|
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 // This defines a set of argument wrappers and related factory methods that |
|
6 // can be used specify the refcounting and reference semantics of arguments |
|
7 // that are bound by the Bind() function in base/bind.h. |
|
8 // |
|
9 // It also defines a set of simple functions and utilities that people want |
|
10 // when using Callback<> and Bind(). |
|
11 // |
|
12 // |
|
13 // ARGUMENT BINDING WRAPPERS |
|
14 // |
|
15 // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(), |
|
16 // base::ConstRef(), and base::IgnoreResult(). |
|
17 // |
|
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable |
|
19 // refcounting on arguments that are refcounted objects. |
|
20 // |
|
21 // Owned() transfers ownership of an object to the Callback resulting from |
|
22 // bind; the object will be deleted when the Callback is deleted. |
|
23 // |
|
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) |
|
25 // through a Callback. Logically, this signifies a destructive transfer of |
|
26 // the state of the argument into the target function. Invoking |
|
27 // Callback::Run() twice on a Callback that was created with a Passed() |
|
28 // argument will CHECK() because the first invocation would have already |
|
29 // transferred ownership to the target function. |
|
30 // |
|
31 // ConstRef() allows binding a constant reference to an argument rather |
|
32 // than a copy. |
|
33 // |
|
34 // IgnoreResult() is used to adapt a function or Callback with a return type to |
|
35 // one with a void return. This is most useful if you have a function with, |
|
36 // say, a pesky ignorable bool return that you want to use with PostTask or |
|
37 // something else that expect a Callback with a void return. |
|
38 // |
|
39 // EXAMPLE OF Unretained(): |
|
40 // |
|
41 // class Foo { |
|
42 // public: |
|
43 // void func() { cout << "Foo:f" << endl; } |
|
44 // }; |
|
45 // |
|
46 // // In some function somewhere. |
|
47 // Foo foo; |
|
48 // Closure foo_callback = |
|
49 // Bind(&Foo::func, Unretained(&foo)); |
|
50 // foo_callback.Run(); // Prints "Foo:f". |
|
51 // |
|
52 // Without the Unretained() wrapper on |&foo|, the above call would fail |
|
53 // to compile because Foo does not support the AddRef() and Release() methods. |
|
54 // |
|
55 // |
|
56 // EXAMPLE OF Owned(): |
|
57 // |
|
58 // void foo(int* arg) { cout << *arg << endl } |
|
59 // |
|
60 // int* pn = new int(1); |
|
61 // Closure foo_callback = Bind(&foo, Owned(pn)); |
|
62 // |
|
63 // foo_callback.Run(); // Prints "1" |
|
64 // foo_callback.Run(); // Prints "1" |
|
65 // *n = 2; |
|
66 // foo_callback.Run(); // Prints "2" |
|
67 // |
|
68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when |
|
69 // // |foo_callback| goes out of scope. |
|
70 // |
|
71 // Without Owned(), someone would have to know to delete |pn| when the last |
|
72 // reference to the Callback is deleted. |
|
73 // |
|
74 // |
|
75 // EXAMPLE OF ConstRef(): |
|
76 // |
|
77 // void foo(int arg) { cout << arg << endl } |
|
78 // |
|
79 // int n = 1; |
|
80 // Closure no_ref = Bind(&foo, n); |
|
81 // Closure has_ref = Bind(&foo, ConstRef(n)); |
|
82 // |
|
83 // no_ref.Run(); // Prints "1" |
|
84 // has_ref.Run(); // Prints "1" |
|
85 // |
|
86 // n = 2; |
|
87 // no_ref.Run(); // Prints "1" |
|
88 // has_ref.Run(); // Prints "2" |
|
89 // |
|
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all |
|
91 // its bound callbacks. |
|
92 // |
|
93 // |
|
94 // EXAMPLE OF IgnoreResult(): |
|
95 // |
|
96 // int DoSomething(int arg) { cout << arg << endl; } |
|
97 // |
|
98 // // Assign to a Callback with a void return type. |
|
99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); |
|
100 // cb->Run(1); // Prints "1". |
|
101 // |
|
102 // // Prints "1" on |ml|. |
|
103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); |
|
104 // |
|
105 // |
|
106 // EXAMPLE OF Passed(): |
|
107 // |
|
108 // void TakesOwnership(scoped_ptr<Foo> arg) { } |
|
109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); } |
|
110 // |
|
111 // scoped_ptr<Foo> f(new Foo()); |
|
112 // |
|
113 // // |cb| is given ownership of Foo(). |f| is now NULL. |
|
114 // // You can use f.Pass() in place of &f, but it's more verbose. |
|
115 // Closure cb = Bind(&TakesOwnership, Passed(&f)); |
|
116 // |
|
117 // // Run was never called so |cb| still owns Foo() and deletes |
|
118 // // it on Reset(). |
|
119 // cb.Reset(); |
|
120 // |
|
121 // // |cb| is given a new Foo created by CreateFoo(). |
|
122 // cb = Bind(&TakesOwnership, Passed(CreateFoo())); |
|
123 // |
|
124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| |
|
125 // // no longer owns Foo() and, if reset, would not delete Foo(). |
|
126 // cb.Run(); // Foo() is now transferred to |arg| and deleted. |
|
127 // cb.Run(); // This CHECK()s since Foo() already been used once. |
|
128 // |
|
129 // Passed() is particularly useful with PostTask() when you are transferring |
|
130 // ownership of an argument into a task, but don't necessarily know if the |
|
131 // task will always be executed. This can happen if the task is cancellable |
|
132 // or if it is posted to a MessageLoopProxy. |
|
133 // |
|
134 // |
|
135 // SIMPLE FUNCTIONS AND UTILITIES. |
|
136 // |
|
137 // DoNothing() - Useful for creating a Closure that does nothing when called. |
|
138 // DeletePointer<T>() - Useful for creating a Closure that will delete a |
|
139 // pointer when invoked. Only use this when necessary. |
|
140 // In most cases MessageLoop::DeleteSoon() is a better |
|
141 // fit. |
|
142 |
|
143 #ifndef BASE_BIND_HELPERS_H_ |
|
144 #define BASE_BIND_HELPERS_H_ |
|
145 |
|
146 #include "base/basictypes.h" |
|
147 #include "base/callback.h" |
|
148 #include "base/memory/weak_ptr.h" |
|
149 #include "base/template_util.h" |
|
150 |
|
151 namespace base { |
|
152 namespace internal { |
|
153 |
|
154 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T |
|
155 // for the existence of AddRef() and Release() functions of the correct |
|
156 // signature. |
|
157 // |
|
158 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error |
|
159 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence |
|
160 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison |
|
161 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions |
|
162 // |
|
163 // The last link in particular show the method used below. |
|
164 // |
|
165 // For SFINAE to work with inherited methods, we need to pull some extra tricks |
|
166 // with multiple inheritance. In the more standard formulation, the overloads |
|
167 // of Check would be: |
|
168 // |
|
169 // template <typename C> |
|
170 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); |
|
171 // |
|
172 // template <typename C> |
|
173 // No NotTheCheckWeWant(...); |
|
174 // |
|
175 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); |
|
176 // |
|
177 // The problem here is that template resolution will not match |
|
178 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if |
|
179 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, |
|
180 // |value| will be false. This formulation only checks for whether or |
|
181 // not TargetFunc exist directly in the class being introspected. |
|
182 // |
|
183 // To get around this, we play a dirty trick with multiple inheritance. |
|
184 // First, We create a class BaseMixin that declares each function that we |
|
185 // want to probe for. Then we create a class Base that inherits from both T |
|
186 // (the class we wish to probe) and BaseMixin. Note that the function |
|
187 // signature in BaseMixin does not need to match the signature of the function |
|
188 // we are probing for; thus it's easiest to just use void(void). |
|
189 // |
|
190 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an |
|
191 // ambiguous resolution between BaseMixin and T. This lets us write the |
|
192 // following: |
|
193 // |
|
194 // template <typename C> |
|
195 // No GoodCheck(Helper<&C::TargetFunc>*); |
|
196 // |
|
197 // template <typename C> |
|
198 // Yes GoodCheck(...); |
|
199 // |
|
200 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); |
|
201 // |
|
202 // Notice here that the variadic version of GoodCheck() returns Yes here |
|
203 // instead of No like the previous one. Also notice that we calculate |value| |
|
204 // by specializing GoodCheck() on Base instead of T. |
|
205 // |
|
206 // We've reversed the roles of the variadic, and Helper overloads. |
|
207 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid |
|
208 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve |
|
209 // to the variadic version if T has TargetFunc. If T::TargetFunc does not |
|
210 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution |
|
211 // will prefer GoodCheck(Helper<&C::TargetFunc>*). |
|
212 // |
|
213 // This method of SFINAE will correctly probe for inherited names, but it cannot |
|
214 // typecheck those names. It's still a good enough sanity check though. |
|
215 // |
|
216 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. |
|
217 // |
|
218 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted |
|
219 // this works well. |
|
220 // |
|
221 // TODO(ajwong): Make this check for Release() as well. |
|
222 // See http://crbug.com/82038. |
|
223 template <typename T> |
|
224 class SupportsAddRefAndRelease { |
|
225 typedef char Yes[1]; |
|
226 typedef char No[2]; |
|
227 |
|
228 struct BaseMixin { |
|
229 void AddRef(); |
|
230 }; |
|
231 |
|
232 // MSVC warns when you try to use Base if T has a private destructor, the |
|
233 // common pattern for refcounted types. It does this even though no attempt to |
|
234 // instantiate Base is made. We disable the warning for this definition. |
|
235 #if defined(OS_WIN) |
|
236 #pragma warning(push) |
|
237 #pragma warning(disable:4624) |
|
238 #endif |
|
239 struct Base : public T, public BaseMixin { |
|
240 }; |
|
241 #if defined(OS_WIN) |
|
242 #pragma warning(pop) |
|
243 #endif |
|
244 |
|
245 template <void(BaseMixin::*)(void)> struct Helper {}; |
|
246 |
|
247 template <typename C> |
|
248 static No& Check(Helper<&C::AddRef>*); |
|
249 |
|
250 template <typename > |
|
251 static Yes& Check(...); |
|
252 |
|
253 public: |
|
254 static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes); |
|
255 }; |
|
256 |
|
257 // Helpers to assert that arguments of a recounted type are bound with a |
|
258 // scoped_refptr. |
|
259 template <bool IsClasstype, typename T> |
|
260 struct UnsafeBindtoRefCountedArgHelper : false_type { |
|
261 }; |
|
262 |
|
263 template <typename T> |
|
264 struct UnsafeBindtoRefCountedArgHelper<true, T> |
|
265 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { |
|
266 }; |
|
267 |
|
268 template <typename T> |
|
269 struct UnsafeBindtoRefCountedArg : false_type { |
|
270 }; |
|
271 |
|
272 template <typename T> |
|
273 struct UnsafeBindtoRefCountedArg<T*> |
|
274 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { |
|
275 }; |
|
276 |
|
277 template <typename T> |
|
278 class HasIsMethodTag { |
|
279 typedef char Yes[1]; |
|
280 typedef char No[2]; |
|
281 |
|
282 template <typename U> |
|
283 static Yes& Check(typename U::IsMethod*); |
|
284 |
|
285 template <typename U> |
|
286 static No& Check(...); |
|
287 |
|
288 public: |
|
289 static const bool value = sizeof(Check<T>(0)) == sizeof(Yes); |
|
290 }; |
|
291 |
|
292 template <typename T> |
|
293 class UnretainedWrapper { |
|
294 public: |
|
295 explicit UnretainedWrapper(T* o) : ptr_(o) {} |
|
296 T* get() const { return ptr_; } |
|
297 private: |
|
298 T* ptr_; |
|
299 }; |
|
300 |
|
301 template <typename T> |
|
302 class ConstRefWrapper { |
|
303 public: |
|
304 explicit ConstRefWrapper(const T& o) : ptr_(&o) {} |
|
305 const T& get() const { return *ptr_; } |
|
306 private: |
|
307 const T* ptr_; |
|
308 }; |
|
309 |
|
310 template <typename T> |
|
311 struct IgnoreResultHelper { |
|
312 explicit IgnoreResultHelper(T functor) : functor_(functor) {} |
|
313 |
|
314 T functor_; |
|
315 }; |
|
316 |
|
317 template <typename T> |
|
318 struct IgnoreResultHelper<Callback<T> > { |
|
319 explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {} |
|
320 |
|
321 const Callback<T>& functor_; |
|
322 }; |
|
323 |
|
324 // An alternate implementation is to avoid the destructive copy, and instead |
|
325 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to |
|
326 // a class that is essentially a scoped_ptr<>. |
|
327 // |
|
328 // The current implementation has the benefit though of leaving ParamTraits<> |
|
329 // fully in callback_internal.h as well as avoiding type conversions during |
|
330 // storage. |
|
331 template <typename T> |
|
332 class OwnedWrapper { |
|
333 public: |
|
334 explicit OwnedWrapper(T* o) : ptr_(o) {} |
|
335 ~OwnedWrapper() { delete ptr_; } |
|
336 T* get() const { return ptr_; } |
|
337 OwnedWrapper(const OwnedWrapper& other) { |
|
338 ptr_ = other.ptr_; |
|
339 other.ptr_ = NULL; |
|
340 } |
|
341 |
|
342 private: |
|
343 mutable T* ptr_; |
|
344 }; |
|
345 |
|
346 // PassedWrapper is a copyable adapter for a scoper that ignores const. |
|
347 // |
|
348 // It is needed to get around the fact that Bind() takes a const reference to |
|
349 // all its arguments. Because Bind() takes a const reference to avoid |
|
350 // unnecessary copies, it is incompatible with movable-but-not-copyable |
|
351 // types; doing a destructive "move" of the type into Bind() would violate |
|
352 // the const correctness. |
|
353 // |
|
354 // This conundrum cannot be solved without either C++11 rvalue references or |
|
355 // a O(2^n) blowup of Bind() templates to handle each combination of regular |
|
356 // types and movable-but-not-copyable types. Thus we introduce a wrapper type |
|
357 // that is copyable to transmit the correct type information down into |
|
358 // BindState<>. Ignoring const in this type makes sense because it is only |
|
359 // created when we are explicitly trying to do a destructive move. |
|
360 // |
|
361 // Two notes: |
|
362 // 1) PassedWrapper supports any type that has a "Pass()" function. |
|
363 // This is intentional. The whitelisting of which specific types we |
|
364 // support is maintained by CallbackParamTraits<>. |
|
365 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" |
|
366 // scoper to a Callback and allow the Callback to execute once. |
|
367 template <typename T> |
|
368 class PassedWrapper { |
|
369 public: |
|
370 explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {} |
|
371 PassedWrapper(const PassedWrapper& other) |
|
372 : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) { |
|
373 } |
|
374 T Pass() const { |
|
375 CHECK(is_valid_); |
|
376 is_valid_ = false; |
|
377 return scoper_.Pass(); |
|
378 } |
|
379 |
|
380 private: |
|
381 mutable bool is_valid_; |
|
382 mutable T scoper_; |
|
383 }; |
|
384 |
|
385 // Unwrap the stored parameters for the wrappers above. |
|
386 template <typename T> |
|
387 struct UnwrapTraits { |
|
388 typedef const T& ForwardType; |
|
389 static ForwardType Unwrap(const T& o) { return o; } |
|
390 }; |
|
391 |
|
392 template <typename T> |
|
393 struct UnwrapTraits<UnretainedWrapper<T> > { |
|
394 typedef T* ForwardType; |
|
395 static ForwardType Unwrap(UnretainedWrapper<T> unretained) { |
|
396 return unretained.get(); |
|
397 } |
|
398 }; |
|
399 |
|
400 template <typename T> |
|
401 struct UnwrapTraits<ConstRefWrapper<T> > { |
|
402 typedef const T& ForwardType; |
|
403 static ForwardType Unwrap(ConstRefWrapper<T> const_ref) { |
|
404 return const_ref.get(); |
|
405 } |
|
406 }; |
|
407 |
|
408 template <typename T> |
|
409 struct UnwrapTraits<scoped_refptr<T> > { |
|
410 typedef T* ForwardType; |
|
411 static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); } |
|
412 }; |
|
413 |
|
414 template <typename T> |
|
415 struct UnwrapTraits<WeakPtr<T> > { |
|
416 typedef const WeakPtr<T>& ForwardType; |
|
417 static ForwardType Unwrap(const WeakPtr<T>& o) { return o; } |
|
418 }; |
|
419 |
|
420 template <typename T> |
|
421 struct UnwrapTraits<OwnedWrapper<T> > { |
|
422 typedef T* ForwardType; |
|
423 static ForwardType Unwrap(const OwnedWrapper<T>& o) { |
|
424 return o.get(); |
|
425 } |
|
426 }; |
|
427 |
|
428 template <typename T> |
|
429 struct UnwrapTraits<PassedWrapper<T> > { |
|
430 typedef T ForwardType; |
|
431 static T Unwrap(PassedWrapper<T>& o) { |
|
432 return o.Pass(); |
|
433 } |
|
434 }; |
|
435 |
|
436 // Utility for handling different refcounting semantics in the Bind() |
|
437 // function. |
|
438 template <bool is_method, typename T> |
|
439 struct MaybeRefcount; |
|
440 |
|
441 template <typename T> |
|
442 struct MaybeRefcount<false, T> { |
|
443 static void AddRef(const T&) {} |
|
444 static void Release(const T&) {} |
|
445 }; |
|
446 |
|
447 template <typename T, size_t n> |
|
448 struct MaybeRefcount<false, T[n]> { |
|
449 static void AddRef(const T*) {} |
|
450 static void Release(const T*) {} |
|
451 }; |
|
452 |
|
453 template <typename T> |
|
454 struct MaybeRefcount<true, T> { |
|
455 static void AddRef(const T&) {} |
|
456 static void Release(const T&) {} |
|
457 }; |
|
458 |
|
459 template <typename T> |
|
460 struct MaybeRefcount<true, T*> { |
|
461 static void AddRef(T* o) { o->AddRef(); } |
|
462 static void Release(T* o) { o->Release(); } |
|
463 }; |
|
464 |
|
465 // No need to additionally AddRef() and Release() since we are storing a |
|
466 // scoped_refptr<> inside the storage object already. |
|
467 template <typename T> |
|
468 struct MaybeRefcount<true, scoped_refptr<T> > { |
|
469 static void AddRef(const scoped_refptr<T>& o) {} |
|
470 static void Release(const scoped_refptr<T>& o) {} |
|
471 }; |
|
472 |
|
473 template <typename T> |
|
474 struct MaybeRefcount<true, const T*> { |
|
475 static void AddRef(const T* o) { o->AddRef(); } |
|
476 static void Release(const T* o) { o->Release(); } |
|
477 }; |
|
478 |
|
479 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a |
|
480 // method. It is used internally by Bind() to select the correct |
|
481 // InvokeHelper that will no-op itself in the event the WeakPtr<> for |
|
482 // the target object is invalidated. |
|
483 // |
|
484 // P1 should be the type of the object that will be received of the method. |
|
485 template <bool IsMethod, typename P1> |
|
486 struct IsWeakMethod : public false_type {}; |
|
487 |
|
488 template <typename T> |
|
489 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {}; |
|
490 |
|
491 template <typename T> |
|
492 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {}; |
|
493 |
|
494 } // namespace internal |
|
495 |
|
496 template <typename T> |
|
497 static inline internal::UnretainedWrapper<T> Unretained(T* o) { |
|
498 return internal::UnretainedWrapper<T>(o); |
|
499 } |
|
500 |
|
501 template <typename T> |
|
502 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { |
|
503 return internal::ConstRefWrapper<T>(o); |
|
504 } |
|
505 |
|
506 template <typename T> |
|
507 static inline internal::OwnedWrapper<T> Owned(T* o) { |
|
508 return internal::OwnedWrapper<T>(o); |
|
509 } |
|
510 |
|
511 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and |
|
512 // is best suited for use with the return value of a function. The second |
|
513 // takes a pointer to the scoper and is just syntactic sugar to avoid having |
|
514 // to write Passed(scoper.Pass()). |
|
515 template <typename T> |
|
516 static inline internal::PassedWrapper<T> Passed(T scoper) { |
|
517 return internal::PassedWrapper<T>(scoper.Pass()); |
|
518 } |
|
519 template <typename T> |
|
520 static inline internal::PassedWrapper<T> Passed(T* scoper) { |
|
521 return internal::PassedWrapper<T>(scoper->Pass()); |
|
522 } |
|
523 |
|
524 template <typename T> |
|
525 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { |
|
526 return internal::IgnoreResultHelper<T>(data); |
|
527 } |
|
528 |
|
529 template <typename T> |
|
530 static inline internal::IgnoreResultHelper<Callback<T> > |
|
531 IgnoreResult(const Callback<T>& data) { |
|
532 return internal::IgnoreResultHelper<Callback<T> >(data); |
|
533 } |
|
534 |
|
535 BASE_EXPORT void DoNothing(); |
|
536 |
|
537 template<typename T> |
|
538 void DeletePointer(T* obj) { |
|
539 delete obj; |
|
540 } |
|
541 |
|
542 } // namespace base |
|
543 |
|
544 #endif // BASE_BIND_HELPERS_H_ |