|
1 /* |
|
2 * written by Colin Plumb in 1993, no copyright is claimed. |
|
3 * This code is in the public domain; do with it what you wish. |
|
4 * |
|
5 * Equivalent code is available from RSA Data Security, Inc. |
|
6 * This code has been tested against that, and is equivalent, |
|
7 * except that you don't need to include two pages of legalese |
|
8 * with every copy. |
|
9 * |
|
10 * To compute the message digest of a chunk of bytes, declare an |
|
11 * MD5Context structure, pass it to MD5Init, call MD5Update as |
|
12 * needed on buffers full of bytes, and then call MD5Final, which |
|
13 * will fill a supplied 16-byte array with the digest. |
|
14 */ |
|
15 |
|
16 #include <string.h> |
|
17 |
|
18 #include "common/md5.h" |
|
19 |
|
20 namespace google_breakpad { |
|
21 |
|
22 #ifndef WORDS_BIGENDIAN |
|
23 #define byteReverse(buf, len) /* Nothing */ |
|
24 #else |
|
25 /* |
|
26 * Note: this code is harmless on little-endian machines. |
|
27 */ |
|
28 static void byteReverse(unsigned char *buf, unsigned longs) |
|
29 { |
|
30 u32 t; |
|
31 do { |
|
32 t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | |
|
33 ((unsigned) buf[1] << 8 | buf[0]); |
|
34 *(u32 *) buf = t; |
|
35 buf += 4; |
|
36 } while (--longs); |
|
37 } |
|
38 #endif |
|
39 |
|
40 static void MD5Transform(u32 buf[4], u32 const in[16]); |
|
41 |
|
42 /* |
|
43 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
|
44 * initialization constants. |
|
45 */ |
|
46 void MD5Init(struct MD5Context *ctx) |
|
47 { |
|
48 ctx->buf[0] = 0x67452301; |
|
49 ctx->buf[1] = 0xefcdab89; |
|
50 ctx->buf[2] = 0x98badcfe; |
|
51 ctx->buf[3] = 0x10325476; |
|
52 |
|
53 ctx->bits[0] = 0; |
|
54 ctx->bits[1] = 0; |
|
55 } |
|
56 |
|
57 /* |
|
58 * Update context to reflect the concatenation of another buffer full |
|
59 * of bytes. |
|
60 */ |
|
61 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) |
|
62 { |
|
63 u32 t; |
|
64 |
|
65 /* Update bitcount */ |
|
66 |
|
67 t = ctx->bits[0]; |
|
68 if ((ctx->bits[0] = t + ((u32) len << 3)) < t) |
|
69 ctx->bits[1]++; /* Carry from low to high */ |
|
70 ctx->bits[1] += len >> 29; |
|
71 |
|
72 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
|
73 |
|
74 /* Handle any leading odd-sized chunks */ |
|
75 |
|
76 if (t) { |
|
77 unsigned char *p = (unsigned char *) ctx->in + t; |
|
78 |
|
79 t = 64 - t; |
|
80 if (len < t) { |
|
81 memcpy(p, buf, len); |
|
82 return; |
|
83 } |
|
84 memcpy(p, buf, t); |
|
85 byteReverse(ctx->in, 16); |
|
86 MD5Transform(ctx->buf, (u32 *) ctx->in); |
|
87 buf += t; |
|
88 len -= t; |
|
89 } |
|
90 /* Process data in 64-byte chunks */ |
|
91 |
|
92 while (len >= 64) { |
|
93 memcpy(ctx->in, buf, 64); |
|
94 byteReverse(ctx->in, 16); |
|
95 MD5Transform(ctx->buf, (u32 *) ctx->in); |
|
96 buf += 64; |
|
97 len -= 64; |
|
98 } |
|
99 |
|
100 /* Handle any remaining bytes of data. */ |
|
101 |
|
102 memcpy(ctx->in, buf, len); |
|
103 } |
|
104 |
|
105 /* |
|
106 * Final wrapup - pad to 64-byte boundary with the bit pattern |
|
107 * 1 0* (64-bit count of bits processed, MSB-first) |
|
108 */ |
|
109 void MD5Final(unsigned char digest[16], struct MD5Context *ctx) |
|
110 { |
|
111 unsigned count; |
|
112 unsigned char *p; |
|
113 |
|
114 /* Compute number of bytes mod 64 */ |
|
115 count = (ctx->bits[0] >> 3) & 0x3F; |
|
116 |
|
117 /* Set the first char of padding to 0x80. This is safe since there is |
|
118 always at least one byte free */ |
|
119 p = ctx->in + count; |
|
120 *p++ = 0x80; |
|
121 |
|
122 /* Bytes of padding needed to make 64 bytes */ |
|
123 count = 64 - 1 - count; |
|
124 |
|
125 /* Pad out to 56 mod 64 */ |
|
126 if (count < 8) { |
|
127 /* Two lots of padding: Pad the first block to 64 bytes */ |
|
128 memset(p, 0, count); |
|
129 byteReverse(ctx->in, 16); |
|
130 MD5Transform(ctx->buf, (u32 *) ctx->in); |
|
131 |
|
132 /* Now fill the next block with 56 bytes */ |
|
133 memset(ctx->in, 0, 56); |
|
134 } else { |
|
135 /* Pad block to 56 bytes */ |
|
136 memset(p, 0, count - 8); |
|
137 } |
|
138 byteReverse(ctx->in, 14); |
|
139 |
|
140 /* Append length in bits and transform */ |
|
141 ((u32 *) ctx->in)[14] = ctx->bits[0]; |
|
142 ((u32 *) ctx->in)[15] = ctx->bits[1]; |
|
143 |
|
144 MD5Transform(ctx->buf, (u32 *) ctx->in); |
|
145 byteReverse((unsigned char *) ctx->buf, 4); |
|
146 memcpy(digest, ctx->buf, 16); |
|
147 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
|
148 } |
|
149 |
|
150 /* The four core functions - F1 is optimized somewhat */ |
|
151 |
|
152 /* #define F1(x, y, z) (x & y | ~x & z) */ |
|
153 #define F1(x, y, z) (z ^ (x & (y ^ z))) |
|
154 #define F2(x, y, z) F1(z, x, y) |
|
155 #define F3(x, y, z) (x ^ y ^ z) |
|
156 #define F4(x, y, z) (y ^ (x | ~z)) |
|
157 |
|
158 /* This is the central step in the MD5 algorithm. */ |
|
159 #define MD5STEP(f, w, x, y, z, data, s) \ |
|
160 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
|
161 |
|
162 /* |
|
163 * The core of the MD5 algorithm, this alters an existing MD5 hash to |
|
164 * reflect the addition of 16 longwords of new data. MD5Update blocks |
|
165 * the data and converts bytes into longwords for this routine. |
|
166 */ |
|
167 static void MD5Transform(u32 buf[4], u32 const in[16]) |
|
168 { |
|
169 register u32 a, b, c, d; |
|
170 |
|
171 a = buf[0]; |
|
172 b = buf[1]; |
|
173 c = buf[2]; |
|
174 d = buf[3]; |
|
175 |
|
176 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
|
177 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
|
178 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
|
179 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
|
180 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
|
181 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
|
182 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
|
183 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
|
184 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
|
185 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
|
186 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
|
187 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
|
188 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
|
189 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
|
190 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
|
191 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
|
192 |
|
193 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
|
194 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
|
195 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
|
196 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
|
197 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
|
198 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
|
199 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
|
200 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
|
201 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
|
202 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
|
203 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
|
204 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
|
205 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
|
206 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
|
207 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
|
208 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
|
209 |
|
210 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
|
211 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
|
212 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
|
213 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
|
214 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
|
215 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
|
216 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
|
217 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
|
218 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
|
219 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
|
220 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
|
221 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
|
222 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
|
223 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
|
224 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
|
225 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
|
226 |
|
227 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
|
228 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
|
229 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
|
230 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
|
231 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
|
232 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
|
233 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
|
234 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
|
235 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
|
236 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
|
237 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
|
238 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
|
239 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
|
240 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
|
241 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
|
242 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
|
243 |
|
244 buf[0] += a; |
|
245 buf[1] += b; |
|
246 buf[2] += c; |
|
247 buf[3] += d; |
|
248 } |
|
249 |
|
250 } // namespace google_breakpad |
|
251 |