|
1 // Copyright (c) 2010 Google Inc. |
|
2 // All rights reserved. |
|
3 // |
|
4 // Redistribution and use in source and binary forms, with or without |
|
5 // modification, are permitted provided that the following conditions are |
|
6 // met: |
|
7 // |
|
8 // * Redistributions of source code must retain the above copyright |
|
9 // notice, this list of conditions and the following disclaimer. |
|
10 // * Redistributions in binary form must reproduce the above |
|
11 // copyright notice, this list of conditions and the following disclaimer |
|
12 // in the documentation and/or other materials provided with the |
|
13 // distribution. |
|
14 // * Neither the name of Google Inc. nor the names of its |
|
15 // contributors may be used to endorse or promote products derived from |
|
16 // this software without specific prior written permission. |
|
17 // |
|
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
29 |
|
30 // exploitability_win.cc: Windows specific exploitability engine. |
|
31 // |
|
32 // Provides a guess at the exploitability of the crash for the Windows |
|
33 // platform given a minidump and process_state. |
|
34 // |
|
35 // Author: Cris Neckar |
|
36 |
|
37 #include <vector> |
|
38 |
|
39 #include "processor/exploitability_win.h" |
|
40 |
|
41 #include "common/scoped_ptr.h" |
|
42 #include "google_breakpad/common/minidump_exception_win32.h" |
|
43 #include "google_breakpad/processor/minidump.h" |
|
44 #include "processor/disassembler_x86.h" |
|
45 #include "processor/logging.h" |
|
46 |
|
47 #include "third_party/libdisasm/libdis.h" |
|
48 |
|
49 namespace google_breakpad { |
|
50 |
|
51 // The cutoff that we use to judge if and address is likely an offset |
|
52 // from various interesting addresses. |
|
53 static const uint64_t kProbableNullOffset = 4096; |
|
54 static const uint64_t kProbableStackOffset = 8192; |
|
55 |
|
56 // The various cutoffs for the different ratings. |
|
57 static const size_t kHighCutoff = 100; |
|
58 static const size_t kMediumCutoff = 80; |
|
59 static const size_t kLowCutoff = 50; |
|
60 static const size_t kInterestingCutoff = 25; |
|
61 |
|
62 // Predefined incremental values for conditional weighting. |
|
63 static const size_t kTinyBump = 5; |
|
64 static const size_t kSmallBump = 20; |
|
65 static const size_t kMediumBump = 50; |
|
66 static const size_t kLargeBump = 70; |
|
67 static const size_t kHugeBump = 90; |
|
68 |
|
69 // The maximum number of bytes to disassemble past the program counter. |
|
70 static const size_t kDisassembleBytesBeyondPC = 2048; |
|
71 |
|
72 ExploitabilityWin::ExploitabilityWin(Minidump *dump, |
|
73 ProcessState *process_state) |
|
74 : Exploitability(dump, process_state) { } |
|
75 |
|
76 ExploitabilityRating ExploitabilityWin::CheckPlatformExploitability() { |
|
77 MinidumpException *exception = dump_->GetException(); |
|
78 if (!exception) { |
|
79 BPLOG(INFO) << "Minidump does not have exception record."; |
|
80 return EXPLOITABILITY_ERR_PROCESSING; |
|
81 } |
|
82 |
|
83 const MDRawExceptionStream *raw_exception = exception->exception(); |
|
84 if (!raw_exception) { |
|
85 BPLOG(INFO) << "Could not obtain raw exception info."; |
|
86 return EXPLOITABILITY_ERR_PROCESSING; |
|
87 } |
|
88 |
|
89 const MinidumpContext *context = exception->GetContext(); |
|
90 if (!context) { |
|
91 BPLOG(INFO) << "Could not obtain exception context."; |
|
92 return EXPLOITABILITY_ERR_PROCESSING; |
|
93 } |
|
94 |
|
95 MinidumpMemoryList *memory_list = dump_->GetMemoryList(); |
|
96 bool memory_available = true; |
|
97 if (!memory_list) { |
|
98 BPLOG(INFO) << "Minidump memory segments not available."; |
|
99 memory_available = false; |
|
100 } |
|
101 uint64_t address = process_state_->crash_address(); |
|
102 uint32_t exception_code = raw_exception->exception_record.exception_code; |
|
103 |
|
104 uint32_t exploitability_weight = 0; |
|
105 |
|
106 uint64_t stack_ptr = 0; |
|
107 uint64_t instruction_ptr = 0; |
|
108 uint64_t this_ptr = 0; |
|
109 |
|
110 switch (context->GetContextCPU()) { |
|
111 case MD_CONTEXT_X86: |
|
112 stack_ptr = context->GetContextX86()->esp; |
|
113 instruction_ptr = context->GetContextX86()->eip; |
|
114 this_ptr = context->GetContextX86()->ecx; |
|
115 break; |
|
116 case MD_CONTEXT_AMD64: |
|
117 stack_ptr = context->GetContextAMD64()->rsp; |
|
118 instruction_ptr = context->GetContextAMD64()->rip; |
|
119 this_ptr = context->GetContextAMD64()->rcx; |
|
120 break; |
|
121 default: |
|
122 BPLOG(INFO) << "Unsupported architecture."; |
|
123 return EXPLOITABILITY_ERR_PROCESSING; |
|
124 } |
|
125 |
|
126 // Check if we are executing on the stack. |
|
127 if (instruction_ptr <= (stack_ptr + kProbableStackOffset) && |
|
128 instruction_ptr >= (stack_ptr - kProbableStackOffset)) |
|
129 exploitability_weight += kHugeBump; |
|
130 |
|
131 switch (exception_code) { |
|
132 // This is almost certainly recursion. |
|
133 case MD_EXCEPTION_CODE_WIN_STACK_OVERFLOW: |
|
134 exploitability_weight += kTinyBump; |
|
135 break; |
|
136 |
|
137 // These exceptions tend to be benign and we can generally ignore them. |
|
138 case MD_EXCEPTION_CODE_WIN_INTEGER_DIVIDE_BY_ZERO: |
|
139 case MD_EXCEPTION_CODE_WIN_INTEGER_OVERFLOW: |
|
140 case MD_EXCEPTION_CODE_WIN_FLOAT_DIVIDE_BY_ZERO: |
|
141 case MD_EXCEPTION_CODE_WIN_FLOAT_INEXACT_RESULT: |
|
142 case MD_EXCEPTION_CODE_WIN_FLOAT_OVERFLOW: |
|
143 case MD_EXCEPTION_CODE_WIN_FLOAT_UNDERFLOW: |
|
144 case MD_EXCEPTION_CODE_WIN_IN_PAGE_ERROR: |
|
145 exploitability_weight += kTinyBump; |
|
146 break; |
|
147 |
|
148 // These exceptions will typically mean that we have jumped where we |
|
149 // shouldn't. |
|
150 case MD_EXCEPTION_CODE_WIN_ILLEGAL_INSTRUCTION: |
|
151 case MD_EXCEPTION_CODE_WIN_FLOAT_INVALID_OPERATION: |
|
152 case MD_EXCEPTION_CODE_WIN_PRIVILEGED_INSTRUCTION: |
|
153 exploitability_weight += kLargeBump; |
|
154 break; |
|
155 |
|
156 // These represent bugs in exception handlers. |
|
157 case MD_EXCEPTION_CODE_WIN_INVALID_DISPOSITION: |
|
158 case MD_EXCEPTION_CODE_WIN_NONCONTINUABLE_EXCEPTION: |
|
159 exploitability_weight += kSmallBump; |
|
160 break; |
|
161 |
|
162 case MD_EXCEPTION_CODE_WIN_HEAP_CORRUPTION: |
|
163 case MD_EXCEPTION_CODE_WIN_STACK_BUFFER_OVERRUN: |
|
164 exploitability_weight += kHugeBump; |
|
165 break; |
|
166 |
|
167 case MD_EXCEPTION_CODE_WIN_GUARD_PAGE_VIOLATION: |
|
168 exploitability_weight += kLargeBump; |
|
169 break; |
|
170 |
|
171 case MD_EXCEPTION_CODE_WIN_ACCESS_VIOLATION: |
|
172 bool near_null = (address <= kProbableNullOffset); |
|
173 bool bad_read = false; |
|
174 bool bad_write = false; |
|
175 if (raw_exception->exception_record.number_parameters >= 1) { |
|
176 MDAccessViolationTypeWin av_type = |
|
177 static_cast<MDAccessViolationTypeWin> |
|
178 (raw_exception->exception_record.exception_information[0]); |
|
179 switch (av_type) { |
|
180 case MD_ACCESS_VIOLATION_WIN_READ: |
|
181 bad_read = true; |
|
182 if (near_null) |
|
183 exploitability_weight += kSmallBump; |
|
184 else |
|
185 exploitability_weight += kMediumBump; |
|
186 break; |
|
187 case MD_ACCESS_VIOLATION_WIN_WRITE: |
|
188 bad_write = true; |
|
189 if (near_null) |
|
190 exploitability_weight += kSmallBump; |
|
191 else |
|
192 exploitability_weight += kHugeBump; |
|
193 break; |
|
194 case MD_ACCESS_VIOLATION_WIN_EXEC: |
|
195 if (near_null) |
|
196 exploitability_weight += kSmallBump; |
|
197 else |
|
198 exploitability_weight += kHugeBump; |
|
199 break; |
|
200 default: |
|
201 BPLOG(INFO) << "Unrecognized access violation type."; |
|
202 return EXPLOITABILITY_ERR_PROCESSING; |
|
203 break; |
|
204 } |
|
205 MinidumpMemoryRegion *instruction_region = 0; |
|
206 if (memory_available) { |
|
207 instruction_region = |
|
208 memory_list->GetMemoryRegionForAddress(instruction_ptr); |
|
209 } |
|
210 if (!near_null && instruction_region && |
|
211 context->GetContextCPU() == MD_CONTEXT_X86 && |
|
212 (bad_read || bad_write)) { |
|
213 // Perform checks related to memory around instruction pointer. |
|
214 uint32_t memory_offset = |
|
215 instruction_ptr - instruction_region->GetBase(); |
|
216 uint32_t available_memory = |
|
217 instruction_region->GetSize() - memory_offset; |
|
218 available_memory = available_memory > kDisassembleBytesBeyondPC ? |
|
219 kDisassembleBytesBeyondPC : available_memory; |
|
220 if (available_memory) { |
|
221 const uint8_t *raw_memory = |
|
222 instruction_region->GetMemory() + memory_offset; |
|
223 DisassemblerX86 disassembler(raw_memory, |
|
224 available_memory, |
|
225 instruction_ptr); |
|
226 disassembler.NextInstruction(); |
|
227 if (bad_read) |
|
228 disassembler.setBadRead(); |
|
229 else |
|
230 disassembler.setBadWrite(); |
|
231 if (disassembler.currentInstructionValid()) { |
|
232 // Check if the faulting instruction falls into one of |
|
233 // several interesting groups. |
|
234 switch (disassembler.currentInstructionGroup()) { |
|
235 case libdis::insn_controlflow: |
|
236 exploitability_weight += kLargeBump; |
|
237 break; |
|
238 case libdis::insn_string: |
|
239 exploitability_weight += kHugeBump; |
|
240 break; |
|
241 default: |
|
242 break; |
|
243 } |
|
244 // Loop the disassembler through the code and check if it |
|
245 // IDed any interesting conditions in the near future. |
|
246 // Multiple flags may be set so treat each equally. |
|
247 while (disassembler.NextInstruction() && |
|
248 disassembler.currentInstructionValid() && |
|
249 !disassembler.endOfBlock()) |
|
250 continue; |
|
251 if (disassembler.flags() & DISX86_BAD_BRANCH_TARGET) |
|
252 exploitability_weight += kLargeBump; |
|
253 if (disassembler.flags() & DISX86_BAD_ARGUMENT_PASSED) |
|
254 exploitability_weight += kTinyBump; |
|
255 if (disassembler.flags() & DISX86_BAD_WRITE) |
|
256 exploitability_weight += kMediumBump; |
|
257 if (disassembler.flags() & DISX86_BAD_BLOCK_WRITE) |
|
258 exploitability_weight += kMediumBump; |
|
259 if (disassembler.flags() & DISX86_BAD_READ) |
|
260 exploitability_weight += kTinyBump; |
|
261 if (disassembler.flags() & DISX86_BAD_BLOCK_READ) |
|
262 exploitability_weight += kTinyBump; |
|
263 if (disassembler.flags() & DISX86_BAD_COMPARISON) |
|
264 exploitability_weight += kTinyBump; |
|
265 } |
|
266 } |
|
267 } |
|
268 if (!near_null && AddressIsAscii(address)) |
|
269 exploitability_weight += kMediumBump; |
|
270 } else { |
|
271 BPLOG(INFO) << "Access violation type parameter missing."; |
|
272 return EXPLOITABILITY_ERR_PROCESSING; |
|
273 } |
|
274 } |
|
275 |
|
276 // Based on the calculated weight we return a simplified classification. |
|
277 BPLOG(INFO) << "Calculated exploitability weight: " << exploitability_weight; |
|
278 if (exploitability_weight >= kHighCutoff) |
|
279 return EXPLOITABILITY_HIGH; |
|
280 if (exploitability_weight >= kMediumCutoff) |
|
281 return EXPLOITABLITY_MEDIUM; |
|
282 if (exploitability_weight >= kLowCutoff) |
|
283 return EXPLOITABILITY_LOW; |
|
284 if (exploitability_weight >= kInterestingCutoff) |
|
285 return EXPLOITABILITY_INTERESTING; |
|
286 |
|
287 return EXPLOITABILITY_NONE; |
|
288 } |
|
289 |
|
290 } // namespace google_breakpad |