_BYTE; |
|
745 SECITEM_TO_MPINT(key->modulus, &n); |
|
746 hasModulus = PR_TRUE; |
|
747 } |
|
748 /* if we have the modulus and one prime, calculate the second. */ |
|
749 if ((prime_count == 1) && (hasModulus)) { |
|
750 mp_div(&n,&p,&q,&r); |
|
751 if (mp_cmp_z(&r) != 0) { |
|
752 /* p is not a factor or n, fail */ |
|
753 err = MP_BADARG; |
|
754 goto cleanup; |
|
755 } |
|
756 prime_count++; |
|
757 } |
|
758 |
|
759 /* If we didn't have enough primes try to calculate the primes from |
|
760 * the exponents */ |
|
761 if (prime_count < 2) { |
|
762 /* if we don't have at least 2 primes at this point, then we need both |
|
763 * exponents and one prime or a modulus*/ |
|
764 if (!needPublicExponent && !needPrivateExponent && |
|
765 ((prime_count > 0) || hasModulus)) { |
|
766 CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q, |
|
767 &n,hasModulus,keySizeInBits)); |
|
768 } else { |
|
769 /* not enough given parameters to get both primes */ |
|
770 err = MP_BADARG; |
|
771 goto cleanup; |
|
772 } |
|
773 } |
|
774 |
|
775 /* Assure p > q */ |
|
776 /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any |
|
777 * implementation optimization that requires p > q. We can remove |
|
778 * this code in the future. |
|
779 */ |
|
780 if (mp_cmp(&p, &q) < 0) |
|
781 mp_exch(&p, &q); |
|
782 |
|
783 /* we now have our 2 primes and at least one exponent, we can fill |
|
784 * in the key */ |
|
785 rv = rsa_build_from_primes(&p, &q, |
|
786 &e, needPublicExponent, |
|
787 &d, needPrivateExponent, |
|
788 key, keySizeInBits); |
|
789 cleanup: |
|
790 mp_clear(&p); |
|
791 mp_clear(&q); |
|
792 mp_clear(&e); |
|
793 mp_clear(&d); |
|
794 mp_clear(&n); |
|
795 mp_clear(&r); |
|
796 if (err) { |
|
797 MP_TO_SEC_ERROR(err); |
|
798 rv = SECFailure; |
|
799 } |
|
800 if (rv && arena) { |
|
801 PORT_FreeArena(arena, PR_TRUE); |
|
802 key->arena = NULL; |
|
803 } |
|
804 return rv; |
|
805 } |
|
806 |
|
807 static unsigned int |
|
808 rsa_modulusLen(SECItem *modulus) |
|
809 { |
|
810 unsigned char byteZero = modulus->data[0]; |
|
811 unsigned int modLen = modulus->len - !byteZero; |
|
812 return modLen; |
|
813 } |
|
814 |
|
815 /* |
|
816 ** Perform a raw public-key operation |
|
817 ** Length of input and output buffers are equal to key's modulus len. |
|
818 */ |
|
819 SECStatus |
|
820 RSA_PublicKeyOp(RSAPublicKey *key, |
|
821 unsigned char *output, |
|
822 const unsigned char *input) |
|
823 { |
|
824 unsigned int modLen, expLen, offset; |
|
825 mp_int n, e, m, c; |
|
826 mp_err err = MP_OKAY; |
|
827 SECStatus rv = SECSuccess; |
|
828 if (!key || !output || !input) { |
|
829 PORT_SetError(SEC_ERROR_INVALID_ARGS); |
|
830 return SECFailure; |
|
831 } |
|
832 MP_DIGITS(&n) = 0; |
|
833 MP_DIGITS(&e) = 0; |
|
834 MP_DIGITS(&m) = 0; |
|
835 MP_DIGITS(&c) = 0; |
|
836 CHECK_MPI_OK( mp_init(&n) ); |
|
837 CHECK_MPI_OK( mp_init(&e) ); |
|
838 CHECK_MPI_OK( mp_init(&m) ); |
|
839 CHECK_MPI_OK( mp_init(&c) ); |
|
840 modLen = rsa_modulusLen(&key->modulus); |
|
841 expLen = rsa_modulusLen(&key->publicExponent); |
|
842 /* 1. Obtain public key (n, e) */ |
|
843 if (BAD_RSA_KEY_SIZE(modLen, expLen)) { |
|
844 PORT_SetError(SEC_ERROR_INVALID_KEY); |
|
845 rv = SECFailure; |
|
846 goto cleanup; |
|
847 } |
|
848 SECITEM_TO_MPINT(key->modulus, &n); |
|
849 SECITEM_TO_MPINT(key->publicExponent, &e); |
|
850 if (e.used > n.used) { |
|
851 /* exponent should not be greater than modulus */ |
|
852 PORT_SetError(SEC_ERROR_INVALID_KEY); |
|
853 rv = SECFailure; |
|
854 goto cleanup; |
|
855 } |
|
856 /* 2. check input out of range (needs to be in range [0..n-1]) */ |
|
857 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ |
|
858 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { |
|
859 PORT_SetError(SEC_ERROR_INPUT_LEN); |
|
860 rv = SECFailure; |
|
861 goto cleanup; |
|
862 } |
|
863 /* 2 bis. Represent message as integer in range [0..n-1] */ |
|
864 CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) ); |
|
865 /* 3. Compute c = m**e mod n */ |
|
866 #ifdef USE_MPI_EXPT_D |
|
867 /* XXX see which is faster */ |
|
868 if (MP_USED(&e) == 1) { |
|
869 CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) ); |
|
870 } else |
|
871 #endif |
|
872 CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) ); |
|
873 /* 4. result c is ciphertext */ |
|
874 err = mp_to_fixlen_octets(&c, output, modLen); |
|
875 if (err >= 0) err = MP_OKAY; |
|
876 cleanup: |
|
877 mp_clear(&n); |
|
878 mp_clear(&e); |
|
879 mp_clear(&m); |
|
880 mp_clear(&c); |
|
881 if (err) { |
|
882 MP_TO_SEC_ERROR(err); |
|
883 rv = SECFailure; |
|
884 } |
|
885 return rv; |
|
886 } |
|
887 |
|
888 /* |
|
889 ** RSA Private key operation (no CRT). |
|
890 */ |
|
891 static SECStatus |
|
892 rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n, |
|
893 unsigned int modLen) |
|
894 { |
|
895 mp_int d; |
|
896 mp_err err = MP_OKAY; |
|
897 SECStatus rv = SECSuccess; |
|
898 MP_DIGITS(&d) = 0; |
|
899 CHECK_MPI_OK( mp_init(&d) ); |
|
900 SECITEM_TO_MPINT(key->privateExponent, &d); |
|
901 /* 1. m = c**d mod n */ |
|
902 CHECK_MPI_OK( mp_exptmod(c, &d, n, m) ); |
|
903 cleanup: |
|
904 mp_clear(&d); |
|
905 if (err) { |
|
906 MP_TO_SEC_ERROR(err); |
|
907 rv = SECFailure; |
|
908 } |
|
909 return rv; |
|
910 } |
|
911 |
|
912 /* |
|
913 ** RSA Private key operation using CRT. |
|
914 */ |
|
915 static SECStatus |
|
916 rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c) |
|
917 { |
|
918 mp_int p, q, d_p, d_q, qInv; |
|
919 mp_int m1, m2, h, ctmp; |
|
920 mp_err err = MP_OKAY; |
|
921 SECStatus rv = SECSuccess; |
|
922 MP_DIGITS(&p) = 0; |
|
923 MP_DIGITS(&q) = 0; |
|
924 MP_DIGITS(&d_p) = 0; |
|
925 MP_DIGITS(&d_q) = 0; |
|
926 MP_DIGITS(&qInv) = 0; |
|
927 MP_DIGITS(&m1) = 0; |
|
928 MP_DIGITS(&m2) = 0; |
|
929 MP_DIGITS(&h) = 0; |
|
930 MP_DIGITS(&ctmp) = 0; |
|
931 CHECK_MPI_OK( mp_init(&p) ); |
|
932 CHECK_MPI_OK( mp_init(&q) ); |
|
933 CHECK_MPI_OK( mp_init(&d_p) ); |
|
934 CHECK_MPI_OK( mp_init(&d_q) ); |
|
935 CHECK_MPI_OK( mp_init(&qInv) ); |
|
936 CHECK_MPI_OK( mp_init(&m1) ); |
|
937 CHECK_MPI_OK( mp_init(&m2) ); |
|
938 CHECK_MPI_OK( mp_init(&h) ); |
|
939 CHECK_MPI_OK( mp_init(&ctmp) ); |
|
940 /* copy private key parameters into mp integers */ |
|
941 SECITEM_TO_MPINT(key->prime1, &p); /* p */ |
|
942 SECITEM_TO_MPINT(key->prime2, &q); /* q */ |
|
943 SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */ |
|
944 SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */ |
|
945 SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */ |
|
946 /* 1. m1 = c**d_p mod p */ |
|
947 CHECK_MPI_OK( mp_mod(c, &p, &ctmp) ); |
|
948 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) ); |
|
949 /* 2. m2 = c**d_q mod q */ |
|
950 CHECK_MPI_OK( mp_mod(c, &q, &ctmp) ); |
|
951 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) ); |
|
952 /* 3. h = (m1 - m2) * qInv mod p */ |
|
953 CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) ); |
|
954 CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) ); |
|
955 /* 4. m = m2 + h * q */ |
|
956 CHECK_MPI_OK( mp_mul(&h, &q, m) ); |
|
957 CHECK_MPI_OK( mp_add(m, &m2, m) ); |
|
958 cleanup: |
|
959 mp_clear(&p); |
|
960 mp_clear(&q); |
|
961 mp_clear(&d_p); |
|
962 mp_clear(&d_q); |
|
963 mp_clear(&qInv); |
|
964 mp_clear(&m1); |
|
965 mp_clear(&m2); |
|
966 mp_clear(&h); |
|
967 mp_clear(&ctmp); |
|
968 if (err) { |
|
969 MP_TO_SEC_ERROR(err); |
|
970 rv = SECFailure; |
|
971 } |
|
972 return rv; |
|
973 } |
|
974 |
|
975 /* |
|
976 ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in: |
|
977 ** "On the Importance of Eliminating Errors in Cryptographic Computations", |
|
978 ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz |
|
979 ** |
|
980 ** As a defense against the attack, carry out the private key operation, |
|
981 ** followed up with a public key operation to invert the result. |
|
982 ** Verify that result against the input. |
|
983 */ |
|
984 static SECStatus |
|
985 rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c) |
|
986 { |
|
987 mp_int n, e, v; |
|
988 mp_err err = MP_OKAY; |
|
989 SECStatus rv = SECSuccess; |
|
990 MP_DIGITS(&n) = 0; |
|
991 MP_DIGITS(&e) = 0; |
|
992 MP_DIGITS(&v) = 0; |
|
993 CHECK_MPI_OK( mp_init(&n) ); |
|
994 CHECK_MPI_OK( mp_init(&e) ); |
|
995 CHECK_MPI_OK( mp_init(&v) ); |
|
996 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) ); |
|
997 SECITEM_TO_MPINT(key->modulus, &n); |
|
998 SECITEM_TO_MPINT(key->publicExponent, &e); |
|
999 /* Perform a public key operation v = m ** e mod n */ |
|
1000 CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) ); |
|
1001 if (mp_cmp(&v, c) != 0) { |
|
1002 rv = SECFailure; |
|
1003 } |
|
1004 cleanup: |
|
1005 mp_clear(&n); |
|
1006 mp_clear(&e); |
|
1007 mp_clear(&v); |
|
1008 if (err) { |
|
1009 MP_TO_SEC_ERROR(err); |
|
1010 rv = SECFailure; |
|
1011 } |
|
1012 return rv; |
|
1013 } |
|
1014 |
|
1015 static PRCallOnceType coBPInit = { 0, 0, 0 }; |
|
1016 static PRStatus |
|
1017 init_blinding_params_list(void) |
|
1018 { |
|
1019 blindingParamsList.lock = PZ_NewLock(nssILockOther); |
|
1020 if (!blindingParamsList.lock) { |
|
1021 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
1022 return PR_FAILURE; |
|
1023 } |
|
1024 blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock ); |
|
1025 if (!blindingParamsList.cVar) { |
|
1026 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
1027 return PR_FAILURE; |
|
1028 } |
|
1029 blindingParamsList.waitCount = 0; |
|
1030 PR_INIT_CLIST(&blindingParamsList.head); |
|
1031 return PR_SUCCESS; |
|
1032 } |
|
1033 |
|
1034 static SECStatus |
|
1035 generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n, |
|
1036 unsigned int modLen) |
|
1037 { |
|
1038 SECStatus rv = SECSuccess; |
|
1039 mp_int e, k; |
|
1040 mp_err err = MP_OKAY; |
|
1041 unsigned char *kb = NULL; |
|
1042 |
|
1043 MP_DIGITS(&e) = 0; |
|
1044 MP_DIGITS(&k) = 0; |
|
1045 CHECK_MPI_OK( mp_init(&e) ); |
|
1046 CHECK_MPI_OK( mp_init(&k) ); |
|
1047 SECITEM_TO_MPINT(key->publicExponent, &e); |
|
1048 /* generate random k < n */ |
|
1049 kb = PORT_Alloc(modLen); |
|
1050 if (!kb) { |
|
1051 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
1052 goto cleanup; |
|
1053 } |
|
1054 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) ); |
|
1055 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) ); |
|
1056 /* k < n */ |
|
1057 CHECK_MPI_OK( mp_mod(&k, n, &k) ); |
|
1058 /* f = k**e mod n */ |
|
1059 CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) ); |
|
1060 /* g = k**-1 mod n */ |
|
1061 CHECK_MPI_OK( mp_invmod(&k, n, g) ); |
|
1062 cleanup: |
|
1063 if (kb) |
|
1064 PORT_ZFree(kb, modLen); |
|
1065 mp_clear(&k); |
|
1066 mp_clear(&e); |
|
1067 if (err) { |
|
1068 MP_TO_SEC_ERROR(err); |
|
1069 rv = SECFailure; |
|
1070 } |
|
1071 return rv; |
|
1072 } |
|
1073 |
|
1074 static SECStatus |
|
1075 init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key, |
|
1076 mp_int *n, unsigned int modLen) |
|
1077 { |
|
1078 blindingParams * bp = rsabp->array; |
|
1079 int i = 0; |
|
1080 |
|
1081 /* Initialize the list pointer for the element */ |
|
1082 PR_INIT_CLIST(&rsabp->link); |
|
1083 for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) { |
|
1084 bp->next = bp + 1; |
|
1085 MP_DIGITS(&bp->f) = 0; |
|
1086 MP_DIGITS(&bp->g) = 0; |
|
1087 bp->counter = 0; |
|
1088 } |
|
1089 /* The last bp->next value was initialized with out |
|
1090 * of rsabp->array pointer and must be set to NULL |
|
1091 */ |
|
1092 rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL; |
|
1093 |
|
1094 bp = rsabp->array; |
|
1095 rsabp->bp = NULL; |
|
1096 rsabp->free = bp; |
|
1097 |
|
1098 /* List elements are keyed using the modulus */ |
|
1099 SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus); |
|
1100 |
|
1101 return SECSuccess; |
|
1102 } |
|
1103 |
|
1104 static SECStatus |
|
1105 get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen, |
|
1106 mp_int *f, mp_int *g) |
|
1107 { |
|
1108 RSABlindingParams *rsabp = NULL; |
|
1109 blindingParams *bpUnlinked = NULL; |
|
1110 blindingParams *bp; |
|
1111 PRCList *el; |
|
1112 SECStatus rv = SECSuccess; |
|
1113 mp_err err = MP_OKAY; |
|
1114 int cmp = -1; |
|
1115 PRBool holdingLock = PR_FALSE; |
|
1116 |
|
1117 do { |
|
1118 if (blindingParamsList.lock == NULL) { |
|
1119 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
|
1120 return SECFailure; |
|
1121 } |
|
1122 /* Acquire the list lock */ |
|
1123 PZ_Lock(blindingParamsList.lock); |
|
1124 holdingLock = PR_TRUE; |
|
1125 |
|
1126 /* Walk the list looking for the private key */ |
|
1127 for (el = PR_NEXT_LINK(&blindingParamsList.head); |
|
1128 el != &blindingParamsList.head; |
|
1129 el = PR_NEXT_LINK(el)) { |
|
1130 rsabp = (RSABlindingParams *)el; |
|
1131 cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus); |
|
1132 if (cmp >= 0) { |
|
1133 /* The key is found or not in the list. */ |
|
1134 break; |
|
1135 } |
|
1136 } |
|
1137 |
|
1138 if (cmp) { |
|
1139 /* At this point, the key is not in the list. el should point to |
|
1140 ** the list element before which this key should be inserted. |
|
1141 */ |
|
1142 rsabp = PORT_ZNew(RSABlindingParams); |
|
1143 if (!rsabp) { |
|
1144 PORT_SetError(SEC_ERROR_NO_MEMORY); |
|
1145 goto cleanup; |
|
1146 } |
|
1147 |
|
1148 rv = init_blinding_params(rsabp, key, n, modLen); |
|
1149 if (rv != SECSuccess) { |
|
1150 PORT_ZFree(rsabp, sizeof(RSABlindingParams)); |
|
1151 goto cleanup; |
|
1152 } |
|
1153 |
|
1154 /* Insert the new element into the list |
|
1155 ** If inserting in the middle of the list, el points to the link |
|
1156 ** to insert before. Otherwise, the link needs to be appended to |
|
1157 ** the end of the list, which is the same as inserting before the |
|
1158 ** head (since el would have looped back to the head). |
|
1159 */ |
|
1160 PR_INSERT_BEFORE(&rsabp->link, el); |
|
1161 } |
|
1162 |
|
1163 /* We've found (or created) the RSAblindingParams struct for this key. |
|
1164 * Now, search its list of ready blinding params for a usable one. |
|
1165 */ |
|
1166 while (0 != (bp = rsabp->bp)) { |
|
1167 if (--(bp->counter) > 0) { |
|
1168 /* Found a match and there are still remaining uses left */ |
|
1169 /* Return the parameters */ |
|
1170 CHECK_MPI_OK( mp_copy(&bp->f, f) ); |
|
1171 CHECK_MPI_OK( mp_copy(&bp->g, g) ); |
|
1172 |
|
1173 PZ_Unlock(blindingParamsList.lock); |
|
1174 return SECSuccess; |
|
1175 } |
|
1176 /* exhausted this one, give its values to caller, and |
|
1177 * then retire it. |
|
1178 */ |
|
1179 mp_exch(&bp->f, f); |
|
1180 mp_exch(&bp->g, g); |
|
1181 mp_clear( &bp->f ); |
|
1182 mp_clear( &bp->g ); |
|
1183 bp->counter = 0; |
|
1184 /* Move to free list */ |
|
1185 rsabp->bp = bp->next; |
|
1186 bp->next = rsabp->free; |
|
1187 rsabp->free = bp; |
|
1188 /* In case there're threads waiting for new blinding |
|
1189 * value - notify 1 thread the value is ready |
|
1190 */ |
|
1191 if (blindingParamsList.waitCount > 0) { |
|
1192 PR_NotifyCondVar( blindingParamsList.cVar ); |
|
1193 blindingParamsList.waitCount--; |
|
1194 } |
|
1195 PZ_Unlock(blindingParamsList.lock); |
|
1196 return SECSuccess; |
|
1197 } |
|
1198 /* We did not find a usable set of blinding params. Can we make one? */ |
|
1199 /* Find a free bp struct. */ |
|
1200 if ((bp = rsabp->free) != NULL) { |
|
1201 /* unlink this bp */ |
|
1202 rsabp->free = bp->next; |
|
1203 bp->next = NULL; |
|
1204 bpUnlinked = bp; /* In case we fail */ |
|
1205 |
|
1206 PZ_Unlock(blindingParamsList.lock); |
|
1207 holdingLock = PR_FALSE; |
|
1208 /* generate blinding parameter values for the current thread */ |
|
1209 CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) ); |
|
1210 |
|
1211 /* put the blinding parameter values into cache */ |
|
1212 CHECK_MPI_OK( mp_init( &bp->f) ); |
|
1213 CHECK_MPI_OK( mp_init( &bp->g) ); |
|
1214 CHECK_MPI_OK( mp_copy( f, &bp->f) ); |
|
1215 CHECK_MPI_OK( mp_copy( g, &bp->g) ); |
|
1216 |
|
1217 /* Put this at head of queue of usable params. */ |
|
1218 PZ_Lock(blindingParamsList.lock); |
|
1219 holdingLock = PR_TRUE; |
|
1220 /* initialize RSABlindingParamsStr */ |
|
1221 bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE; |
|
1222 bp->next = rsabp->bp; |
|
1223 rsabp->bp = bp; |
|
1224 bpUnlinked = NULL; |
|
1225 /* In case there're threads waiting for new blinding value |
|
1226 * just notify them the value is ready |
|
1227 */ |
|
1228 if (blindingParamsList.waitCount > 0) { |
|
1229 PR_NotifyAllCondVar( blindingParamsList.cVar ); |
|
1230 blindingParamsList.waitCount = 0; |
|
1231 } |
|
1232 PZ_Unlock(blindingParamsList.lock); |
|
1233 return SECSuccess; |
|
1234 } |
|
1235 /* Here, there are no usable blinding parameters available, |
|
1236 * and no free bp blocks, presumably because they're all |
|
1237 * actively having parameters generated for them. |
|
1238 * So, we need to wait here and not eat up CPU until some |
|
1239 * change happens. |
|
1240 */ |
|
1241 blindingParamsList.waitCount++; |
|
1242 PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT ); |
|
1243 PZ_Unlock(blindingParamsList.lock); |
|
1244 holdingLock = PR_FALSE; |
|
1245 } while (1); |
|
1246 |
|
1247 cleanup: |
|
1248 /* It is possible to reach this after the lock is already released. */ |
|
1249 if (bpUnlinked) { |
|
1250 if (!holdingLock) { |
|
1251 PZ_Lock(blindingParamsList.lock); |
|
1252 holdingLock = PR_TRUE; |
|
1253 } |
|
1254 bp = bpUnlinked; |
|
1255 mp_clear( &bp->f ); |
|
1256 mp_clear( &bp->g ); |
|
1257 bp->counter = 0; |
|
1258 /* Must put the unlinked bp back on the free list */ |
|
1259 bp->next = rsabp->free; |
|
1260 rsabp->free = bp; |
|
1261 } |
|
1262 if (holdingLock) { |
|
1263 PZ_Unlock(blindingParamsList.lock); |
|
1264 holdingLock = PR_FALSE; |
|
1265 } |
|
1266 if (err) { |
|
1267 MP_TO_SEC_ERROR(err); |
|
1268 } |
|
1269 return SECFailure; |
|
1270 } |
|
1271 |
|
1272 /* |
|
1273 ** Perform a raw private-key operation |
|
1274 ** Length of input and output buffers are equal to key's modulus len. |
|
1275 */ |
|
1276 static SECStatus |
|
1277 rsa_PrivateKeyOp(RSAPrivateKey *key, |
|
1278 unsigned char *output, |
|
1279 const unsigned char *input, |
|
1280 PRBool check) |
|
1281 { |
|
1282 unsigned int modLen; |
|
1283 unsigned int offset; |
|
1284 SECStatus rv = SECSuccess; |
|
1285 mp_err err; |
|
1286 mp_int n, c, m; |
|
1287 mp_int f, g; |
|
1288 if (!key || !output || !input) { |
|
1289 PORT_SetError(SEC_ERROR_INVALID_ARGS); |
|
1290 return SECFailure; |
|
1291 } |
|
1292 /* check input out of range (needs to be in range [0..n-1]) */ |
|
1293 modLen = rsa_modulusLen(&key->modulus); |
|
1294 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */ |
|
1295 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) { |
|
1296 PORT_SetError(SEC_ERROR_INVALID_ARGS); |
|
1297 return SECFailure; |
|
1298 } |
|
1299 MP_DIGITS(&n) = 0; |
|
1300 MP_DIGITS(&c) = 0; |
|
1301 MP_DIGITS(&m) = 0; |
|
1302 MP_DIGITS(&f) = 0; |
|
1303 MP_DIGITS(&g) = 0; |
|
1304 CHECK_MPI_OK( mp_init(&n) ); |
|
1305 CHECK_MPI_OK( mp_init(&c) ); |
|
1306 CHECK_MPI_OK( mp_init(&m) ); |
|
1307 CHECK_MPI_OK( mp_init(&f) ); |
|
1308 CHECK_MPI_OK( mp_init(&g) ); |
|
1309 SECITEM_TO_MPINT(key->modulus, &n); |
|
1310 OCTETS_TO_MPINT(input, &c, modLen); |
|
1311 /* If blinding, compute pre-image of ciphertext by multiplying by |
|
1312 ** blinding factor |
|
1313 */ |
|
1314 if (nssRSAUseBlinding) { |
|
1315 CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) ); |
|
1316 /* c' = c*f mod n */ |
|
1317 CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) ); |
|
1318 } |
|
1319 /* Do the private key operation m = c**d mod n */ |
|
1320 if ( key->prime1.len == 0 || |
|
1321 key->prime2.len == 0 || |
|
1322 key->exponent1.len == 0 || |
|
1323 key->exponent2.len == 0 || |
|
1324 key->coefficient.len == 0) { |
|
1325 CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) ); |
|
1326 } else if (check) { |
|
1327 CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) ); |
|
1328 } else { |
|
1329 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) ); |
|
1330 } |
|
1331 /* If blinding, compute post-image of plaintext by multiplying by |
|
1332 ** blinding factor |
|
1333 */ |
|
1334 if (nssRSAUseBlinding) { |
|
1335 /* m = m'*g mod n */ |
|
1336 CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) ); |
|
1337 } |
|
1338 err = mp_to_fixlen_octets(&m, output, modLen); |
|
1339 if (err >= 0) err = MP_OKAY; |
|
1340 cleanup: |
|
1341 mp_clear(&n); |
|
1342 mp_clear(&c); |
|
1343 mp_clear(&m); |
|
1344 mp_clear(&f); |
|
1345 mp_clear(&g); |
|
1346 if (err) { |
|
1347 MP_TO_SEC_ERROR(err); |
|
1348 rv = SECFailure; |
|
1349 } |
|
1350 return rv; |
|
1351 } |
|
1352 |
|
1353 SECStatus |
|
1354 RSA_PrivateKeyOp(RSAPrivateKey *key, |
|
1355 unsigned char *output, |
|
1356 const unsigned char *input) |
|
1357 { |
|
1358 return rsa_PrivateKeyOp(key, output, input, PR_FALSE); |
|
1359 } |
|
1360 |
|
1361 SECStatus |
|
1362 RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key, |
|
1363 unsigned char *output, |
|
1364 const unsigned char *input) |
|
1365 { |
|
1366 return rsa_PrivateKeyOp(key, output, input, PR_TRUE); |
|
1367 } |
|
1368 |
|
1369 SECStatus |
|
1370 RSA_PrivateKeyCheck(const RSAPrivateKey *key) |
|
1371 { |
|
1372 mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res; |
|
1373 mp_err err = MP_OKAY; |
|
1374 SECStatus rv = SECSuccess; |
|
1375 MP_DIGITS(&p) = 0; |
|
1376 MP_DIGITS(&q) = 0; |
|
1377 MP_DIGITS(&n) = 0; |
|
1378 MP_DIGITS(&psub1)= 0; |
|
1379 MP_DIGITS(&qsub1)= 0; |
|
1380 MP_DIGITS(&e) = 0; |
|
1381 MP_DIGITS(&d) = 0; |
|
1382 MP_DIGITS(&d_p) = 0; |
|
1383 MP_DIGITS(&d_q) = 0; |
|
1384 MP_DIGITS(&qInv) = 0; |
|
1385 MP_DIGITS(&res) = 0; |
|
1386 CHECK_MPI_OK( mp_init(&p) ); |
|
1387 CHECK_MPI_OK( mp_init(&q) ); |
|
1388 CHECK_MPI_OK( mp_init(&n) ); |
|
1389 CHECK_MPI_OK( mp_init(&psub1)); |
|
1390 CHECK_MPI_OK( mp_init(&qsub1)); |
|
1391 CHECK_MPI_OK( mp_init(&e) ); |
|
1392 CHECK_MPI_OK( mp_init(&d) ); |
|
1393 CHECK_MPI_OK( mp_init(&d_p) ); |
|
1394 CHECK_MPI_OK( mp_init(&d_q) ); |
|
1395 CHECK_MPI_OK( mp_init(&qInv) ); |
|
1396 CHECK_MPI_OK( mp_init(&res) ); |
|
1397 |
|
1398 if (!key->modulus.data || !key->prime1.data || !key->prime2.data || |
|
1399 !key->publicExponent.data || !key->privateExponent.data || |
|
1400 !key->exponent1.data || !key->exponent2.data || |
|
1401 !key->coefficient.data) { |
|
1402 /* call RSA_PopulatePrivateKey first, if the application wishes to |
|
1403 * recover these parameters */ |
|
1404 err = MP_BADARG; |
|
1405 goto cleanup; |
|
1406 } |
|
1407 |
|
1408 SECITEM_TO_MPINT(key->modulus, &n); |
|
1409 SECITEM_TO_MPINT(key->prime1, &p); |
|
1410 SECITEM_TO_MPINT(key->prime2, &q); |
|
1411 SECITEM_TO_MPINT(key->publicExponent, &e); |
|
1412 SECITEM_TO_MPINT(key->privateExponent, &d); |
|
1413 SECITEM_TO_MPINT(key->exponent1, &d_p); |
|
1414 SECITEM_TO_MPINT(key->exponent2, &d_q); |
|
1415 SECITEM_TO_MPINT(key->coefficient, &qInv); |
|
1416 /* p and q must be distinct. */ |
|
1417 if (mp_cmp(&p, &q) == 0) { |
|
1418 rv = SECFailure; |
|
1419 goto cleanup; |
|
1420 } |
|
1421 #define VERIFY_MPI_EQUAL(m1, m2) \ |
|
1422 if (mp_cmp(m1, m2) != 0) { \ |
|
1423 rv = SECFailure; \ |
|
1424 goto cleanup; \ |
|
1425 } |
|
1426 #define VERIFY_MPI_EQUAL_1(m) \ |
|
1427 if (mp_cmp_d(m, 1) != 0) { \ |
|
1428 rv = SECFailure; \ |
|
1429 goto cleanup; \ |
|
1430 } |
|
1431 /* n == p * q */ |
|
1432 CHECK_MPI_OK( mp_mul(&p, &q, &res) ); |
|
1433 VERIFY_MPI_EQUAL(&res, &n); |
|
1434 /* gcd(e, p-1) == 1 */ |
|
1435 CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) ); |
|
1436 CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) ); |
|
1437 VERIFY_MPI_EQUAL_1(&res); |
|
1438 /* gcd(e, q-1) == 1 */ |
|
1439 CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) ); |
|
1440 CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) ); |
|
1441 VERIFY_MPI_EQUAL_1(&res); |
|
1442 /* d*e == 1 mod p-1 */ |
|
1443 CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) ); |
|
1444 VERIFY_MPI_EQUAL_1(&res); |
|
1445 /* d*e == 1 mod q-1 */ |
|
1446 CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) ); |
|
1447 VERIFY_MPI_EQUAL_1(&res); |
|
1448 /* d_p == d mod p-1 */ |
|
1449 CHECK_MPI_OK( mp_mod(&d, &psub1, &res) ); |
|
1450 VERIFY_MPI_EQUAL(&res, &d_p); |
|
1451 /* d_q == d mod q-1 */ |
|
1452 CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) ); |
|
1453 VERIFY_MPI_EQUAL(&res, &d_q); |
|
1454 /* q * q**-1 == 1 mod p */ |
|
1455 CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) ); |
|
1456 VERIFY_MPI_EQUAL_1(&res); |
|
1457 |
|
1458 cleanup: |
|
1459 mp_clear(&n); |
|
1460 mp_clear(&p); |
|
1461 mp_clear(&q); |
|
1462 mp_clear(&psub1); |
|
1463 mp_clear(&qsub1); |
|
1464 mp_clear(&e); |
|
1465 mp_clear(&d); |
|
1466 mp_clear(&d_p); |
|
1467 mp_clear(&d_q); |
|
1468 mp_clear(&qInv); |
|
1469 mp_clear(&res); |
|
1470 if (err) { |
|
1471 MP_TO_SEC_ERROR(err); |
|
1472 rv = SECFailure; |
|
1473 } |
|
1474 return rv; |
|
1475 } |
|
1476 |
|
1477 static SECStatus RSA_Init(void) |
|
1478 { |
|
1479 if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) { |
|
1480 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
|
1481 return SECFailure; |
|
1482 } |
|
1483 return SECSuccess; |
|
1484 } |
|
1485 |
|
1486 SECStatus BL_Init(void) |
|
1487 { |
|
1488 return RSA_Init(); |
|
1489 } |
|
1490 |
|
1491 /* cleanup at shutdown */ |
|
1492 void RSA_Cleanup(void) |
|
1493 { |
|
1494 blindingParams * bp = NULL; |
|
1495 if (!coBPInit.initialized) |
|
1496 return; |
|
1497 |
|
1498 while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) { |
|
1499 RSABlindingParams *rsabp = |
|
1500 (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head); |
|
1501 PR_REMOVE_LINK(&rsabp->link); |
|
1502 /* clear parameters cache */ |
|
1503 while (rsabp->bp != NULL) { |
|
1504 bp = rsabp->bp; |
|
1505 rsabp->bp = rsabp->bp->next; |
|
1506 mp_clear( &bp->f ); |
|
1507 mp_clear( &bp->g ); |
|
1508 } |
|
1509 SECITEM_FreeItem(&rsabp->modulus,PR_FALSE); |
|
1510 PORT_Free(rsabp); |
|
1511 } |
|
1512 |
|
1513 if (blindingParamsList.cVar) { |
|
1514 PR_DestroyCondVar(blindingParamsList.cVar); |
|
1515 blindingParamsList.cVar = NULL; |
|
1516 } |
|
1517 |
|
1518 if (blindingParamsList.lock) { |
|
1519 SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock)); |
|
1520 blindingParamsList.lock = NULL; |
|
1521 } |
|
1522 |
|
1523 coBPInit.initialized = 0; |
|
1524 coBPInit.inProgress = 0; |
|
1525 coBPInit.status = 0; |
|
1526 } |
|
1527 |
|
1528 /* |
|
1529 * need a central place for this function to free up all the memory that |
|
1530 * free_bl may have allocated along the way. Currently only RSA does this, |
|
1531 * so I've put it here for now. |
|
1532 */ |
|
1533 void BL_Cleanup(void) |
|
1534 { |
|
1535 RSA_Cleanup(); |
|
1536 } |
|
1537 |
|
1538 PRBool bl_parentForkedAfterC_Initialize; |
|
1539 |
|
1540 /* |
|
1541 * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms. |
|
1542 */ |
|
1543 void BL_SetForkState(PRBool forked) |
|
1544 { |
|
1545 bl_parentForkedAfterC_Initialize = forked; |
|
1546 } |
|
1547 |