|
1 // Copyright (c) 2010 Google Inc. |
|
2 // All rights reserved. |
|
3 // |
|
4 // Redistribution and use in source and binary forms, with or without |
|
5 // modification, are permitted provided that the following conditions are |
|
6 // met: |
|
7 // |
|
8 // * Redistributions of source code must retain the above copyright |
|
9 // notice, this list of conditions and the following disclaimer. |
|
10 // * Redistributions in binary form must reproduce the above |
|
11 // copyright notice, this list of conditions and the following disclaimer |
|
12 // in the documentation and/or other materials provided with the |
|
13 // distribution. |
|
14 // * Neither the name of Google Inc. nor the names of its |
|
15 // contributors may be used to endorse or promote products derived from |
|
16 // this software without specific prior written permission. |
|
17 // |
|
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
29 |
|
30 // range_map_unittest.cc: Unit tests for RangeMap |
|
31 // |
|
32 // Author: Mark Mentovai |
|
33 |
|
34 |
|
35 #include <limits.h> |
|
36 #include <stdio.h> |
|
37 |
|
38 #include "processor/range_map-inl.h" |
|
39 |
|
40 #include "common/scoped_ptr.h" |
|
41 #include "processor/linked_ptr.h" |
|
42 #include "processor/logging.h" |
|
43 |
|
44 namespace { |
|
45 |
|
46 |
|
47 using google_breakpad::linked_ptr; |
|
48 using google_breakpad::scoped_ptr; |
|
49 using google_breakpad::RangeMap; |
|
50 |
|
51 |
|
52 // A CountedObject holds an int. A global (not thread safe!) count of |
|
53 // allocated CountedObjects is maintained to help test memory management. |
|
54 class CountedObject { |
|
55 public: |
|
56 explicit CountedObject(int id) : id_(id) { ++count_; } |
|
57 ~CountedObject() { --count_; } |
|
58 |
|
59 static int count() { return count_; } |
|
60 int id() const { return id_; } |
|
61 |
|
62 private: |
|
63 static int count_; |
|
64 int id_; |
|
65 }; |
|
66 |
|
67 int CountedObject::count_; |
|
68 |
|
69 |
|
70 typedef int AddressType; |
|
71 typedef RangeMap< AddressType, linked_ptr<CountedObject> > TestMap; |
|
72 |
|
73 |
|
74 // RangeTest contains data to use for store and retrieve tests. See |
|
75 // RunTests for descriptions of the tests. |
|
76 struct RangeTest { |
|
77 // Base address to use for test |
|
78 AddressType address; |
|
79 |
|
80 // Size of range to use for test |
|
81 AddressType size; |
|
82 |
|
83 // Unique ID of range - unstorable ranges must have unique IDs too |
|
84 int id; |
|
85 |
|
86 // Whether this range is expected to be stored successfully or not |
|
87 bool expect_storable; |
|
88 }; |
|
89 |
|
90 |
|
91 // A RangeTestSet encompasses multiple RangeTests, which are run in |
|
92 // sequence on the same RangeMap. |
|
93 struct RangeTestSet { |
|
94 // An array of RangeTests |
|
95 const RangeTest *range_tests; |
|
96 |
|
97 // The number of tests in the set |
|
98 unsigned int range_test_count; |
|
99 }; |
|
100 |
|
101 |
|
102 // StoreTest uses the data in a RangeTest and calls StoreRange on the |
|
103 // test RangeMap. It returns true if the expected result occurred, and |
|
104 // false if something else happened. |
|
105 static bool StoreTest(TestMap *range_map, const RangeTest *range_test) { |
|
106 linked_ptr<CountedObject> object(new CountedObject(range_test->id)); |
|
107 bool stored = range_map->StoreRange(range_test->address, |
|
108 range_test->size, |
|
109 object); |
|
110 |
|
111 if (stored != range_test->expect_storable) { |
|
112 fprintf(stderr, "FAILED: " |
|
113 "StoreRange id %d, expected %s, observed %s\n", |
|
114 range_test->id, |
|
115 range_test->expect_storable ? "storable" : "not storable", |
|
116 stored ? "stored" : "not stored"); |
|
117 return false; |
|
118 } |
|
119 |
|
120 return true; |
|
121 } |
|
122 |
|
123 |
|
124 // RetrieveTest uses the data in RangeTest and calls RetrieveRange on the |
|
125 // test RangeMap. If it retrieves the expected value (which can be no |
|
126 // map entry at the specified range,) it returns true, otherwise, it returns |
|
127 // false. RetrieveTest will check the values around the base address and |
|
128 // the high address of a range to guard against off-by-one errors. |
|
129 static bool RetrieveTest(TestMap *range_map, const RangeTest *range_test) { |
|
130 for (unsigned int side = 0; side <= 1; ++side) { |
|
131 // When side == 0, check the low side (base address) of each range. |
|
132 // When side == 1, check the high side (base + size) of each range. |
|
133 |
|
134 // Check one-less and one-greater than the target address in addition |
|
135 // to the target address itself. |
|
136 |
|
137 // If the size of the range is only 1, don't check one greater than |
|
138 // the base or one less than the high - for a successfully stored |
|
139 // range, these tests would erroneously fail because the range is too |
|
140 // small. |
|
141 AddressType low_offset = -1; |
|
142 AddressType high_offset = 1; |
|
143 if (range_test->size == 1) { |
|
144 if (!side) // When checking the low side, |
|
145 high_offset = 0; // don't check one over the target. |
|
146 else // When checking the high side, |
|
147 low_offset = 0; // don't check one under the target. |
|
148 } |
|
149 |
|
150 for (AddressType offset = low_offset; offset <= high_offset; ++offset) { |
|
151 AddressType address = |
|
152 offset + |
|
153 (!side ? range_test->address : |
|
154 range_test->address + range_test->size - 1); |
|
155 |
|
156 bool expected_result = false; // This is correct for tests not stored. |
|
157 if (range_test->expect_storable) { |
|
158 if (offset == 0) // When checking the target address, |
|
159 expected_result = true; // test should always succeed. |
|
160 else if (offset == -1) // When checking one below the target, |
|
161 expected_result = side; // should fail low and succeed high. |
|
162 else // When checking one above the target, |
|
163 expected_result = !side; // should succeed low and fail high. |
|
164 } |
|
165 |
|
166 linked_ptr<CountedObject> object; |
|
167 AddressType retrieved_base = AddressType(); |
|
168 AddressType retrieved_size = AddressType(); |
|
169 bool retrieved = range_map->RetrieveRange(address, &object, |
|
170 &retrieved_base, |
|
171 &retrieved_size); |
|
172 |
|
173 bool observed_result = retrieved && object->id() == range_test->id; |
|
174 |
|
175 if (observed_result != expected_result) { |
|
176 fprintf(stderr, "FAILED: " |
|
177 "RetrieveRange id %d, side %d, offset %d, " |
|
178 "expected %s, observed %s\n", |
|
179 range_test->id, |
|
180 side, |
|
181 offset, |
|
182 expected_result ? "true" : "false", |
|
183 observed_result ? "true" : "false"); |
|
184 return false; |
|
185 } |
|
186 |
|
187 // If a range was successfully retrieved, check that the returned |
|
188 // bounds match the range as stored. |
|
189 if (observed_result == true && |
|
190 (retrieved_base != range_test->address || |
|
191 retrieved_size != range_test->size)) { |
|
192 fprintf(stderr, "FAILED: " |
|
193 "RetrieveRange id %d, side %d, offset %d, " |
|
194 "expected base/size %d/%d, observed %d/%d\n", |
|
195 range_test->id, |
|
196 side, |
|
197 offset, |
|
198 range_test->address, range_test->size, |
|
199 retrieved_base, retrieved_size); |
|
200 return false; |
|
201 } |
|
202 |
|
203 // Now, check RetrieveNearestRange. The nearest range is always |
|
204 // expected to be different from the test range when checking one |
|
205 // less than the low side. |
|
206 bool expected_nearest = range_test->expect_storable; |
|
207 if (!side && offset < 0) |
|
208 expected_nearest = false; |
|
209 |
|
210 linked_ptr<CountedObject> nearest_object; |
|
211 AddressType nearest_base = AddressType(); |
|
212 AddressType nearest_size = AddressType(); |
|
213 bool retrieved_nearest = range_map->RetrieveNearestRange(address, |
|
214 &nearest_object, |
|
215 &nearest_base, |
|
216 &nearest_size); |
|
217 |
|
218 // When checking one greater than the high side, RetrieveNearestRange |
|
219 // should usually return the test range. When a different range begins |
|
220 // at that address, though, then RetrieveNearestRange should return the |
|
221 // range at the address instead of the test range. |
|
222 if (side && offset > 0 && nearest_base == address) { |
|
223 expected_nearest = false; |
|
224 } |
|
225 |
|
226 bool observed_nearest = retrieved_nearest && |
|
227 nearest_object->id() == range_test->id; |
|
228 |
|
229 if (observed_nearest != expected_nearest) { |
|
230 fprintf(stderr, "FAILED: " |
|
231 "RetrieveNearestRange id %d, side %d, offset %d, " |
|
232 "expected %s, observed %s\n", |
|
233 range_test->id, |
|
234 side, |
|
235 offset, |
|
236 expected_nearest ? "true" : "false", |
|
237 observed_nearest ? "true" : "false"); |
|
238 return false; |
|
239 } |
|
240 |
|
241 // If a range was successfully retrieved, check that the returned |
|
242 // bounds match the range as stored. |
|
243 if (expected_nearest && |
|
244 (nearest_base != range_test->address || |
|
245 nearest_size != range_test->size)) { |
|
246 fprintf(stderr, "FAILED: " |
|
247 "RetrieveNearestRange id %d, side %d, offset %d, " |
|
248 "expected base/size %d/%d, observed %d/%d\n", |
|
249 range_test->id, |
|
250 side, |
|
251 offset, |
|
252 range_test->address, range_test->size, |
|
253 nearest_base, nearest_size); |
|
254 return false; |
|
255 } |
|
256 } |
|
257 } |
|
258 |
|
259 return true; |
|
260 } |
|
261 |
|
262 |
|
263 // Test RetrieveRangeAtIndex, which is supposed to return objects in order |
|
264 // according to their addresses. This test is performed by looping through |
|
265 // the map, calling RetrieveRangeAtIndex for all possible indices in sequence, |
|
266 // and verifying that each call returns a different object than the previous |
|
267 // call, and that ranges are returned with increasing base addresses. Returns |
|
268 // false if the test fails. |
|
269 static bool RetrieveIndexTest(TestMap *range_map, int set) { |
|
270 linked_ptr<CountedObject> object; |
|
271 CountedObject *last_object = NULL; |
|
272 AddressType last_base = 0; |
|
273 |
|
274 int object_count = range_map->GetCount(); |
|
275 for (int object_index = 0; object_index < object_count; ++object_index) { |
|
276 AddressType base; |
|
277 if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) { |
|
278 fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
|
279 "expected success, observed failure\n", |
|
280 set, object_index); |
|
281 return false; |
|
282 } |
|
283 |
|
284 if (!object.get()) { |
|
285 fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
|
286 "expected object, observed NULL\n", |
|
287 set, object_index); |
|
288 return false; |
|
289 } |
|
290 |
|
291 // It's impossible to do these comparisons unless there's a previous |
|
292 // object to compare against. |
|
293 if (last_object) { |
|
294 // The object must be different from the last one. |
|
295 if (object->id() == last_object->id()) { |
|
296 fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
|
297 "expected different objects, observed same objects (%d)\n", |
|
298 set, object_index, object->id()); |
|
299 return false; |
|
300 } |
|
301 |
|
302 // Each object must have a base greater than the previous object's base. |
|
303 if (base <= last_base) { |
|
304 fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
|
305 "expected different bases, observed same bases (%d)\n", |
|
306 set, object_index, base); |
|
307 return false; |
|
308 } |
|
309 } |
|
310 |
|
311 last_object = object.get(); |
|
312 last_base = base; |
|
313 } |
|
314 |
|
315 // Make sure that RetrieveRangeAtIndex doesn't allow lookups at indices that |
|
316 // are too high. |
|
317 if (range_map->RetrieveRangeAtIndex(object_count, &object, NULL, NULL)) { |
|
318 fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d (too large), " |
|
319 "expected failure, observed success\n", |
|
320 set, object_count); |
|
321 return false; |
|
322 } |
|
323 |
|
324 return true; |
|
325 } |
|
326 |
|
327 // Additional RetriveAtIndex test to expose the bug in RetrieveRangeAtIndex(). |
|
328 // Bug info: RetrieveRangeAtIndex() previously retrieves the high address of |
|
329 // entry, however, it is supposed to retrieve the base address of entry as |
|
330 // stated in the comment in range_map.h. |
|
331 static bool RetriveAtIndexTest2() { |
|
332 scoped_ptr<TestMap> range_map(new TestMap()); |
|
333 |
|
334 // Store ranges with base address = 2 * object_id: |
|
335 const int range_size = 2; |
|
336 for (int object_id = 0; object_id < 100; ++object_id) { |
|
337 linked_ptr<CountedObject> object(new CountedObject(object_id)); |
|
338 int base_address = 2 * object_id; |
|
339 range_map->StoreRange(base_address, range_size, object); |
|
340 } |
|
341 |
|
342 linked_ptr<CountedObject> object; |
|
343 int object_count = range_map->GetCount(); |
|
344 for (int object_index = 0; object_index < object_count; ++object_index) { |
|
345 AddressType base; |
|
346 if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) { |
|
347 fprintf(stderr, "FAILED: RetrieveAtIndexTest2 index %d, " |
|
348 "expected success, observed failure\n", object_index); |
|
349 return false; |
|
350 } |
|
351 |
|
352 int expected_base = 2 * object->id(); |
|
353 if (base != expected_base) { |
|
354 fprintf(stderr, "FAILED: RetriveAtIndexTest2 index %d, " |
|
355 "expected base %d, observed base %d", |
|
356 object_index, expected_base, base); |
|
357 return false; |
|
358 } |
|
359 } |
|
360 |
|
361 return true; |
|
362 } |
|
363 |
|
364 |
|
365 // RunTests runs a series of test sets. |
|
366 static bool RunTests() { |
|
367 // These tests will be run sequentially. The first set of tests exercises |
|
368 // most functions of RangeTest, and verifies all of the bounds-checking. |
|
369 const RangeTest range_tests_0[] = { |
|
370 { INT_MIN, 16, 1, true }, // lowest possible range |
|
371 { -2, 5, 2, true }, // a range through zero |
|
372 { INT_MAX - 9, 11, 3, false }, // tests anti-overflow |
|
373 { INT_MAX - 9, 10, 4, true }, // highest possible range |
|
374 { 5, 0, 5, false }, // tests anti-zero-size |
|
375 { 5, 1, 6, true }, // smallest possible range |
|
376 { -20, 15, 7, true }, // entirely negative |
|
377 |
|
378 { 10, 10, 10, true }, // causes the following tests to fail |
|
379 { 9, 10, 11, false }, // one-less base, one-less high |
|
380 { 9, 11, 12, false }, // one-less base, identical high |
|
381 { 9, 12, 13, false }, // completely contains existing |
|
382 { 10, 9, 14, false }, // identical base, one-less high |
|
383 { 10, 10, 15, false }, // exactly identical to existing range |
|
384 { 10, 11, 16, false }, // identical base, one-greater high |
|
385 { 11, 8, 17, false }, // contained completely within |
|
386 { 11, 9, 18, false }, // one-greater base, identical high |
|
387 { 11, 10, 19, false }, // one-greater base, one-greater high |
|
388 { 9, 2, 20, false }, // overlaps bottom by one |
|
389 { 10, 1, 21, false }, // overlaps bottom by one, contained |
|
390 { 19, 1, 22, false }, // overlaps top by one, contained |
|
391 { 19, 2, 23, false }, // overlaps top by one |
|
392 |
|
393 { 9, 1, 24, true }, // directly below without overlap |
|
394 { 20, 1, 25, true }, // directly above without overlap |
|
395 |
|
396 { 6, 3, 26, true }, // exactly between two ranges, gapless |
|
397 { 7, 3, 27, false }, // tries to span two ranges |
|
398 { 7, 5, 28, false }, // tries to span three ranges |
|
399 { 4, 20, 29, false }, // tries to contain several ranges |
|
400 |
|
401 { 30, 50, 30, true }, |
|
402 { 90, 25, 31, true }, |
|
403 { 35, 65, 32, false }, // tries to span two noncontiguous |
|
404 { 120, 10000, 33, true }, // > 8-bit |
|
405 { 20000, 20000, 34, true }, // > 8-bit |
|
406 { 0x10001, 0x10001, 35, true }, // > 16-bit |
|
407 |
|
408 { 27, -1, 36, false } // tests high < base |
|
409 }; |
|
410 |
|
411 // Attempt to fill the entire space. The entire space must be filled with |
|
412 // three stores because AddressType is signed for these tests, so RangeMap |
|
413 // treats the size as signed and rejects sizes that appear to be negative. |
|
414 // Even if these tests were run as unsigned, two stores would be needed |
|
415 // to fill the space because the entire size of the space could only be |
|
416 // described by using one more bit than would be present in AddressType. |
|
417 const RangeTest range_tests_1[] = { |
|
418 { INT_MIN, INT_MAX, 50, true }, // From INT_MIN to -2, inclusive |
|
419 { -1, 2, 51, true }, // From -1 to 0, inclusive |
|
420 { 1, INT_MAX, 52, true }, // From 1 to INT_MAX, inclusive |
|
421 { INT_MIN, INT_MAX, 53, false }, // Can't fill the space twice |
|
422 { -1, 2, 54, false }, |
|
423 { 1, INT_MAX, 55, false }, |
|
424 { -3, 6, 56, false }, // -3 to 2, inclusive - spans 3 ranges |
|
425 }; |
|
426 |
|
427 // A light round of testing to verify that RetrieveRange does the right |
|
428 // the right thing at the extremities of the range when nothing is stored |
|
429 // there. Checks are forced without storing anything at the extremities |
|
430 // by setting size = 0. |
|
431 const RangeTest range_tests_2[] = { |
|
432 { INT_MIN, 0, 100, false }, // makes RetrieveRange check low end |
|
433 { -1, 3, 101, true }, |
|
434 { INT_MAX, 0, 102, false }, // makes RetrieveRange check high end |
|
435 }; |
|
436 |
|
437 // Similar to the previous test set, but with a couple of ranges closer |
|
438 // to the extremities. |
|
439 const RangeTest range_tests_3[] = { |
|
440 { INT_MIN + 1, 1, 110, true }, |
|
441 { INT_MAX - 1, 1, 111, true }, |
|
442 { INT_MIN, 0, 112, false }, // makes RetrieveRange check low end |
|
443 { INT_MAX, 0, 113, false } // makes RetrieveRange check high end |
|
444 }; |
|
445 |
|
446 // The range map is cleared between sets of tests listed here. |
|
447 const RangeTestSet range_test_sets[] = { |
|
448 { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) }, |
|
449 { range_tests_1, sizeof(range_tests_1) / sizeof(RangeTest) }, |
|
450 { range_tests_2, sizeof(range_tests_2) / sizeof(RangeTest) }, |
|
451 { range_tests_3, sizeof(range_tests_3) / sizeof(RangeTest) }, |
|
452 { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) } // Run again |
|
453 }; |
|
454 |
|
455 // Maintain the range map in a pointer so that deletion can be meaningfully |
|
456 // tested. |
|
457 scoped_ptr<TestMap> range_map(new TestMap()); |
|
458 |
|
459 // Run all of the test sets in sequence. |
|
460 unsigned int range_test_set_count = sizeof(range_test_sets) / |
|
461 sizeof(RangeTestSet); |
|
462 for (unsigned int range_test_set_index = 0; |
|
463 range_test_set_index < range_test_set_count; |
|
464 ++range_test_set_index) { |
|
465 const RangeTest *range_tests = |
|
466 range_test_sets[range_test_set_index].range_tests; |
|
467 unsigned int range_test_count = |
|
468 range_test_sets[range_test_set_index].range_test_count; |
|
469 |
|
470 // Run the StoreRange test, which validates StoreRange and initializes |
|
471 // the RangeMap with data for the RetrieveRange test. |
|
472 int stored_count = 0; // The number of ranges successfully stored |
|
473 for (unsigned int range_test_index = 0; |
|
474 range_test_index < range_test_count; |
|
475 ++range_test_index) { |
|
476 const RangeTest *range_test = &range_tests[range_test_index]; |
|
477 if (!StoreTest(range_map.get(), range_test)) |
|
478 return false; |
|
479 |
|
480 if (range_test->expect_storable) |
|
481 ++stored_count; |
|
482 } |
|
483 |
|
484 // There should be exactly one CountedObject for everything successfully |
|
485 // stored in the RangeMap. |
|
486 if (CountedObject::count() != stored_count) { |
|
487 fprintf(stderr, "FAILED: " |
|
488 "stored object counts don't match, expected %d, observed %d\n", |
|
489 stored_count, |
|
490 CountedObject::count()); |
|
491 |
|
492 return false; |
|
493 } |
|
494 |
|
495 // The RangeMap's own count of objects should also match. |
|
496 if (range_map->GetCount() != stored_count) { |
|
497 fprintf(stderr, "FAILED: stored object count doesn't match GetCount, " |
|
498 "expected %d, observed %d\n", |
|
499 stored_count, range_map->GetCount()); |
|
500 |
|
501 return false; |
|
502 } |
|
503 |
|
504 // Run the RetrieveRange test |
|
505 for (unsigned int range_test_index = 0; |
|
506 range_test_index < range_test_count; |
|
507 ++range_test_index) { |
|
508 const RangeTest *range_test = &range_tests[range_test_index]; |
|
509 if (!RetrieveTest(range_map.get(), range_test)) |
|
510 return false; |
|
511 } |
|
512 |
|
513 if (!RetrieveIndexTest(range_map.get(), range_test_set_index)) |
|
514 return false; |
|
515 |
|
516 // Clear the map between test sets. If this is the final test set, |
|
517 // delete the map instead to test destruction. |
|
518 if (range_test_set_index < range_test_set_count - 1) |
|
519 range_map->Clear(); |
|
520 else |
|
521 range_map.reset(); |
|
522 |
|
523 // Test that all stored objects are freed when the RangeMap is cleared |
|
524 // or deleted. |
|
525 if (CountedObject::count() != 0) { |
|
526 fprintf(stderr, "FAILED: " |
|
527 "did not free all objects after %s, %d still allocated\n", |
|
528 range_test_set_index < range_test_set_count - 1 ? "clear" |
|
529 : "delete", |
|
530 CountedObject::count()); |
|
531 |
|
532 return false; |
|
533 } |
|
534 } |
|
535 |
|
536 if (!RetriveAtIndexTest2()) { |
|
537 fprintf(stderr, "FAILED: did not pass RetrieveAtIndexTest2()\n"); |
|
538 return false; |
|
539 } |
|
540 |
|
541 return true; |
|
542 } |
|
543 |
|
544 |
|
545 } // namespace |
|
546 |
|
547 |
|
548 int main(int argc, char **argv) { |
|
549 BPLOG_INIT(&argc, &argv); |
|
550 |
|
551 return RunTests() ? 0 : 1; |
|
552 } |