|
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
|
3 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #ifndef LulMainInt_h |
|
8 #define LulMainInt_h |
|
9 |
|
10 #include "LulPlatformMacros.h" |
|
11 |
|
12 #include <vector> |
|
13 |
|
14 #include "mozilla/Assertions.h" |
|
15 |
|
16 // This file is provides internal interface inside LUL. If you are an |
|
17 // end-user of LUL, do not include it in your code. The end-user |
|
18 // interface is in LulMain.h. |
|
19 |
|
20 |
|
21 namespace lul { |
|
22 |
|
23 //////////////////////////////////////////////////////////////// |
|
24 // DW_REG_ constants // |
|
25 //////////////////////////////////////////////////////////////// |
|
26 |
|
27 // These are the Dwarf CFI register numbers, as (presumably) defined |
|
28 // in the ELF ABI supplements for each architecture. |
|
29 |
|
30 enum DW_REG_NUMBER { |
|
31 // No real register has this number. It's convenient to be able to |
|
32 // treat the CFA (Canonical Frame Address) as "just another |
|
33 // register", though. |
|
34 DW_REG_CFA = -1, |
|
35 #if defined(LUL_ARCH_arm) |
|
36 // ARM registers |
|
37 DW_REG_ARM_R7 = 7, |
|
38 DW_REG_ARM_R11 = 11, |
|
39 DW_REG_ARM_R12 = 12, |
|
40 DW_REG_ARM_R13 = 13, |
|
41 DW_REG_ARM_R14 = 14, |
|
42 DW_REG_ARM_R15 = 15, |
|
43 #elif defined(LUL_ARCH_x64) |
|
44 // Because the X86 (32 bit) and AMD64 (64 bit) summarisers are |
|
45 // combined, a merged set of register constants is needed. |
|
46 DW_REG_INTEL_XBP = 6, |
|
47 DW_REG_INTEL_XSP = 7, |
|
48 DW_REG_INTEL_XIP = 16, |
|
49 #elif defined(LUL_ARCH_x86) |
|
50 DW_REG_INTEL_XBP = 5, |
|
51 DW_REG_INTEL_XSP = 4, |
|
52 DW_REG_INTEL_XIP = 8, |
|
53 #else |
|
54 # error "Unknown arch" |
|
55 #endif |
|
56 }; |
|
57 |
|
58 |
|
59 //////////////////////////////////////////////////////////////// |
|
60 // LExpr // |
|
61 //////////////////////////////////////////////////////////////// |
|
62 |
|
63 // An expression -- very primitive. Denotes either "register + |
|
64 // offset" or a dereferenced version of the same. So as to allow |
|
65 // convenient handling of Dwarf-derived unwind info, the register may |
|
66 // also denote the CFA. A large number of these need to be stored, so |
|
67 // we ensure it fits into 8 bytes. See comment below on RuleSet to |
|
68 // see how expressions fit into the bigger picture. |
|
69 |
|
70 struct LExpr { |
|
71 // Denotes an expression with no value. |
|
72 LExpr() |
|
73 : mHow(UNKNOWN) |
|
74 , mReg(0) |
|
75 , mOffset(0) |
|
76 {} |
|
77 |
|
78 // Denotes any expressible expression. |
|
79 LExpr(uint8_t how, int16_t reg, int32_t offset) |
|
80 : mHow(how) |
|
81 , mReg(reg) |
|
82 , mOffset(offset) |
|
83 {} |
|
84 |
|
85 // Change the offset for an expression that references memory. |
|
86 LExpr add_delta(long delta) |
|
87 { |
|
88 MOZ_ASSERT(mHow == NODEREF); |
|
89 // If this is a non-debug build and the above assertion would have |
|
90 // failed, at least return LExpr() so that the machinery that uses |
|
91 // the resulting expression fails in a repeatable way. |
|
92 return (mHow == NODEREF) ? LExpr(mHow, mReg, mOffset+delta) |
|
93 : LExpr(); // Gone bad |
|
94 } |
|
95 |
|
96 // Dereference an expression that denotes a memory address. |
|
97 LExpr deref() |
|
98 { |
|
99 MOZ_ASSERT(mHow == NODEREF); |
|
100 // Same rationale as for add_delta(). |
|
101 return (mHow == NODEREF) ? LExpr(DEREF, mReg, mOffset) |
|
102 : LExpr(); // Gone bad |
|
103 } |
|
104 |
|
105 // Representation of expressions. If |mReg| is DW_REG_CFA (-1) then |
|
106 // it denotes the CFA. All other allowed values for |mReg| are |
|
107 // nonnegative and are DW_REG_ values. |
|
108 |
|
109 enum { UNKNOWN=0, // This LExpr denotes no value. |
|
110 NODEREF, // Value is (mReg + mOffset). |
|
111 DEREF }; // Value is *(mReg + mOffset). |
|
112 |
|
113 uint8_t mHow; // UNKNOWN, NODEREF or DEREF |
|
114 int16_t mReg; // A DW_REG_ value |
|
115 int32_t mOffset; // 32-bit signed offset should be more than enough. |
|
116 }; |
|
117 |
|
118 static_assert(sizeof(LExpr) <= 8, "LExpr size changed unexpectedly"); |
|
119 |
|
120 |
|
121 //////////////////////////////////////////////////////////////// |
|
122 // RuleSet // |
|
123 //////////////////////////////////////////////////////////////// |
|
124 |
|
125 // This is platform-dependent. For some address range, describes how |
|
126 // to recover the CFA and then how to recover the registers for the |
|
127 // previous frame. |
|
128 // |
|
129 // The set of LExprs contained in a given RuleSet describe a DAG which |
|
130 // says how to compute the caller's registers ("new registers") from |
|
131 // the callee's registers ("old registers"). The DAG can contain a |
|
132 // single internal node, which is the value of the CFA for the callee. |
|
133 // It would be possible to construct a DAG that omits the CFA, but |
|
134 // including it makes the summarisers simpler, and the Dwarf CFI spec |
|
135 // has the CFA as a central concept. |
|
136 // |
|
137 // For this to make sense, |mCfaExpr| can't have |
|
138 // |mReg| == DW_REG_CFA since we have no previous value for the CFA. |
|
139 // All of the other |Expr| fields can -- and usually do -- specify |
|
140 // |mReg| == DW_REG_CFA. |
|
141 // |
|
142 // With that in place, the unwind algorithm proceeds as follows. |
|
143 // |
|
144 // (0) Initially: we have values for the old registers, and a memory |
|
145 // image. |
|
146 // |
|
147 // (1) Compute the CFA by evaluating |mCfaExpr|. Add the computed |
|
148 // value to the set of "old registers". |
|
149 // |
|
150 // (2) Compute values for the registers by evaluating all of the other |
|
151 // |Expr| fields in the RuleSet. These can depend on both the old |
|
152 // register values and the just-computed CFA. |
|
153 // |
|
154 // If we are unwinding without computing a CFA, perhaps because the |
|
155 // RuleSets are derived from EXIDX instead of Dwarf, then |
|
156 // |mCfaExpr.mHow| will be LExpr::UNKNOWN, so the computed value will |
|
157 // be invalid -- that is, TaggedUWord() -- and so any attempt to use |
|
158 // that will result in the same value. But that's OK because the |
|
159 // RuleSet would make no sense if depended on the CFA but specified no |
|
160 // way to compute it. |
|
161 // |
|
162 // A RuleSet is not allowed to cover zero address range. Having zero |
|
163 // length would break binary searching in SecMaps and PriMaps. |
|
164 |
|
165 class RuleSet { |
|
166 public: |
|
167 RuleSet(); |
|
168 void Print(void(*aLog)(const char*)); |
|
169 |
|
170 // Find the LExpr* for a given DW_REG_ value in this class. |
|
171 LExpr* ExprForRegno(DW_REG_NUMBER aRegno); |
|
172 |
|
173 uintptr_t mAddr; |
|
174 uintptr_t mLen; |
|
175 // How to compute the CFA. |
|
176 LExpr mCfaExpr; |
|
177 // How to compute caller register values. These may reference the |
|
178 // value defined by |mCfaExpr|. |
|
179 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
|
180 LExpr mXipExpr; // return address |
|
181 LExpr mXspExpr; |
|
182 LExpr mXbpExpr; |
|
183 #elif defined(LUL_ARCH_arm) |
|
184 LExpr mR15expr; // return address |
|
185 LExpr mR14expr; |
|
186 LExpr mR13expr; |
|
187 LExpr mR12expr; |
|
188 LExpr mR11expr; |
|
189 LExpr mR7expr; |
|
190 #else |
|
191 # error "Unknown arch" |
|
192 #endif |
|
193 }; |
|
194 |
|
195 |
|
196 //////////////////////////////////////////////////////////////// |
|
197 // SecMap // |
|
198 //////////////////////////////////////////////////////////////// |
|
199 |
|
200 // A SecMap may have zero address range, temporarily, whilst RuleSets |
|
201 // are being added to it. But adding a zero-range SecMap to a PriMap |
|
202 // will make it impossible to maintain the total order of the PriMap |
|
203 // entries, and so that can't be allowed to happen. |
|
204 |
|
205 class SecMap { |
|
206 public: |
|
207 // These summarise the contained mRuleSets, in that they give |
|
208 // exactly the lowest and highest addresses that any of the entries |
|
209 // in this SecMap cover. Hence invariants: |
|
210 // |
|
211 // mRuleSets is nonempty |
|
212 // <=> mSummaryMinAddr <= mSummaryMaxAddr |
|
213 // && mSummaryMinAddr == mRuleSets[0].mAddr |
|
214 // && mSummaryMaxAddr == mRuleSets[#rulesets-1].mAddr |
|
215 // + mRuleSets[#rulesets-1].mLen - 1; |
|
216 // |
|
217 // This requires that no RuleSet has zero length. |
|
218 // |
|
219 // mRuleSets is empty |
|
220 // <=> mSummaryMinAddr > mSummaryMaxAddr |
|
221 // |
|
222 // This doesn't constrain mSummaryMinAddr and mSummaryMaxAddr uniquely, |
|
223 // so let's use mSummaryMinAddr == 1 and mSummaryMaxAddr == 0 to denote |
|
224 // this case. |
|
225 |
|
226 SecMap(void(*aLog)(const char*)); |
|
227 ~SecMap(); |
|
228 |
|
229 // Binary search mRuleSets to find one that brackets |ia|, or nullptr |
|
230 // if none is found. It's not allowable to do this until PrepareRuleSets |
|
231 // has been called first. |
|
232 RuleSet* FindRuleSet(uintptr_t ia); |
|
233 |
|
234 // Add a RuleSet to the collection. The rule is copied in. Calling |
|
235 // this makes the map non-searchable. |
|
236 void AddRuleSet(RuleSet* rs); |
|
237 |
|
238 // Prepare the map for searching. Also, remove any rules for code |
|
239 // address ranges which don't fall inside [start, +len). |len| may |
|
240 // not be zero. |
|
241 void PrepareRuleSets(uintptr_t start, size_t len); |
|
242 |
|
243 bool IsEmpty(); |
|
244 |
|
245 size_t Size() { return mRuleSets.size(); } |
|
246 |
|
247 // The min and max addresses of the addresses in the contained |
|
248 // RuleSets. See comment above for invariants. |
|
249 uintptr_t mSummaryMinAddr; |
|
250 uintptr_t mSummaryMaxAddr; |
|
251 |
|
252 private: |
|
253 // False whilst adding entries; true once it is safe to call FindRuleSet. |
|
254 // Transition (false->true) is caused by calling PrepareRuleSets(). |
|
255 bool mUsable; |
|
256 |
|
257 // A vector of RuleSets, sorted, nonoverlapping (post Prepare()). |
|
258 std::vector<RuleSet> mRuleSets; |
|
259 |
|
260 // A logging sink, for debugging. |
|
261 void (*mLog)(const char*); |
|
262 }; |
|
263 |
|
264 } // namespace lul |
|
265 |
|
266 #endif // ndef LulMainInt_h |