|
1 /* crc32.c -- compute the CRC-32 of a data stream |
|
2 * Copyright (C) 1995-2006, 2010 Mark Adler |
|
3 * For conditions of distribution and use, see copyright notice in zlib.h |
|
4 * |
|
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster |
|
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing |
|
7 * tables for updating the shift register in one step with three exclusive-ors |
|
8 * instead of four steps with four exclusive-ors. This results in about a |
|
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. |
|
10 */ |
|
11 |
|
12 /* @(#) $Id$ */ |
|
13 |
|
14 /* |
|
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
|
16 protection on the static variables used to control the first-use generation |
|
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
|
18 first call get_crc_table() to initialize the tables before allowing more than |
|
19 one thread to use crc32(). |
|
20 */ |
|
21 |
|
22 #ifdef MAKECRCH |
|
23 # include <stdio.h> |
|
24 # ifndef DYNAMIC_CRC_TABLE |
|
25 # define DYNAMIC_CRC_TABLE |
|
26 # endif /* !DYNAMIC_CRC_TABLE */ |
|
27 #endif /* MAKECRCH */ |
|
28 |
|
29 #include "zutil.h" /* for STDC and FAR definitions */ |
|
30 |
|
31 #define local static |
|
32 |
|
33 /* Find a four-byte integer type for crc32_little() and crc32_big(). */ |
|
34 #ifndef NOBYFOUR |
|
35 # ifdef STDC /* need ANSI C limits.h to determine sizes */ |
|
36 # include <limits.h> |
|
37 # define BYFOUR |
|
38 # if (UINT_MAX == 0xffffffffUL) |
|
39 typedef unsigned int u4; |
|
40 # else |
|
41 # if (ULONG_MAX == 0xffffffffUL) |
|
42 typedef unsigned long u4; |
|
43 # else |
|
44 # if (USHRT_MAX == 0xffffffffUL) |
|
45 typedef unsigned short u4; |
|
46 # else |
|
47 # undef BYFOUR /* can't find a four-byte integer type! */ |
|
48 # endif |
|
49 # endif |
|
50 # endif |
|
51 # endif /* STDC */ |
|
52 #endif /* !NOBYFOUR */ |
|
53 |
|
54 /* Definitions for doing the crc four data bytes at a time. */ |
|
55 #ifdef BYFOUR |
|
56 # define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \ |
|
57 (((w)&0xff00)<<8)+(((w)&0xff)<<24)) |
|
58 local unsigned long crc32_little OF((unsigned long, |
|
59 const unsigned char FAR *, unsigned)); |
|
60 local unsigned long crc32_big OF((unsigned long, |
|
61 const unsigned char FAR *, unsigned)); |
|
62 # define TBLS 8 |
|
63 #else |
|
64 # define TBLS 1 |
|
65 #endif /* BYFOUR */ |
|
66 |
|
67 /* Local functions for crc concatenation */ |
|
68 local unsigned long gf2_matrix_times OF((unsigned long *mat, |
|
69 unsigned long vec)); |
|
70 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); |
|
71 local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2); |
|
72 |
|
73 |
|
74 #ifdef DYNAMIC_CRC_TABLE |
|
75 |
|
76 local volatile int crc_table_empty = 1; |
|
77 local unsigned long FAR crc_table[TBLS][256]; |
|
78 local void make_crc_table OF((void)); |
|
79 #ifdef MAKECRCH |
|
80 local void write_table OF((FILE *, const unsigned long FAR *)); |
|
81 #endif /* MAKECRCH */ |
|
82 /* |
|
83 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
|
84 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
|
85 |
|
86 Polynomials over GF(2) are represented in binary, one bit per coefficient, |
|
87 with the lowest powers in the most significant bit. Then adding polynomials |
|
88 is just exclusive-or, and multiplying a polynomial by x is a right shift by |
|
89 one. If we call the above polynomial p, and represent a byte as the |
|
90 polynomial q, also with the lowest power in the most significant bit (so the |
|
91 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, |
|
92 where a mod b means the remainder after dividing a by b. |
|
93 |
|
94 This calculation is done using the shift-register method of multiplying and |
|
95 taking the remainder. The register is initialized to zero, and for each |
|
96 incoming bit, x^32 is added mod p to the register if the bit is a one (where |
|
97 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by |
|
98 x (which is shifting right by one and adding x^32 mod p if the bit shifted |
|
99 out is a one). We start with the highest power (least significant bit) of |
|
100 q and repeat for all eight bits of q. |
|
101 |
|
102 The first table is simply the CRC of all possible eight bit values. This is |
|
103 all the information needed to generate CRCs on data a byte at a time for all |
|
104 combinations of CRC register values and incoming bytes. The remaining tables |
|
105 allow for word-at-a-time CRC calculation for both big-endian and little- |
|
106 endian machines, where a word is four bytes. |
|
107 */ |
|
108 local void make_crc_table() |
|
109 { |
|
110 unsigned long c; |
|
111 int n, k; |
|
112 unsigned long poly; /* polynomial exclusive-or pattern */ |
|
113 /* terms of polynomial defining this crc (except x^32): */ |
|
114 static volatile int first = 1; /* flag to limit concurrent making */ |
|
115 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
|
116 |
|
117 /* See if another task is already doing this (not thread-safe, but better |
|
118 than nothing -- significantly reduces duration of vulnerability in |
|
119 case the advice about DYNAMIC_CRC_TABLE is ignored) */ |
|
120 if (first) { |
|
121 first = 0; |
|
122 |
|
123 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ |
|
124 poly = 0UL; |
|
125 for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) |
|
126 poly |= 1UL << (31 - p[n]); |
|
127 |
|
128 /* generate a crc for every 8-bit value */ |
|
129 for (n = 0; n < 256; n++) { |
|
130 c = (unsigned long)n; |
|
131 for (k = 0; k < 8; k++) |
|
132 c = c & 1 ? poly ^ (c >> 1) : c >> 1; |
|
133 crc_table[0][n] = c; |
|
134 } |
|
135 |
|
136 #ifdef BYFOUR |
|
137 /* generate crc for each value followed by one, two, and three zeros, |
|
138 and then the byte reversal of those as well as the first table */ |
|
139 for (n = 0; n < 256; n++) { |
|
140 c = crc_table[0][n]; |
|
141 crc_table[4][n] = REV(c); |
|
142 for (k = 1; k < 4; k++) { |
|
143 c = crc_table[0][c & 0xff] ^ (c >> 8); |
|
144 crc_table[k][n] = c; |
|
145 crc_table[k + 4][n] = REV(c); |
|
146 } |
|
147 } |
|
148 #endif /* BYFOUR */ |
|
149 |
|
150 crc_table_empty = 0; |
|
151 } |
|
152 else { /* not first */ |
|
153 /* wait for the other guy to finish (not efficient, but rare) */ |
|
154 while (crc_table_empty) |
|
155 ; |
|
156 } |
|
157 |
|
158 #ifdef MAKECRCH |
|
159 /* write out CRC tables to crc32.h */ |
|
160 { |
|
161 FILE *out; |
|
162 |
|
163 out = fopen("crc32.h", "w"); |
|
164 if (out == NULL) return; |
|
165 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); |
|
166 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); |
|
167 fprintf(out, "local const unsigned long FAR "); |
|
168 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); |
|
169 write_table(out, crc_table[0]); |
|
170 # ifdef BYFOUR |
|
171 fprintf(out, "#ifdef BYFOUR\n"); |
|
172 for (k = 1; k < 8; k++) { |
|
173 fprintf(out, " },\n {\n"); |
|
174 write_table(out, crc_table[k]); |
|
175 } |
|
176 fprintf(out, "#endif\n"); |
|
177 # endif /* BYFOUR */ |
|
178 fprintf(out, " }\n};\n"); |
|
179 fclose(out); |
|
180 } |
|
181 #endif /* MAKECRCH */ |
|
182 } |
|
183 |
|
184 #ifdef MAKECRCH |
|
185 local void write_table(out, table) |
|
186 FILE *out; |
|
187 const unsigned long FAR *table; |
|
188 { |
|
189 int n; |
|
190 |
|
191 for (n = 0; n < 256; n++) |
|
192 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], |
|
193 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); |
|
194 } |
|
195 #endif /* MAKECRCH */ |
|
196 |
|
197 #else /* !DYNAMIC_CRC_TABLE */ |
|
198 /* ======================================================================== |
|
199 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). |
|
200 */ |
|
201 #include "crc32.h" |
|
202 #endif /* DYNAMIC_CRC_TABLE */ |
|
203 |
|
204 /* ========================================================================= |
|
205 * This function can be used by asm versions of crc32() |
|
206 */ |
|
207 const unsigned long FAR * ZEXPORT get_crc_table() |
|
208 { |
|
209 #ifdef DYNAMIC_CRC_TABLE |
|
210 if (crc_table_empty) |
|
211 make_crc_table(); |
|
212 #endif /* DYNAMIC_CRC_TABLE */ |
|
213 return (const unsigned long FAR *)crc_table; |
|
214 } |
|
215 |
|
216 /* ========================================================================= */ |
|
217 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) |
|
218 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 |
|
219 |
|
220 /* ========================================================================= */ |
|
221 unsigned long ZEXPORT crc32(crc, buf, len) |
|
222 unsigned long crc; |
|
223 const unsigned char FAR *buf; |
|
224 uInt len; |
|
225 { |
|
226 if (buf == Z_NULL) return 0UL; |
|
227 |
|
228 #ifdef DYNAMIC_CRC_TABLE |
|
229 if (crc_table_empty) |
|
230 make_crc_table(); |
|
231 #endif /* DYNAMIC_CRC_TABLE */ |
|
232 |
|
233 #ifdef BYFOUR |
|
234 if (sizeof(void *) == sizeof(ptrdiff_t)) { |
|
235 u4 endian; |
|
236 |
|
237 endian = 1; |
|
238 if (*((unsigned char *)(&endian))) |
|
239 return crc32_little(crc, buf, len); |
|
240 else |
|
241 return crc32_big(crc, buf, len); |
|
242 } |
|
243 #endif /* BYFOUR */ |
|
244 crc = crc ^ 0xffffffffUL; |
|
245 while (len >= 8) { |
|
246 DO8; |
|
247 len -= 8; |
|
248 } |
|
249 if (len) do { |
|
250 DO1; |
|
251 } while (--len); |
|
252 return crc ^ 0xffffffffUL; |
|
253 } |
|
254 |
|
255 #ifdef BYFOUR |
|
256 |
|
257 /* ========================================================================= */ |
|
258 #define DOLIT4 c ^= *buf4++; \ |
|
259 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ |
|
260 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] |
|
261 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 |
|
262 |
|
263 /* ========================================================================= */ |
|
264 local unsigned long crc32_little(crc, buf, len) |
|
265 unsigned long crc; |
|
266 const unsigned char FAR *buf; |
|
267 unsigned len; |
|
268 { |
|
269 register u4 c; |
|
270 register const u4 FAR *buf4; |
|
271 |
|
272 c = (u4)crc; |
|
273 c = ~c; |
|
274 while (len && ((ptrdiff_t)buf & 3)) { |
|
275 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
276 len--; |
|
277 } |
|
278 |
|
279 buf4 = (const u4 FAR *)(const void FAR *)buf; |
|
280 while (len >= 32) { |
|
281 DOLIT32; |
|
282 len -= 32; |
|
283 } |
|
284 while (len >= 4) { |
|
285 DOLIT4; |
|
286 len -= 4; |
|
287 } |
|
288 buf = (const unsigned char FAR *)buf4; |
|
289 |
|
290 if (len) do { |
|
291 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); |
|
292 } while (--len); |
|
293 c = ~c; |
|
294 return (unsigned long)c; |
|
295 } |
|
296 |
|
297 /* ========================================================================= */ |
|
298 #define DOBIG4 c ^= *++buf4; \ |
|
299 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ |
|
300 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] |
|
301 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 |
|
302 |
|
303 /* ========================================================================= */ |
|
304 local unsigned long crc32_big(crc, buf, len) |
|
305 unsigned long crc; |
|
306 const unsigned char FAR *buf; |
|
307 unsigned len; |
|
308 { |
|
309 register u4 c; |
|
310 register const u4 FAR *buf4; |
|
311 |
|
312 c = REV((u4)crc); |
|
313 c = ~c; |
|
314 while (len && ((ptrdiff_t)buf & 3)) { |
|
315 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
316 len--; |
|
317 } |
|
318 |
|
319 buf4 = (const u4 FAR *)(const void FAR *)buf; |
|
320 buf4--; |
|
321 while (len >= 32) { |
|
322 DOBIG32; |
|
323 len -= 32; |
|
324 } |
|
325 while (len >= 4) { |
|
326 DOBIG4; |
|
327 len -= 4; |
|
328 } |
|
329 buf4++; |
|
330 buf = (const unsigned char FAR *)buf4; |
|
331 |
|
332 if (len) do { |
|
333 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); |
|
334 } while (--len); |
|
335 c = ~c; |
|
336 return (unsigned long)(REV(c)); |
|
337 } |
|
338 |
|
339 #endif /* BYFOUR */ |
|
340 |
|
341 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ |
|
342 |
|
343 /* ========================================================================= */ |
|
344 local unsigned long gf2_matrix_times(mat, vec) |
|
345 unsigned long *mat; |
|
346 unsigned long vec; |
|
347 { |
|
348 unsigned long sum; |
|
349 |
|
350 sum = 0; |
|
351 while (vec) { |
|
352 if (vec & 1) |
|
353 sum ^= *mat; |
|
354 vec >>= 1; |
|
355 mat++; |
|
356 } |
|
357 return sum; |
|
358 } |
|
359 |
|
360 /* ========================================================================= */ |
|
361 local void gf2_matrix_square(square, mat) |
|
362 unsigned long *square; |
|
363 unsigned long *mat; |
|
364 { |
|
365 int n; |
|
366 |
|
367 for (n = 0; n < GF2_DIM; n++) |
|
368 square[n] = gf2_matrix_times(mat, mat[n]); |
|
369 } |
|
370 |
|
371 /* ========================================================================= */ |
|
372 local uLong crc32_combine_(crc1, crc2, len2) |
|
373 uLong crc1; |
|
374 uLong crc2; |
|
375 z_off64_t len2; |
|
376 { |
|
377 int n; |
|
378 unsigned long row; |
|
379 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ |
|
380 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ |
|
381 |
|
382 /* degenerate case (also disallow negative lengths) */ |
|
383 if (len2 <= 0) |
|
384 return crc1; |
|
385 |
|
386 /* put operator for one zero bit in odd */ |
|
387 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ |
|
388 row = 1; |
|
389 for (n = 1; n < GF2_DIM; n++) { |
|
390 odd[n] = row; |
|
391 row <<= 1; |
|
392 } |
|
393 |
|
394 /* put operator for two zero bits in even */ |
|
395 gf2_matrix_square(even, odd); |
|
396 |
|
397 /* put operator for four zero bits in odd */ |
|
398 gf2_matrix_square(odd, even); |
|
399 |
|
400 /* apply len2 zeros to crc1 (first square will put the operator for one |
|
401 zero byte, eight zero bits, in even) */ |
|
402 do { |
|
403 /* apply zeros operator for this bit of len2 */ |
|
404 gf2_matrix_square(even, odd); |
|
405 if (len2 & 1) |
|
406 crc1 = gf2_matrix_times(even, crc1); |
|
407 len2 >>= 1; |
|
408 |
|
409 /* if no more bits set, then done */ |
|
410 if (len2 == 0) |
|
411 break; |
|
412 |
|
413 /* another iteration of the loop with odd and even swapped */ |
|
414 gf2_matrix_square(odd, even); |
|
415 if (len2 & 1) |
|
416 crc1 = gf2_matrix_times(odd, crc1); |
|
417 len2 >>= 1; |
|
418 |
|
419 /* if no more bits set, then done */ |
|
420 } while (len2 != 0); |
|
421 |
|
422 /* return combined crc */ |
|
423 crc1 ^= crc2; |
|
424 return crc1; |
|
425 } |
|
426 |
|
427 /* ========================================================================= */ |
|
428 uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
|
429 uLong crc1; |
|
430 uLong crc2; |
|
431 z_off_t len2; |
|
432 { |
|
433 return crc32_combine_(crc1, crc2, len2); |
|
434 } |
|
435 |
|
436 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
|
437 uLong crc1; |
|
438 uLong crc2; |
|
439 z_off64_t len2; |
|
440 { |
|
441 return crc32_combine_(crc1, crc2, len2); |
|
442 } |